Research Article
BibTex RIS Cite

İşbirlikli insansız hava araçlarının iletişiminin Nakagami-m sönümlemeli kanal altında etkisi

Year 2023, Volume: 38 Issue: 4, 2095 - 2106, 12.04.2023
https://doi.org/10.17341/gazimmfd.997670

Abstract

Bu çalışmada, insansız hava araçları (unmanned aerial vehicles, UAV) için işbirlikli iletim ortam erişim kontrolü (cooperative transmission medium access conrol, CT-MAC) protokolünün Nakagami-m kanal sönümlemesi üzerine performansı araştırılmıştır. Önerilen protokol, verimi artırmak için esas olarak doğrudan iletim (DT) ve işbirlikli iletim (CT) modlarını içermektedir. Ayrıca, uygun bir veri iletim modunu seçmek ve optimal röleyi seçmek için algoritma tanımlanmaktadır. Yalnızca doğrudan iletişim için özel olarak tasarlanmış IEEE 802.11 standartlarında tanımlanan mekanizma, işbirlikli iletişim için uygun değildir. Bu nedenle, yeni kontrol paketleri kullanılır ve mevcut kontrol paketi formatı, işbirliğine dayalı iletişimi desteklemek üzere değiştirilmiştir. Önerilen CT-MAC protokolünün performans analizini gerçekleştirmek için, doymamış Markov Zinciri modeline dayanan bir analitik model simülasyonla türetilip ve doğrulanmıştır. Benzetim sonuçları, önerilen protokolün sistem verimini en üst düzeye çıkardığını göstermektedir.

References

  • M. A. Karabulut, A. F. M. S. Shah and H. Ilhan, "IEEE 802.11 MAC Protokolünün VANET ağlardaki performans modellemesi ve analizi", Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(3), 1575-1588, 2020.
  • IEEE Standard for Information technology— Telecommunications and information exchange between systems Local and metropolitan area networks—Specific requirements— Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE 802.11, 2012.
  • ITS G5–2009: ‘European telecommunications standards institute, ‘intelligent transport systems (ITS); European profile standard for the physical and medium access control layer of intelligent transport systems operating in the 5 GHz frequency band,’ ETSI, ES, 202 663 V1.1.0’, 2009.
  • IEEE Standard for Information technology—Telecommunications and information exchange between systems Local and metropolitan area networks—Specific requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE 802.11-2016, 2016.
  • X. Tao, X. Xu and Q. Cui, "An overview of cooperative communications," in IEEE Communications Magazine, 50(6), 65-71, 2012.
  • A. F. Molisch, "Relaying, MultiHop, and Cooperative Communications," in IEEE Wireless Communications, 521-563, 2011.
  • S. Wang, J. Liu, S. Zhou, L. Zhou, M. Yin, H. Hao, "Cooperative relay MAC protocol for ad hoc networks," in Proc. of IEEE International Conference on Commun. Technol. (ICCT), 612-616, 2017.
  • D. Ho, E. I. Grøtli, S. Shimamoto and T. A. Johansen, "Optimal relay path selection and cooperative communication protocol for a swarm of UAVs," 2012 IEEE Globecom Workshops, pp. 1585-1590, 2012.
  • A. F. M. Shahen Shah, Haci Ilhan and Ufuk Tureli, “Designing and Analysis of IEEE 802.11 MAC for UAVs Ad Hoc Networks,” in Proc. of IEEE 10th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, USA, 934-939, 2019.
  • M. A. Karabulut, A. F. M. S. Shah and H. Ilhan, "OEC-MAC: A Novel OFDMA Based Efficient Cooperative MAC Protocol for VANETs," in IEEE Access, 8, 94665-94677, 2020.
  • L. Gupta, R. Jain and G. Vaszkun, "Survey of Important Issues in UAV Communication Networks," in IEEE Communications Surveys & Tutorials, vol. 18, no. 2, pp. 1123-1152, 2016.
  • R. A. Nazib and S. Moh, "Routing Protocols for Unmanned Aerial Vehicle-Aided Vehicular Ad Hoc Networks: A Survey," in IEEE Access, vol. 8, pp. 77535-77560, 2020.
  • X. Tan, Z. Zuo, S. Su, X. Guo, X. Sun and D. Jiang, "Performance Analysis of Routing Protocols for UAV Communication Networks," in IEEE Access, vol. 8, pp. 92212-92224, 2020.
  • O. S. Oubbati, M. Atiquzzaman, P. Lorenz, M. H. Tareque and M. S. Hossain, "Routing in Flying Ad Hoc Networks: Survey, Constraints, and Future Challenge Perspectives," in IEEE Access, vol. 7, pp. 81057-81105, 2019.
  • M. Mozaffari, W. Saad, M. Bennis, Y. -H. Nam and M. Debbah, "A Tutorial on UAVs for Wireless Networks: Applications, Challenges, and Open Problems," in IEEE Communications Surveys & Tutorials, vol. 21, no. 3, pp. 2334-2360, 2019.
  • M. A. Karabulut, A. F. M. S. Shah and H. Ilhan, "CR-MAC: Cooperative Relaying MAC Protocol for VANETs," in Proc. of IEEE 5th Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT), 1-4, 2019.
  • M. A. Karabulut, A. F. M. Shahen Shah and H. İlhan, "Performance of the CR-MAC with Channel Fading and Capture Effect under Practical Traffic Scenarios for VANETs," in Proc. of IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York City, USA, 0647-0652, 2019.
  • D. Malone, K. Duffy and D. Leith, "Modeling the 802.11 Distributed Coordination Function in Nonsaturated Heterogeneous Conditions," in IEEE/ACM Transactions on Networking, 15(1), 159-172, 2007.
  • M. K. Simon, M.‐S. Alouini, Digital Communication over Fading Channels, 2nd ed. John Wiley & Sons, 2015, 253-257.
  • F. Jameel, Faisal, M. A. A. Haider and A. A. Butt, "Performance analysis of VANETs under Rayleigh, Rician, Nakagami-m and Weibull fading," in Proc. of IEEE International Conference on Communication, Computing and Digital Systems (C-CODE), Islamabad, 127-132, 2017.
  • M. A. Karabulut, A. F. M. S. Shah and H. Ilhan, "Performance modeling and analysis of the IEEE 802.11 DCF for VANETs," in Proc. of 9th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Munich, 346-351, 2017.
Year 2023, Volume: 38 Issue: 4, 2095 - 2106, 12.04.2023
https://doi.org/10.17341/gazimmfd.997670

