Research Article
BibTex RIS Cite

Dinamik talep cevabı içeren zaman gecikmeli iki bölgeli yük frekans kontrol sistemlerinin kararlılık bölgelerinin hesaplanması

Year 2024, Volume: 39 Issue: 1, 431 - 442, 21.08.2023
https://doi.org/10.17341/gazimmfd.951415

Abstract

Bu çalışmada, dinamik talep cevabı (DTC) ve haberleşme zaman gecikmesi içeren iki bölgeli yük frekans kontrol (YFK-DTC) sisteminin kararlılık sınır eğrisi yöntemi kullanılarak denetleyici parametre düzleminde kararlılık bölgeleri hesaplanmıştır. DTC kontrol, kontrol edilebilir yük gruplarını frekans kontrol servisine dahil ederek, üretim ve puant yük talebi arasında dengenin daha kısa sürede sağlanması ve yenilenebilir enerji kaynaklarında güç dengesizlikleri problemlerine karşı önemli bir çözüm sunmaktadır. DTC kontrol mekanizmasının yük frekans kontrol sistemlerinde kullanımı, sistemin güvenliği ve güvenilirliğini sağlamasına rağmen, haberleşme ağlarından kaynaklanan zaman gecikmeleri, denetleyici performansını ve sistemin kararlılığını olumsuz etkileyebilmektedir. Dolayısıyla, bu çalışma zaman gecikmesi içeren iki bölgeli YFK-DTC sisteminin kararlılığını garanti edecek tüm oransal-integral (PI) denetleyici kazanç değerlerini elde etmektedir. Bu amaçla, zaman gecikmeli YFK-DTC sisteminin denetleyici parametre düzleminde kararlılık bölgelerini oluşturan kompleks kök sınır (Complex Root Boundary, CRB) eğrisini ve reel kök sınır (Real Root Boundary, RRB) eğrisini bulmak için kararlılık sınır eğrsi yöntemi kullanılmıştır. Elde edilen teorik sonuçların doğruluğu, quasi-polynomial mapping root (QPmR) algoritması ve zaman düzleminde yapılan benzetim çalışmaları ile gösterilmiştir. Sonuçlar, DTC kontrol çevriminin katkısı ile zaman gecikmeli YFK sisteminin kararlılık bölgelerinin ve kararlılık payının arttığını göstermektedir.

Supporting Institution

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TUBITAK)

Project Number

118E744

Thanks

Bu çalışma, TÜBİTAK tarafından desteklenen 118E744 nolu “Elektrikli Araç Grupları ve Dinamik Talep Cevabı İçeren Yük Frekans Kontrol Sistemlerinin Zaman Gecikmesine Bağlı Kararlılık Analizi ve Gürbüz Denetleyici Tasarımı” isimli araştırma projesi kapsamında gerçekleştirilmiştir. TÜBİTAK’a desteklerinden dolayı teşekkür ederiz.

