Research Article
BibTex RIS Cite

Eklemeli imalat yönteminde polilaktik asit (PLA)/peroksit kompozitinin in-situ olarak çapraz bağlama tekniği ile üretilebilirliğinin araştırılması

Year 2024, Volume: 39 Issue: 2, 859 - 868, 30.11.2023
https://doi.org/10.17341/gazimmfd.1213974

Abstract

Eklemeli imalat, endüstriyel sektörde kullanımı günden güne hızla artan bir üretim teknolojisidir. Eriyik yığma modelleme (FDM) düşük maliyet ve tasarım avantajı ile karmaşık geometrilere sahip ürünlerin üretilmesinde yaygın olarak kullanılan bir eklemeli imalat yöntemidir. Bununla birlikte, FDM ile üretilmiş polimer ürünlerin ara yüzey yapışma mukavemetlerinin düşük olması bu yöntemin zayıf yönünü oluşturmaktadır. Bu çalışmada, FDM teknolojisi ile çalışan 3B yazıcıda polilaktik asit (PLA) filamentinin serilmesi esnasında peroksit takviye edilerek yeni bir kompozit malzeme üretimi gerçekleştirilmiştir. PLA katmanları arasına ince film olarak serilmiş olan peroksit ile polimerin çapraz bağlanmasını sağlayarak katmanlar arasındaki ara yüzey mukavemetinin artırılması amaçlanmıştır. Peroksit ile PLA polimerleri arasında kimyasal bir etkileşim olup olmadığını gözlemlemek için Fourier dönüşümlü kızılötesi spektroskopisi (FTIR) cihazında analizler gerçekleştirilmiştir. Üretilen kompozit örneklerin mekanik özelliklerindeki değişimin gözlemlenebilmesi için çekme dayanım özellikleri araştırılmıştır. Ayrıca, çekme testi sonrasında kompozit numunelerin kopma yüzeyleri taramalı elektron mikroskobu (SEM) ile incelenmiştir. Deneysel sonuçlar, 3B yazıcıda üretilmiş kompozit numunelerde peroksit ile PLA polimerlerinin çapraz bağlanması ile kompozit bir malzemenin üretilebileceğini göstermiştir. Ayrıca çapraz bağlama sayesinde kompozit numunelerin fiberleri arasında ara yüzey mukavemetinin artırıldığı ve buna bağlı olarak mekanik özelliklerinin geliştiği gözlemlenmiştir.

Supporting Institution

GAZİANTEP ÜNİVERSİTESİ BAP

Project Number

MF.HZP.22.13

Thanks

Yazarlar sundukları laboratuvar imkanları için Gaziantep Üniversitesi Uluğ Bey Yüksek Teknoloji Uygulama ve Araştırma Merkezine (ULUTEM) teşekkür ederler. Bu çalışma MF.HZP.22.13 numaralı proje ile Gaziantep Üniversitesi Bilimsel Araştırma Projeleri Birimi (BAP) tarafından desteklenmiştir.