Abstract

References

  • M. A. Karabulut, A. F. M. S. Shah and H. Ilhan, "IEEE 802.11 MAC Protokolünün VANET ağlardaki performans modellemesi ve analizi", Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(3), 1575-1588, 2020.
  • IEEE Standard for Information technology— Telecommunications and information exchange between systems Local and metropolitan area networks—Specific requirements— Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE 802.11, 2012.
  • ITS G5–2009: ‘European telecommunications standards institute, ‘intelligent transport systems (ITS); European profile standard for the physical and medium access control layer of intelligent transport systems operating in the 5 GHz frequency band,’ ETSI, ES, 202 663 V1.1.0’, 2009.
  • IEEE Standard for Information technology—Telecommunications and information exchange between systems Local and metropolitan area networks—Specific requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE 802.11-2016, 2016.
  • X. Tao, X. Xu and Q. Cui, "An overview of cooperative communications," in IEEE Communications Magazine, 50(6), 65-71, 2012.
  • A. F. Molisch, "Relaying, MultiHop, and Cooperative Communications," in IEEE Wireless Communications, 521-563, 2011.
  • S. Wang, J. Liu, S. Zhou, L. Zhou, M. Yin, H. Hao, "Cooperative relay MAC protocol for ad hoc networks," in Proc. of IEEE International Conference on Commun. Technol. (ICCT), 612-616, 2017.
  • D. Ho, E. I. Grøtli, S. Shimamoto and T. A. Johansen, "Optimal relay path selection and cooperative communication protocol for a swarm of UAVs," 2012 IEEE Globecom Workshops, pp. 1585-1590, 2012.
  • A. F. M. Shahen Shah, Haci Ilhan and Ufuk Tureli, “Designing and Analysis of IEEE 802.11 MAC for UAVs Ad Hoc Networks,” in Proc. of IEEE 10th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, USA, 934-939, 2019.
  • M. A. Karabulut, A. F. M. S. Shah and H. Ilhan, "OEC-MAC: A Novel OFDMA Based Efficient Cooperative MAC Protocol for VANETs," in IEEE Access, 8, 94665-94677, 2020.
  • L. Gupta, R. Jain and G. Vaszkun, "Survey of Important Issues in UAV Communication Networks," in IEEE Communications Surveys & Tutorials, vol. 18, no. 2, pp. 1123-1152, 2016.
  • R. A. Nazib and S. Moh, "Routing Protocols for Unmanned Aerial Vehicle-Aided Vehicular Ad Hoc Networks: A Survey," in IEEE Access, vol. 8, pp. 77535-77560, 2020.
  • X. Tan, Z. Zuo, S. Su, X. Guo, X. Sun and D. Jiang, "Performance Analysis of Routing Protocols for UAV Communication Networks," in IEEE Access, vol. 8, pp. 92212-92224, 2020.
  • O. S. Oubbati, M. Atiquzzaman, P. Lorenz, M. H. Tareque and M. S. Hossain, "Routing in Flying Ad Hoc Networks: Survey, Constraints, and Future Challenge Perspectives," in IEEE Access, vol. 7, pp. 81057-81105, 2019.
  • M. Mozaffari, W. Saad, M. Bennis, Y. -H. Nam and M. Debbah, "A Tutorial on UAVs for Wireless Networks: Applications, Challenges, and Open Problems," in IEEE Communications Surveys & Tutorials, vol. 21, no. 3, pp. 2334-2360, 2019.
  • M. A. Karabulut, A. F. M. S. Shah and H. Ilhan, "CR-MAC: Cooperative Relaying MAC Protocol for VANETs," in Proc. of IEEE 5th Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT), 1-4, 2019.
  • M. A. Karabulut, A. F. M. Shahen Shah and H. İlhan, "Performance of the CR-MAC with Channel Fading and Capture Effect under Practical Traffic Scenarios for VANETs," in Proc. of IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York City, USA, 0647-0652, 2019.
  • D. Malone, K. Duffy and D. Leith, "Modeling the 802.11 Distributed Coordination Function in Nonsaturated Heterogeneous Conditions," in IEEE/ACM Transactions on Networking, 15(1), 159-172, 2007.
  • M. K. Simon, M.‐S. Alouini, Digital Communication over Fading Channels, 2nd ed. John Wiley & Sons, 2015, 253-257.
  • F. Jameel, Faisal, M. A. A. Haider and A. A. Butt, "Performance analysis of VANETs under Rayleigh, Rician, Nakagami-m and Weibull fading," in Proc. of IEEE International Conference on Communication, Computing and Digital Systems (C-CODE), Islamabad, 127-132, 2017.
  • M. A. Karabulut, A. F. M. S. Shah and H. Ilhan, "Performance modeling and analysis of the IEEE 802.11 DCF for VANETs," in Proc. of 9th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Munich, 346-351, 2017.
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Muhammet Ali Karabulut 0000-0002-2080-5485

