Alt ekstremite dış iskeletinin modellenmesi ve biyomekanik analizi
Year 2024,
Volume: 39 Issue: 1, 549 - 562, 21.08.2023
İsmail Çalıkuşu
,
Esma Uzunhisarcıklı
,
Ugur Fidan
Abstract
Dış iskeletler, çeşitli nedenlerle uzuvlarını kaybeden kişilerin kas rehabilitasyonu ve/veya sosyal hayata adaptasyonu için geliştirilmiş cihazlardır Bu çalışmada, Solidworks programı kullanılarak A Glass Fiber malzemeden yapılmış bir alt ekstremite dış iskeleti tasarlanmıştır. AnyBody programında tasarım modeli kas-iskelet sistemi üzerine bindirilerek iki yürüyüş döngüsü boyunca biyomekanik analizler yapılmıştır. Bu biyomekanik analizler sonucunda kas aktiviteleri, kas kuvveti, eklem momenti ve reaksiyon kuvveti verileri elde edilmiştir. Veriler, dış iskeletli ve dış iskeletsiz olmak üzere iki farklı yürüme yapan model üzerinde toplanmış ve analiz edilmiştir. Tasarımda kullanılan A Glass Fiber malzemenin dış iskeletin ağırlığını motor ağırlığı dahil yaklaşık 8-9 kg'a kadar düşürdüğü gözlemlenmiştir. Ayrıca dış iskelet tasarımının, literatürde tasarlanan benzer dış iskeletlere göre kaslar ve eklemler üzerindeki kuvveti daha fazla azalttığı görülmüştür. Ayrıca simülasyon sonuçları, dış iskeletin femur ve tibianın S şeklindeki yapısının insan anatomik daha uygun olduğunu göstermiştir. Ayrıca yürüyüşte gövdeden bacaklara kuvvet aktarımının daha dengeli olduğu gözlemlenmiştir. Son olarak dış iskelet ile yürümenin psoas major kasını daha fazla çalıştırarak kalçanın ön-arka kuvvetini arttırdığı sonucuna varılmıştır.
References
- [1] X.-N. Xiang, M.-F. Ding, H.-Y. Zong, Y. Liu, H. Cheng, C.-Q. He, et al., "The safety and feasibility of a new rehabilitation robotic exoskeleton for assisting individuals with lower extremity motor complete lesions following spinal cord injury (SCI): an observational study," Spinal cord, vol. 58, pp. 787-794, 2020.
- [2] S. Mineev, "Multimodal control system of active lower limb exoskeleton with feedback," in Proceedings of the Scientific-Practical Conference" Research and Development-2016", 2018, pp. 3-10.
- [3] G. Valente, G. Crimi, N. Vanella, E. Schileo, and F. Taddei, "nmsBuilder: Freeware to create subject-specific musculoskeletal models for OpenSim," Computer methods and programs in biomedicine, vol. 152, pp. 85-92, 2017.
- [4] X. Zhou, "Predictive human-in-the-loop simulations for assistive exoskeletons," in International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2020, p. V009T09A006.
- [5] G. Shrivastava, D. Gupta, and K. Sharma, Cyber Crime and Forensic Computing: Modern Principles, Practices, and Algorithms vol. 11: Walter de Gruyter GmbH & Co KG, 2021.
- [6] O. Ali, D. GÖNEN, and C. Özcan, "Ot toplama tırmığı montaj işleminde çalışma duruşlarının anybody modelleme sistemi ile analizi," Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 32, 2017.
- [7] D. G. Ocaktan and H. A. Ulusu, "Analysis of working postures in a wiring harness conveyor line with AnyBody Modeling System and design proposal of a new line," 2021.
- [8] A. Ferrari, M. G. Benedetti, E. Pavan, C. Frigo, D. Bettinelli, M. Rabuffetti, et al., "Quantitative comparison of five current protocols in gait analysis," Gait & posture, vol. 28, pp. 207-216, 2008.
- [9] B. N. Fournier, E. D. Lemaire, A. J. Smith, and M. Doumit, "Modeling and simulation of a lower extremity powered exoskeleton," IEEE transactions on neural systems and rehabilitation engineering, vol. 26, pp. 1596-1603, 2018.
- [10] A. J. Smith, B. N. Fournier, J. Nantel, and E. D. Lemaire, "Estimating upper extremity joint loads of persons with spinal cord injury walking with a lower extremity powered exoskeleton and forearm crutches," Journal of Biomechanics, vol. 107, p. 109835, 2020.