References

  • 1. Ouassil S., El Magri A., Vanaei H.R., Vaudreuil S Investigating the effect of printing conditions and annealing on the porosity and tensile behavior of 3D‐printed polyetherimide material in Z‐direction, J Appl Polym Sci, e53353, 2023.
  • 2. Abdulhameed O., Al-Ahmari A., Ameen W., Mian S.H., Additive manufacturing: Challenges, trends, and applications, Adv Mech Eng, 11 (2),1687814018822880, 2019.
  • 3. Yilmaz M., Yilmaz N.F., Kalkan M.F., Rheology, Crystallinity, and Mechanical Investigation of Interlayer Adhesion Strength by Thermal Annealing of Polyetherimide (PEI/ULTEM 1010) Parts Produced by 3D Printing, J Mater Eng Perform, 31 (12), 9900-9909, 2022.
  • 4. Jiang J., A novel fabrication strategy for additive manufacturing processes, J Clean Prod, 272, 122916, 2020.
  • 5. Wohlers T., Gornet T., History of additive manufacturing, Wohlers Rep, 24, 118, 2014.
  • 6. Shellabear M., Nyrhilä O., DMLS-Development history and state of the art, Laser Assist netshape Eng 4, Proc 4th LANE, 21-24, 2004.
  • 7. Gökhan Ö., Eklemeli üretim teknolojileri üzerine bir derleme, Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilim Derg, 9, 606-621, 2020.
  • 8. Standard A., F2792-12a" Terminology for Additive Manufacturing Technologies", ASTM International. West Conshohocken, PA, 2012.
  • 9. Doğan O., Kamer M.S., Experimental investigation of the creep behavior of test specimens manufactured with fused filament fabrication using different manufacturing parameters, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (3), 1839-1848, 2023.
  • 10. Ergene B., Yalçın B., Investigation on mechanical performances of various cellular structures produced with fused deposition modeling (FDM), Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (3), 201-218, 2023.
  • 11. Gebel M.E., Ermurat M., Investigation of polymer matrix continuous fiber reinforced composite part manufacturability for composite additive manufacturing, Journal of the Faculty of Engineering and Architecture of Gazi University, 36 (1), 57-67, 2021.
  • 12. Bednarek M., Borska K., Kubisa P., New polylactide-based materials by chemical crosslinking of PLA, Polym Rev, 61, 493-519, 2021.
  • 13. Ulery B.D., Nair L.S., Laurencin C.T., Biomedical applications of biodegradable polymers, J Polym Sci Part B Polym Phys, 49, 832-864, 2011.
  • 14. Size PAM, Share & Trends Analysis, Report by End-use (Packaging, Agriculture, Automotive & Transport, Electronics, Textile), By Region, And Segment Forecasts, 2020-2027, Market Analysis Report, 2020, Report ID: GVR-2-68038-669-1. Rep ID GVR-2-68038-669-1 https//www Gd com/industry-analysis/polylactic-acid-pla-market Accessed Novemb 6, 2020.
  • 15. Nagarajan V., Mohanty A.K., Misra M., Perspective on polylactic acid (PLA) based sustainable materials for durable applications: Focus on toughness and heat resistance, ACS Sustain Chem Eng, 4, 2899-2916, 2016.
  • 16. Kricheldorf H.R., Kreiser-Saunders I., Boettcher C., Polylactones: 31. Sn (II) octoate-initiated polymerization of L-lactide: a mechanistic study, Polymer (Guildf), 36, 1253-1259, 1995.
  • 17. Rado R., Zelenak P., Crosslinking of polyethylene, Int Polym Sci Technol, 19, 33-47, 1992.
  • 18. Krupa I., Luyt A.S., Mechanical properties of uncrosslinked and crosslinked linear low‐density polyethylene/wax blends, J Appl Polym Sci, 81, 973-980, 2001.
  • 19. Chodák I., Properties of crosslinked polyolefin-based materials, Prog Polym Sci 20, 1165-1199, 1995.
  • 20. Khonakdar H.A., Morshedian J., Wagenknecht U., Jafari S.H., An investigation of chemical crosslinking effect on properties of high-density polyethylene, Polymer (Guildf), 44, 4301-4309, 2003.
  • 21. Andreopoulos A.G., Kampouris E.M., Mechanical properties of crosslinked polyethylene, J Appl Polym Sci, 31, 1061-1068, 1986.
  • 22. Wong W.K., Varrall D.C., Role of molecular structure on the silane crosslinking of polyethylene: the importance of resin molecular structure change during silane grafting, Polymer (Guildf), 35, 5447-5452, 1994.
  • 23. Yamoum C., Maia J., Magaraphan R., Rheological and thermal behavior of PLA modified by chemical crosslinking in the presence of ethoxylated bisphenol A dimethacrylates, Polym Adv Technol, 28, 102-112, 2017.
  • 24. Zhang R., Cai C., Liu Q., Hu S., Enhancing the melt strength of poly (lactic acid) via micro-crosslinking and blending with poly (butylene adipate-co-butylene terephthalate) for the preparation of foams, J Polym Environ, 25, 1335-1341, 2017.
  • 25. Sharma M., Sharma V., Kala P., Optimization of process variables to improve the mechanical properties of FDM structures. In: Journal of Physics: Conference Series, IOP Publishing, 12061, 2019.
  • 26. Han P., Tofangchi A., Deshpande A., et al An approach to improve interface healing in FFF-3D printed Ultem 1010 using laser pre-deposition heating, Procedia Manuf, 34, 672-677, 2019.
  • 27. Singh S., Singh M., Prakash C., et al Optimization and reliability analysis to improve surface quality and mechanical characteristics of heat-treated fused filament fabricated parts, Int J Adv Manuf Technol, 102, 1521-1536, 2019.
  • 28. Akhoundi B., Nabipour M., Kordi O., Hajami F., Calculating printing speed in order to correctly print PLA/continuous glass fiber composites via fused filament fabrication 3D printer, J Thermoplast Compos Mater, 0892705721997534, 2021.
  • 29. D638-14 A ASTM International Stand test method tensile Prop Plast, 2014.
  • 30. Wu C.S., Liao H.T., A new biodegradable blends prepared from polylactide and hyaluronic acid, Polymer (Guildf), 46, 10017-10026, 2005.
  • 31. Singla P., Mehta R., Berek D., Upadhyay S.N., Microwave assisted synthesis of poly (lactic acid) and its characterization using size exclusion chromatography, J Macromol Sci Part A, 49, 963-970, 2012.
  • 32. Chieng B.W., Azowa I.N., Yunus W., et al Effects of graphene nanopletelets on poly (lactic acid)/poly (ethylene glycol) polymer nanocomposites, In: Advanced Materials Research. Trans Tech Publ, 136-139, 2014.
  • 33. Yilmaz M., Yilmaz N.F., Effects of raster angle in single-and multi-oriented layers for the production of polyetherimide (PEI/ULTEM 1010) parts with fused deposition modelling, Mater Test, 64, 1651-1661, 2022.
  • 34. Wang X., Zhao L., Fuh J.Y.H., Lee H.P., Effect of porosity on mechanical properties of 3D printed polymers: Experiments and micromechanical modeling based on X-ray computed tomography analysis, Polymers (Basel), 11, 1154, 2019. 35. Von Windheim N., Collinson D.W., Lau T., et al The influence of porosity, crystallinity and interlayer adhesion on the tensile strength of 3D printed polylactic acid (PLA), Rapid Prototyp J, 2021.