A F M Shahen Shah 0000-0002-3133-6557

Publication Date April 12, 2023
Submission Date September 20, 2021
Acceptance Date October 2, 2022
Published in Issue Year 2023 Volume: 38 Issue: 4

Cite

APA Karabulut, M. A., & Shah, A. F. M. S. (2023). İşbirlikli insansız hava araçlarının iletişiminin Nakagami-m sönümlemeli kanal altında etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(4), 2095-2106. https://doi.org/10.17341/gazimmfd.997670
AMA Karabulut MA, Shah AFMS. İşbirlikli insansız hava araçlarının iletişiminin Nakagami-m sönümlemeli kanal altında etkisi. GUMMFD. April 2023;38(4):2095-2106. doi:10.17341/gazimmfd.997670
Chicago Karabulut, Muhammet Ali, and A F M Shahen Shah. “İşbirlikli insansız Hava araçlarının iletişiminin Nakagami-M sönümlemeli Kanal altında Etkisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38, no. 4 (April 2023): 2095-2106. https://doi.org/10.17341/gazimmfd.997670.
EndNote Karabulut MA, Shah AFMS (April 1, 2023) İşbirlikli insansız hava araçlarının iletişiminin Nakagami-m sönümlemeli kanal altında etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38 4 2095–2106.
IEEE M. A. Karabulut and A. F. M. S. Shah, “İşbirlikli insansız hava araçlarının iletişiminin Nakagami-m sönümlemeli kanal altında etkisi”, GUMMFD, vol. 38, no. 4, pp. 2095–2106, 2023, doi: 10.17341/gazimmfd.997670.
ISNAD Karabulut, Muhammet Ali - Shah, A F M Shahen. “İşbirlikli insansız Hava araçlarının iletişiminin Nakagami-M sönümlemeli Kanal altında Etkisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38/4 (April 2023), 2095-2106. https://doi.org/10.17341/gazimmfd.997670.
JAMA Karabulut MA, Shah AFMS. İşbirlikli insansız hava araçlarının iletişiminin Nakagami-m sönümlemeli kanal altında etkisi. GUMMFD. 2023;38:2095–2106.
MLA Karabulut, Muhammet Ali and A F M Shahen Shah. “İşbirlikli insansız Hava araçlarının iletişiminin Nakagami-M sönümlemeli Kanal altında Etkisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 38, no. 4, 2023, pp. 2095-06, doi:10.17341/gazimmfd.997670.
Vancouver Karabulut MA, Shah AFMS. İşbirlikli insansız hava araçlarının iletişiminin Nakagami-m sönümlemeli kanal altında etkisi. GUMMFD. 2023;38(4):2095-106.