- [11] A. Sohane and R. Agarwal, "Evaluation of 3D design lower limb exoskeleton on human musculoskeletal with various loads," Expert Systems, vol. 38, p. e12738, 2021.
- [12] J. Xu, Y. Li, L. Xu, C. Peng, S. Chen, J. Liu, et al., "A multi-mode rehabilitation robot with magnetorheological actuators based on human motion intention estimation," IEEE transactions on neural systems and rehabilitation engineering, vol. 27, pp. 2216-2228, 2019.
- [13] J. Xu, L. Xu, Y. Li, C. Peng, J. Liu, C. Xu, et al., "Design and implementation of the lower extremity robotic exoskeleton with magnetorheological actuators," in 2019 IEEE International Conference on Mechatronics and Automation (ICMA), 2019, pp. 1294-1299.
- [14] R. Mahakul, D. N. Thatoi, S. Choudhury, and P. Patnaik, "Design and numerical analysis of spur gear using SolidWorks simulation technique," Materials Today: Proceedings, vol. 41, pp. 340-346, 2021.
- [15] N. Bratovanov, "Robot modeling, motion simulation and off-line programming based on solidworks API," in 2019 Third IEEE International Conference on Robotic Computing (IRC), 2019, pp. 574-579.
- [16] Y. Xiao, X. Ji, H. Wu, X. Zhai, X. Fu, and J. Zhao, "Bionic Knee Joint Structure and Motion Analysis of a Lower Extremity Exoskeleton," in 2020 4th International Conference on Robotics and Automation Sciences (ICRAS), 2020, pp. 91-95.
- [17] L. Fiorillo, C. D’Amico, A. Y. Turkina, F. Nicita, G. Amoroso, and G. Risitano, "Endo and exoskeleton: new technologies on composite materials," Prosthesis, vol. 2, pp. 1-9, 2020.
- [18] M. Tröster, U. Schneider, T. Bauernhansl, J. Rasmussen, and M. S. Andersen, "Simulation framework for active upper limb exoskeleton design optimization based on musculoskeletal modeling," in Smart ASSIST, 2018, pp. 345-353.
- [19] T. R. Kane and D. A. Levinson, Dynamics, theory and applications: McGraw Hill, 1985.
- [20] G. Agnihotri, N. Kaur, and R. Sharma, "The Quantified Human Adductor Brevis-A Dimorphic Perspective on the Muscle with Variations," Annals of International Medical and Dental Research, vol. 3, p. 41, 2017.
- [21] A. L. Bardin, L. Tang, L. Panizzi, C. W. Rogers, and G. R. Colborne, "Development of An Anybody Musculoskeletal Model of The Thoroughbred Forelimb," Journal of Equine Veterinary Science, vol. 103, p. 103666, 2021.
- [22] U. Trinler, N. Alexander, H. Schwameder, and R. Baker, "Muscle force estimation in clinical biomechanics: AnyBody VS OpenSim," ISBS Proceedings Archive, vol. 35, p. 21, 2017.
- [23] J. Rasmussen, "The AnyBody modeling system," DHM and Posturography, pp. 85-96, 2019.
- [24] M. Eltoukhy, C. Kuenze, M. S. Andersen, J. Oh, and J. Signorile, "Prediction of ground reaction forces for Parkinson's disease patients using a kinect-driven musculoskeletal gait analysis model," Medical engineering & physics, vol. 50, pp. 75-82, 2017.
- [25] Y. Jung, Y.-j. Koo, and S. Koo, "Simultaneous estimation of ground reaction force and knee contact force during walking and squatting," International Journal of Precision Engineering and Manufacturing, vol. 18, pp. 1263-1268, 2017.
- [26] D. Ignasiak, W. Valenzuela, M. Reyes, and S. J. Ferguson, "The effect of muscle ageing and sarcopenia on spinal segmental loads," European Spine Journal, vol. 27, pp. 2650-2659, 2018.
- [27] Y. Li, X. Wang, P. Xu, D. Zheng, W. Liu, Y. Wang, et al., "SolidWorks/SimMechanics-based lower extremity exoskeleton modeling procedure for rehabilitation," in World Congress on Medical Physics and Biomedical Engineering May 26-31, 2012, Beijing, China, 2013, pp. 2058-2061.