Investigation of Manufacturability of in-situ crosslinked Polylactic Acid (PLA) and Peroxide composite in additive manufacturing method

Year 2024, Volume: 39 Issue: 2, 859 - 868, 30.11.2023
https://doi.org/10.17341/gazimmfd.1213974

Abstract

Additive manufacturing is a production technology whose use in the industry is increasing day by day. Fused deposition modeling (FDM) is an additive manufacturing method that is widely used in the production of complex geometrical parts due to its low cost and design advantage. However, this method has a significant weakness such as the poor interfacial adhesion strength of polymer products. In this study, a new composite material was produced by peroxide reinforcing during the deposition of the polylactic acid (PLA) filament in a 3D printer working with FDM technology. The aim of this study is to increase the interfacial strength between the layers by providing crosslinking of PLA/peroxide composite. Fourier transform infrared spectroscopy (FTIR) analysis was performed to observe whether there is a chemical interaction between peroxide and PLA polymers. In order to observe the change in the mechanical properties of the 3D printed composite samples, the tensile strength properties were investigated. In addition, the fracture surfaces of the composite samples after the tensile test were examined by scanning electron microscopy (SEM). Experimental results showed that a composite material can be produced by in-situ crosslinking of PLA and peroxide polymers in 3D printer. In addition, it was observed that the interfacial strength between the fibers of the composite samples was increased by cross-linking, and the mechanical properties were improved accordingly.