References

  • Kundur P., Power System Stability and Control, New York, Mc Graw Hill, 1994.
  • Bevrani H., Ghosh A., Ledwich G., Renewable energy sources and frequency regulation: survey and new perspectives, IET Renewable Power Generation, 4 (5), 438-457, 2010.
  • Masuta T., Yokoyama A., Supplementary load frequency control by use of a number of both electric vehicles and heat pump water heaters, IEEE Transactions on Smart Grid, 3 (3), 1253-1262, 2012.
  • Mu Y., Wu J., Ekanayake J., Jenkins N., Jia H., Primary frequency response from electric vehicles in the Great Britain power system, IEEE Transactions on Smart Grid, 4 (2), 1142-1150, 2013.
  • David A.O., Al-Anbagi I., EVs for frequency regulation: Cost benefit analysis in a smart grid environment, IET Electrical Systems in Transportation, 7 (4), 310-317, 2017.
  • Shoreh M.H., Siano P., Shafie-Khah M., Loia V., Catalão J.P., A survey of industrial applications of demand response. Electric Power Systems Research, 141, 31–49, 2016.
  • Shi Q., Li F., Hu Q., Wang Z., Dynamic demand control for system frequency regulation: Concept, review, algorithm comparison, and future vision, Electric Power Systems Research, 154, 75–87, 2018.
  • Wang J., Zhong H., Ma Z., Xia Q., Kang C., Review and prospect of integrated demand response in the multi-energy system, Applied Energy, 202, 772–782, 2017.
  • Schweppe F.C., Tabors R.D., Kirtley J.L., Outhred H.R., Pickel F.H., Cox A.J., Homeostatic utility control, IEEE Transactions on Power Apparatus and Systems, 99 (3),1151–1163, 1980.
  • Fernandez-Blanco R., Arroyo J. M., Alguacil N., Guan X., Incorporating price-responsive demand in energy scheduling based on consumer Payment minimization, IEEE Transactions on Smart Grid, 7 (2), 817–826, 2016.
  • Babahajiani P., Shafiee Q., Bevrani H., Intelligent demand response contribution in frequency control of multi-area power systems, IEEE Transactions on Smart Grid, 9 (2), 1282–1291, 2018.
  • Hajibandeh N., Ehsan M., Soleymani S., Shafie-khah M., Catalao J.P.S., The mutual impact of demand response programs and renewable energies: A survey. Energies, 10 (9), 1353, 2017.
  • Shi Q., Li F., Liu G., Shi D., Yi Z., Wang Z., Thermostatic load control for system frequency regulation considering daily demand profile and progressive recovery, IEEE Transactions on Smart Grid, 10 (6), 6259-6270, 2019.
  • Munoz-Benavente I., Hansen A.D., Gómez-Lázaro E., García-Sánchez T., Fernández-Guillamón A., Molina-García Á., Impact of combined demand-response and wind power plant participation in frequency control for multi-area power systems, Energies, 12 (9), 1687, 2019.
  • Bao Y.Q., Li Y., Wang B., Hu M., Chen P., Demand response for frequency control of multi-area power system, Journal of Modern Power Systems and Clean Energy, 5 (1), 20–29, 2017.
  • Bharti K., Singh V.P., Singh S.P., Impact of intelligent demand response for load frequency control in smart grid perspective, IETE Journal of Research, 1-12, 2020.
  • Zakeri A.S., Askarian H.A., Transmission expansion planning using TLBO algorithm in the presence of demand response resources, Energies, 10 (9), 1376, 2017.
  • Humayun M., Degefa M.Z., Safdarian A., Lehtonen M., Utilization improvement of transformers using demand response, IEEE Transactions on Power Delivery, 30 (1), 202–210, 2015.
  • Pourmousavi S.A., Nehrir M.H., Introducing dynamic demand response in the LFC model, IEEE Transactions on Power Systems, 29 (4), 1562-1572, 2014.
  • Singh V.P., Samuel P., Kishor N., Impact of demand response for frequency regulation in two-area thermal power system, International Transactions on Electrical Energy Systems, 27 (2), 1-23, 2017.
  • Zaman M.S.U., Bukhari S.B.A., Hazazi K.M., Haider Z.M., Haider R., Kim C.H., Frequency response analysis of a single-area power system with a modified LFC model considering demand response and virtual inertia, Energies, 11 (4), 787, 2018.
  • Hui H., Ding Y., Song Y., Rahman S., Modeling and control of flexible loads for frequency regulation services considering compensation of communication latency and detection error, Applied Energy, 250, 161-174, 2019.
  • Hosseini S.A., Toulabi M., Dobakhshari A.S., Ashouri-Zadeh A., Ranjbar A.M., Delay compensation of demand response and adaptive disturbance rejection applied to power system frequency control, IEEE Transactions on Power Systems, 35 (3), 2037–2046, 2020.