- [28] A. Nithyaa, S. Poonguzhali, and N. Vigneshwari, "Three-dimensional modelling of wheelchair contrived with lower limb exoskeleton for right hemiplegic dysfunction," Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 234, pp. 651-659, 2020.
- [29] A. Petcu, D. Tarnita, and D. Tarnita, "Design and virtual model of an exoskeleton for lower limb rehabilitation," in IOP Conference Series: Materials Science and Engineering, 2020, p. 012085.
Modeling and biomechanical analysis of lower extremity exoskeleton
Year 2024,
Volume: 39 Issue: 1, 549 - 562, 21.08.2023
İsmail Çalıkuşu
,
Esma Uzunhisarcıklı
,
Ugur Fidan
Abstract
Exoskeletons are devices developed for muscle rehabilitation and/or adaptation to the social life of people who lost their limbs for various reasons. In this study, a lower limb exoskeleton made of A Glass Fiber material has been designed by using the Solidworks program. Biomechanical analyses have been carried out during two gait cycles by superimposing the design model on the musculoskeletal system in the AnyBody program. As a result of these biomechanical analyses muscle activities, muscle force, joint moment, and reaction force data have been obtained. Data have been collected and analyzed on two different groups, exoskeleton, and non-exoskeleton. It has been observed that the A Glass Fiber material used in the design reduces the weight of the exoskeleton to approximately 8-9 kg including the engine weight. It has also been seen that the proposed structure reduces the force on muscles and joints more than similar exoskeletons designed in the literature. Moreover the simulation results have represented that the S-shaped structure of the femur and tibia is more suitable for the human body structure. Finally, it has been concluded that walking with an exoskeleton increases the psoas major muscle to work more and this increases the anterior-posterior strength of the hip.
References
- [1] X.-N. Xiang, M.-F. Ding, H.-Y. Zong, Y. Liu, H. Cheng, C.-Q. He, et al., "The safety and feasibility of a new rehabilitation robotic exoskeleton for assisting individuals with lower extremity motor complete lesions following spinal cord injury (SCI): an observational study," Spinal cord, vol. 58, pp. 787-794, 2020.
- [2] S. Mineev, "Multimodal control system of active lower limb exoskeleton with feedback," in Proceedings of the Scientific-Practical Conference" Research and Development-2016", 2018, pp. 3-10.
- [3] G. Valente, G. Crimi, N. Vanella, E. Schileo, and F. Taddei, "nmsBuilder: Freeware to create subject-specific musculoskeletal models for OpenSim," Computer methods and programs in biomedicine, vol. 152, pp. 85-92, 2017.
- [4] X. Zhou, "Predictive human-in-the-loop simulations for assistive exoskeletons," in International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2020, p. V009T09A006.
- [5] G. Shrivastava, D. Gupta, and K. Sharma, Cyber Crime and Forensic Computing: Modern Principles, Practices, and Algorithms vol. 11: Walter de Gruyter GmbH & Co KG, 2021.
- [6] O. Ali, D. GÖNEN, and C. Özcan, "Ot toplama tırmığı montaj işleminde çalışma duruşlarının anybody modelleme sistemi ile analizi," Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 32, 2017.
- [7] D. G. Ocaktan and H. A. Ulusu, "Analysis of working postures in a wiring harness conveyor line with AnyBody Modeling System and design proposal of a new line," 2021.
- [8] A. Ferrari, M. G. Benedetti, E. Pavan, C. Frigo, D. Bettinelli, M. Rabuffetti, et al., "Quantitative comparison of five current protocols in gait analysis," Gait & posture, vol. 28, pp. 207-216, 2008.
- [9] B. N. Fournier, E. D. Lemaire, A. J. Smith, and M. Doumit, "Modeling and simulation of a lower extremity powered exoskeleton," IEEE transactions on neural systems and rehabilitation engineering, vol. 26, pp. 1596-1603, 2018.
- [10] A. J. Smith, B. N. Fournier, J. Nantel, and E. D. Lemaire, "Estimating upper extremity joint loads of persons with spinal cord injury walking with a lower extremity powered exoskeleton and forearm crutches," Journal of Biomechanics, vol. 107, p. 109835, 2020.
- [11] A. Sohane and R. Agarwal, "Evaluation of 3D design lower limb exoskeleton on human musculoskeletal with various loads," Expert Systems, vol. 38, p. e12738, 2021.