  • Zaman M.S.U., Bukhari S.B.A., Haider R., Khan M.O., Baloch S., Kim C.H., Sensitivity and stability analysis of power system frequency response considering demand response and virtual inertia, IET Generation, Transmission & Distribution, 14 (6), 986-996, 2020.
  • Sönmez Ş., Ayasun S., Nwankpa C.O., An exact method for computing delay margin for stability of load frequency control systems with constant communication delays, IEEE Transactions on Power Systems, 31 (1), 370-377, 2016.
  • Jin L., Zhang C.K., He Y., Jiang L., Wu M., Delay-dependent stability analysis of multi-area load frequency control with enhanced accuracy and computation efficiency, IEEE Transactions on Power Systems, 34 (5), 3687-3696, 2019.
  • Sönmez Ş., Ayasun S., Gain and phase margin based stability analysis of time delayed single area load frequency control system with fractional order PI controller, Journal of Faculty of Engineering and Architecture of Gazi University, 34 (2), 945-960, 2019.
  • Ko K.S., Sung D.K., The effect of EV aggregators with time-varying delays on the stability of a load frequency control system, IEEE Transactions on Power Systems, 33 (1), 669–680, 2018.
  • Naveed A., Sönmez Ş., Ayasun S., Impact of load sharing schemes on the stability delay margins computed by Rekasius substitution method in load frequency control system with electric vehicles aggregator, International Transactions on Electrical Energy Systems, 31 (5), e12884, 2021.
  • Naveed A., Sönmez Ş., Ayasun S., Impact of electric vehicle aggregator with communication time delay on stability regions and stability delay margins in load frequency control system, Journal of Modern Power Systems and Clean Energy, 9 (3), 595-601, 2021.
  • Gündüz H., Sönmez Ş., Ayasun S., Gain and phase margins based stability analysis of micro grid systems with time delay by using Rekasius substitution, Journal of Faculty of Engineering and Architecture of Gazi University, 34 (1), 553-567, 2019.
  • Katipoglu D., Naveed A., Sönmez Ş., Ayasun S., The effect of demand response control on stability delay margins of load frequency control systems with communication time delays, Turkish Journal of Electrical Engineering & Computer Sciences, 29 (3), 1383-1400, 2021.
  • Katipoglu D., Sönmez Ş., Ayasun S., Stability Delay Margin Computation of Load Frequency Control System with Demand Response, IEEE Global Power, Energy and Communication Conference (GPECOM), 473-478, 2019.
  • Söylemez M.T., Munro N., Baki H., Fast calculation of stabilizing PID controllers, Automatica, 39 (1), 121–127, 2003.
  • Tan N., Kaya İ., Celaleddin Y., Atherton D.P., Computation of stabilizing PI and PID controllersusing the stability boundary locus, Energy Conversion and Management, 47 (18-19), 3045-3058, 2006.
  • Sönmez Ş., Computation of stability regions for load frequency control systems including incommensurate time delays, Turkish Journal of Electrical Engineering & Computer Sciences, 27 (6), 4596-4607, 2019.
  • Sönmez Ş., Ayasun S., Computation of PI controllers ensuring desired gain and phase margins for two-area load frequency control system with communication time delays, Electric Power Components and Systems, 46 (8), 938-947, 2018.
  • Wang Y.J., Graphical computation of gain and phase margin specifications-oriented robust PID controllers for uncertain systems with time -varying delay, Journal of Process Control, 21 (4), 475-488, 2011.
  • Türksoy Ö., Ayasun S., Hameş Y., Sönmez S., Computation of robust PI-based pitch controller parameters for large wind turbines, Canadian Journal of Electrical and Computer Engineering, 43 (1), 57-63, 2020.
  • Gündüz H., Sönmez Ş., Ayasun S., A comprehensive gain and phase margins based stability analysis of micro-grid frequency control system with constant communication time delays, IET Generation, Transmission and Distributi on, 11 (3), 719-729, 2017.
  • Vyhlídal T., Zítek P., Mapping based algorithm for large -scale computation of quasi-polynomial zeros, IEEE Transactions Automatic Control, 2054 (1), 171-177, 2009.
  • Simulink, Simulation and Model-Based Design, Natick, MathWorks, MA, USA, 2019.
Year 2024, Volume: 39 Issue: 1, 431 - 442, 21.08.2023
https://doi.org/10.17341/gazimmfd.951415

Abstract

Project Number

118E744

References

  • Kundur P., Power System Stability and Control, New York, Mc Graw Hill, 1994.
  • Bevrani H., Ghosh A., Ledwich G., Renewable energy sources and frequency regulation: survey and new perspectives, IET Renewable Power Generation, 4 (5), 438-457, 2010.
  • Masuta T., Yokoyama A., Supplementary load frequency control by use of a number of both electric vehicles and heat pump water heaters, IEEE Transactions on Smart Grid, 3 (3), 1253-1262, 2012.
  • Mu Y., Wu J., Ekanayake J., Jenkins N., Jia H., Primary frequency response from electric vehicles in the Great Britain power system, IEEE Transactions on Smart Grid, 4 (2), 1142-1150, 2013.
  • David A.O., Al-Anbagi I., EVs for frequency regulation: Cost benefit analysis in a smart grid environment, IET Electrical Systems in Transportation, 7 (4), 310-317, 2017.
  • Shoreh M.H., Siano P., Shafie-Khah M., Loia V., Catalão J.P., A survey of industrial applications of demand response. Electric Power Systems Research, 141, 31–49, 2016.
  • Shi Q., Li F., Hu Q., Wang Z., Dynamic demand control for system frequency regulation: Concept, review, algorithm comparison, and future vision, Electric Power Systems Research, 154, 75–87, 2018.
  • Wang J., Zhong H., Ma Z., Xia Q., Kang C., Review and prospect of integrated demand response in the multi-energy system, Applied Energy, 202, 772–782, 2017.
  • Schweppe F.C., Tabors R.D., Kirtley J.L., Outhred H.R., Pickel F.H., Cox A.J., Homeostatic utility control, IEEE Transactions on Power Apparatus and Systems, 99 (3),1151–1163, 1980.
  • Fernandez-Blanco R., Arroyo J. M., Alguacil N., Guan X., Incorporating price-responsive demand in energy scheduling based on consumer Payment minimization, IEEE Transactions on Smart Grid, 7 (2), 817–826, 2016.
  • Babahajiani P., Shafiee Q., Bevrani H., Intelligent demand response contribution in frequency control of multi-area power systems, IEEE Transactions on Smart Grid, 9 (2), 1282–1291, 2018.
  • Hajibandeh N., Ehsan M., Soleymani S., Shafie-khah M., Catalao J.P.S., The mutual impact of demand response programs and renewable energies: A survey. Energies, 10 (9), 1353, 2017.
  • Shi Q., Li F., Liu G., Shi D., Yi Z., Wang Z., Thermostatic load control for system frequency regulation considering daily demand profile and progressive recovery, IEEE Transactions on Smart Grid, 10 (6), 6259-6270, 2019.
  • Munoz-Benavente I., Hansen A.D., Gómez-Lázaro E., García-Sánchez T., Fernández-Guillamón A., Molina-García Á., Impact of combined demand-response and wind power plant participation in frequency control for multi-area power systems, Energies, 12 (9), 1687, 2019.
  • Bao Y.Q., Li Y., Wang B., Hu M., Chen P., Demand response for frequency control of multi-area power system, Journal of Modern Power Systems and Clean Energy, 5 (1), 20–29, 2017.
  • Bharti K., Singh V.P., Singh S.P., Impact of intelligent demand response for load frequency control in smart grid perspective, IETE Journal of Research, 1-12, 2020.
  • Zakeri A.S., Askarian H.A., Transmission expansion planning using TLBO algorithm in the presence of demand response resources, Energies, 10 (9), 1376, 2017.
  • Humayun M., Degefa M.Z., Safdarian A., Lehtonen M., Utilization improvement of transformers using demand response, IEEE Transactions on Power Delivery, 30 (1), 202–210, 2015.
  • Pourmousavi S.A., Nehrir M.H., Introducing dynamic demand response in the LFC model, IEEE Transactions on Power Systems, 29 (4), 1562-1572, 2014.
  • Singh V.P., Samuel P., Kishor N., Impact of demand response for frequency regulation in two-area thermal power system, International Transactions on Electrical Energy Systems, 27 (2), 1-23, 2017.
  • Zaman M.S.U., Bukhari S.B.A., Hazazi K.M., Haider Z.M., Haider R., Kim C.H., Frequency response analysis of a single-area power system with a modified LFC model considering demand response and virtual inertia, Energies, 11 (4), 787, 2018.
  • Hui H., Ding Y., Song Y., Rahman S., Modeling and control of flexible loads for frequency regulation services considering compensation of communication latency and detection error, Applied Energy, 250, 161-174, 2019.
  • Hosseini S.A., Toulabi M., Dobakhshari A.S., Ashouri-Zadeh A., Ranjbar A.M., Delay compensation of demand response and adaptive disturbance rejection applied to power system frequency control, IEEE Transactions on Power Systems, 35 (3), 2037–2046, 2020.