- [12] J. Xu, Y. Li, L. Xu, C. Peng, S. Chen, J. Liu, et al., "A multi-mode rehabilitation robot with magnetorheological actuators based on human motion intention estimation," IEEE transactions on neural systems and rehabilitation engineering, vol. 27, pp. 2216-2228, 2019.
- [13] J. Xu, L. Xu, Y. Li, C. Peng, J. Liu, C. Xu, et al., "Design and implementation of the lower extremity robotic exoskeleton with magnetorheological actuators," in 2019 IEEE International Conference on Mechatronics and Automation (ICMA), 2019, pp. 1294-1299.
- [14] R. Mahakul, D. N. Thatoi, S. Choudhury, and P. Patnaik, "Design and numerical analysis of spur gear using SolidWorks simulation technique," Materials Today: Proceedings, vol. 41, pp. 340-346, 2021.
- [15] N. Bratovanov, "Robot modeling, motion simulation and off-line programming based on solidworks API," in 2019 Third IEEE International Conference on Robotic Computing (IRC), 2019, pp. 574-579.
- [16] Y. Xiao, X. Ji, H. Wu, X. Zhai, X. Fu, and J. Zhao, "Bionic Knee Joint Structure and Motion Analysis of a Lower Extremity Exoskeleton," in 2020 4th International Conference on Robotics and Automation Sciences (ICRAS), 2020, pp. 91-95.
- [17] L. Fiorillo, C. D’Amico, A. Y. Turkina, F. Nicita, G. Amoroso, and G. Risitano, "Endo and exoskeleton: new technologies on composite materials," Prosthesis, vol. 2, pp. 1-9, 2020.
- [18] M. Tröster, U. Schneider, T. Bauernhansl, J. Rasmussen, and M. S. Andersen, "Simulation framework for active upper limb exoskeleton design optimization based on musculoskeletal modeling," in Smart ASSIST, 2018, pp. 345-353.
- [19] T. R. Kane and D. A. Levinson, Dynamics, theory and applications: McGraw Hill, 1985.
- [20] G. Agnihotri, N. Kaur, and R. Sharma, "The Quantified Human Adductor Brevis-A Dimorphic Perspective on the Muscle with Variations," Annals of International Medical and Dental Research, vol. 3, p. 41, 2017.
- [21] A. L. Bardin, L. Tang, L. Panizzi, C. W. Rogers, and G. R. Colborne, "Development of An Anybody Musculoskeletal Model of The Thoroughbred Forelimb," Journal of Equine Veterinary Science, vol. 103, p. 103666, 2021.
- [22] U. Trinler, N. Alexander, H. Schwameder, and R. Baker, "Muscle force estimation in clinical biomechanics: AnyBody VS OpenSim," ISBS Proceedings Archive, vol. 35, p. 21, 2017.
- [23] J. Rasmussen, "The AnyBody modeling system," DHM and Posturography, pp. 85-96, 2019.
- [24] M. Eltoukhy, C. Kuenze, M. S. Andersen, J. Oh, and J. Signorile, "Prediction of ground reaction forces for Parkinson's disease patients using a kinect-driven musculoskeletal gait analysis model," Medical engineering & physics, vol. 50, pp. 75-82, 2017.
- [25] Y. Jung, Y.-j. Koo, and S. Koo, "Simultaneous estimation of ground reaction force and knee contact force during walking and squatting," International Journal of Precision Engineering and Manufacturing, vol. 18, pp. 1263-1268, 2017.
- [26] D. Ignasiak, W. Valenzuela, M. Reyes, and S. J. Ferguson, "The effect of muscle ageing and sarcopenia on spinal segmental loads," European Spine Journal, vol. 27, pp. 2650-2659, 2018.
- [27] Y. Li, X. Wang, P. Xu, D. Zheng, W. Liu, Y. Wang, et al., "SolidWorks/SimMechanics-based lower extremity exoskeleton modeling procedure for rehabilitation," in World Congress on Medical Physics and Biomedical Engineering May 26-31, 2012, Beijing, China, 2013, pp. 2058-2061.
- [28] A. Nithyaa, S. Poonguzhali, and N. Vigneshwari, "Three-dimensional modelling of wheelchair contrived with lower limb exoskeleton for right hemiplegic dysfunction," Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 234, pp. 651-659, 2020.
- [29] A. Petcu, D. Tarnita, and D. Tarnita, "Design and virtual model of an exoskeleton for lower limb rehabilitation," in IOP Conference Series: Materials Science and Engineering, 2020, p. 012085.