  • Zaman M.S.U., Bukhari S.B.A., Haider R., Khan M.O., Baloch S., Kim C.H., Sensitivity and stability analysis of power system frequency response considering demand response and virtual inertia, IET Generation, Transmission & Distribution, 14 (6), 986-996, 2020.
  • Sönmez Ş., Ayasun S., Nwankpa C.O., An exact method for computing delay margin for stability of load frequency control systems with constant communication delays, IEEE Transactions on Power Systems, 31 (1), 370-377, 2016.
  • Jin L., Zhang C.K., He Y., Jiang L., Wu M., Delay-dependent stability analysis of multi-area load frequency control with enhanced accuracy and computation efficiency, IEEE Transactions on Power Systems, 34 (5), 3687-3696, 2019.
  • Sönmez Ş., Ayasun S., Gain and phase margin based stability analysis of time delayed single area load frequency control system with fractional order PI controller, Journal of Faculty of Engineering and Architecture of Gazi University, 34 (2), 945-960, 2019.
  • Ko K.S., Sung D.K., The effect of EV aggregators with time-varying delays on the stability of a load frequency control system, IEEE Transactions on Power Systems, 33 (1), 669–680, 2018.
  • Naveed A., Sönmez Ş., Ayasun S., Impact of load sharing schemes on the stability delay margins computed by Rekasius substitution method in load frequency control system with electric vehicles aggregator, International Transactions on Electrical Energy Systems, 31 (5), e12884, 2021.
  • Naveed A., Sönmez Ş., Ayasun S., Impact of electric vehicle aggregator with communication time delay on stability regions and stability delay margins in load frequency control system, Journal of Modern Power Systems and Clean Energy, 9 (3), 595-601, 2021.
  • Gündüz H., Sönmez Ş., Ayasun S., Gain and phase margins based stability analysis of micro grid systems with time delay by using Rekasius substitution, Journal of Faculty of Engineering and Architecture of Gazi University, 34 (1), 553-567, 2019.
  • Katipoglu D., Naveed A., Sönmez Ş., Ayasun S., The effect of demand response control on stability delay margins of load frequency control systems with communication time delays, Turkish Journal of Electrical Engineering & Computer Sciences, 29 (3), 1383-1400, 2021.
  • Katipoglu D., Sönmez Ş., Ayasun S., Stability Delay Margin Computation of Load Frequency Control System with Demand Response, IEEE Global Power, Energy and Communication Conference (GPECOM), 473-478, 2019.
  • Söylemez M.T., Munro N., Baki H., Fast calculation of stabilizing PID controllers, Automatica, 39 (1), 121–127, 2003.
  • Tan N., Kaya İ., Celaleddin Y., Atherton D.P., Computation of stabilizing PI and PID controllersusing the stability boundary locus, Energy Conversion and Management, 47 (18-19), 3045-3058, 2006.
  • Sönmez Ş., Computation of stability regions for load frequency control systems including incommensurate time delays, Turkish Journal of Electrical Engineering & Computer Sciences, 27 (6), 4596-4607, 2019.
  • Sönmez Ş., Ayasun S., Computation of PI controllers ensuring desired gain and phase margins for two-area load frequency control system with communication time delays, Electric Power Components and Systems, 46 (8), 938-947, 2018.
  • Wang Y.J., Graphical computation of gain and phase margin specifications-oriented robust PID controllers for uncertain systems with time -varying delay, Journal of Process Control, 21 (4), 475-488, 2011.
  • Türksoy Ö., Ayasun S., Hameş Y., Sönmez S., Computation of robust PI-based pitch controller parameters for large wind turbines, Canadian Journal of Electrical and Computer Engineering, 43 (1), 57-63, 2020.
  • Gündüz H., Sönmez Ş., Ayasun S., A comprehensive gain and phase margins based stability analysis of micro-grid frequency control system with constant communication time delays, IET Generation, Transmission and Distributi on, 11 (3), 719-729, 2017.
  • Vyhlídal T., Zítek P., Mapping based algorithm for large -scale computation of quasi-polynomial zeros, IEEE Transactions Automatic Control, 2054 (1), 171-177, 2009.
  • Simulink, Simulation and Model-Based Design, Natick, MathWorks, MA, USA, 2019.
There are 42 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Deniz Katipoğlu This is me 0000-0003-3082-3879

Şahin Sönmez 0000-0002-0057-2522

Saffet Ayasun 0000-0002-6785-3775

Project Number 118E744
Early Pub Date August 11, 2023
Publication Date August 21, 2023
Submission Date June 12, 2021
Acceptance Date March 12, 2023
Published in Issue Year 2024 Volume: 39 Issue: 1

Cite

APA Katipoğlu, D., Sönmez, Ş., & Ayasun, S. (2023). Dinamik talep cevabı içeren zaman gecikmeli iki bölgeli yük frekans kontrol sistemlerinin kararlılık bölgelerinin hesaplanması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(1), 431-442. https://doi.org/10.17341/gazimmfd.951415
AMA Katipoğlu D, Sönmez Ş, Ayasun S. Dinamik talep cevabı içeren zaman gecikmeli iki bölgeli yük frekans kontrol sistemlerinin kararlılık bölgelerinin hesaplanması. GUMMFD. August 2023;39(1):431-442. doi:10.17341/gazimmfd.951415
Chicago Katipoğlu, Deniz, Şahin Sönmez, and Saffet Ayasun. “Dinamik Talep Cevabı içeren Zaman Gecikmeli Iki bölgeli yük Frekans Kontrol Sistemlerinin kararlılık bölgelerinin Hesaplanması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39, no. 1 (August 2023): 431-42. https://doi.org/10.17341/gazimmfd.951415.
EndNote Katipoğlu D, Sönmez Ş, Ayasun S (August 1, 2023) Dinamik talep cevabı içeren zaman gecikmeli iki bölgeli yük frekans kontrol sistemlerinin kararlılık bölgelerinin hesaplanması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39 1 431–442.
IEEE D. Katipoğlu, Ş. Sönmez, and S. Ayasun, “Dinamik talep cevabı içeren zaman gecikmeli iki bölgeli yük frekans kontrol sistemlerinin kararlılık bölgelerinin hesaplanması”, GUMMFD, vol. 39, no. 1, pp. 431–442, 2023, doi: 10.17341/gazimmfd.951415.
ISNAD Katipoğlu, Deniz et al. “Dinamik Talep Cevabı içeren Zaman Gecikmeli Iki bölgeli yük Frekans Kontrol Sistemlerinin kararlılık bölgelerinin Hesaplanması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39/1 (August 2023), 431-442. https://doi.org/10.17341/gazimmfd.951415.
JAMA Katipoğlu D, Sönmez Ş, Ayasun S. Dinamik talep cevabı içeren zaman gecikmeli iki bölgeli yük frekans kontrol sistemlerinin kararlılık bölgelerinin hesaplanması. GUMMFD. 2023;39:431–442.
MLA Katipoğlu, Deniz et al. “Dinamik Talep Cevabı içeren Zaman Gecikmeli Iki bölgeli yük Frekans Kontrol Sistemlerinin kararlılık bölgelerinin Hesaplanması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 39, no. 1, 2023, pp. 431-42, doi:10.17341/gazimmfd.951415.
Vancouver Katipoğlu D, Sönmez Ş, Ayasun S. Dinamik talep cevabı içeren zaman gecikmeli iki bölgeli yük frekans kontrol sistemlerinin kararlılık bölgelerinin hesaplanması. GUMMFD. 2023;39(1):431-42.