Project Number

MF.HZP.22.13

References

  • 1. Ouassil S., El Magri A., Vanaei H.R., Vaudreuil S Investigating the effect of printing conditions and annealing on the porosity and tensile behavior of 3D‐printed polyetherimide material in Z‐direction, J Appl Polym Sci, e53353, 2023.
  • 2. Abdulhameed O., Al-Ahmari A., Ameen W., Mian S.H., Additive manufacturing: Challenges, trends, and applications, Adv Mech Eng, 11 (2),1687814018822880, 2019.
  • 3. Yilmaz M., Yilmaz N.F., Kalkan M.F., Rheology, Crystallinity, and Mechanical Investigation of Interlayer Adhesion Strength by Thermal Annealing of Polyetherimide (PEI/ULTEM 1010) Parts Produced by 3D Printing, J Mater Eng Perform, 31 (12), 9900-9909, 2022.
  • 4. Jiang J., A novel fabrication strategy for additive manufacturing processes, J Clean Prod, 272, 122916, 2020.
  • 5. Wohlers T., Gornet T., History of additive manufacturing, Wohlers Rep, 24, 118, 2014.
  • 6. Shellabear M., Nyrhilä O., DMLS-Development history and state of the art, Laser Assist netshape Eng 4, Proc 4th LANE, 21-24, 2004.
  • 7. Gökhan Ö., Eklemeli üretim teknolojileri üzerine bir derleme, Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilim Derg, 9, 606-621, 2020.
  • 8. Standard A., F2792-12a" Terminology for Additive Manufacturing Technologies", ASTM International. West Conshohocken, PA, 2012.
  • 9. Doğan O., Kamer M.S., Experimental investigation of the creep behavior of test specimens manufactured with fused filament fabrication using different manufacturing parameters, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (3), 1839-1848, 2023.
  • 10. Ergene B., Yalçın B., Investigation on mechanical performances of various cellular structures produced with fused deposition modeling (FDM), Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (3), 201-218, 2023.
  • 11. Gebel M.E., Ermurat M., Investigation of polymer matrix continuous fiber reinforced composite part manufacturability for composite additive manufacturing, Journal of the Faculty of Engineering and Architecture of Gazi University, 36 (1), 57-67, 2021.
  • 12. Bednarek M., Borska K., Kubisa P., New polylactide-based materials by chemical crosslinking of PLA, Polym Rev, 61, 493-519, 2021.
  • 13. Ulery B.D., Nair L.S., Laurencin C.T., Biomedical applications of biodegradable polymers, J Polym Sci Part B Polym Phys, 49, 832-864, 2011.
  • 14. Size PAM, Share & Trends Analysis, Report by End-use (Packaging, Agriculture, Automotive & Transport, Electronics, Textile), By Region, And Segment Forecasts, 2020-2027, Market Analysis Report, 2020, Report ID: GVR-2-68038-669-1. Rep ID GVR-2-68038-669-1 https//www Gd com/industry-analysis/polylactic-acid-pla-market Accessed Novemb 6, 2020.
  • 15. Nagarajan V., Mohanty A.K., Misra M., Perspective on polylactic acid (PLA) based sustainable materials for durable applications: Focus on toughness and heat resistance, ACS Sustain Chem Eng, 4, 2899-2916, 2016.
  • 16. Kricheldorf H.R., Kreiser-Saunders I., Boettcher C., Polylactones: 31. Sn (II) octoate-initiated polymerization of L-lactide: a mechanistic study, Polymer (Guildf), 36, 1253-1259, 1995.
  • 17. Rado R., Zelenak P., Crosslinking of polyethylene, Int Polym Sci Technol, 19, 33-47, 1992.
  • 18. Krupa I., Luyt A.S., Mechanical properties of uncrosslinked and crosslinked linear low‐density polyethylene/wax blends, J Appl Polym Sci, 81, 973-980, 2001.
  • 19. Chodák I., Properties of crosslinked polyolefin-based materials, Prog Polym Sci 20, 1165-1199, 1995.
  • 20. Khonakdar H.A., Morshedian J., Wagenknecht U., Jafari S.H., An investigation of chemical crosslinking effect on properties of high-density polyethylene, Polymer (Guildf), 44, 4301-4309, 2003.
  • 21. Andreopoulos A.G., Kampouris E.M., Mechanical properties of crosslinked polyethylene, J Appl Polym Sci, 31, 1061-1068, 1986.
  • 22. Wong W.K., Varrall D.C., Role of molecular structure on the silane crosslinking of polyethylene: the importance of resin molecular structure change during silane grafting, Polymer (Guildf), 35, 5447-5452, 1994.
  • 23. Yamoum C., Maia J., Magaraphan R., Rheological and thermal behavior of PLA modified by chemical crosslinking in the presence of ethoxylated bisphenol A dimethacrylates, Polym Adv Technol, 28, 102-112, 2017.
  • 24. Zhang R., Cai C., Liu Q., Hu S., Enhancing the melt strength of poly (lactic acid) via micro-crosslinking and blending with poly (butylene adipate-co-butylene terephthalate) for the preparation of foams, J Polym Environ, 25, 1335-1341, 2017.
  • 25. Sharma M., Sharma V., Kala P., Optimization of process variables to improve the mechanical properties of FDM structures. In: Journal of Physics: Conference Series, IOP Publishing, 12061, 2019.
  • 26. Han P., Tofangchi A., Deshpande A., et al An approach to improve interface healing in FFF-3D printed Ultem 1010 using laser pre-deposition heating, Procedia Manuf, 34, 672-677, 2019.
  • 27. Singh S., Singh M., Prakash C., et al Optimization and reliability analysis to improve surface quality and mechanical characteristics of heat-treated fused filament fabricated parts, Int J Adv Manuf Technol, 102, 1521-1536, 2019.
  • 28. Akhoundi B., Nabipour M., Kordi O., Hajami F., Calculating printing speed in order to correctly print PLA/continuous glass fiber composites via fused filament fabrication 3D printer, J Thermoplast Compos Mater, 0892705721997534, 2021.
  • 29. D638-14 A ASTM International Stand test method tensile Prop Plast, 2014.
  • 30. Wu C.S., Liao H.T., A new biodegradable blends prepared from polylactide and hyaluronic acid, Polymer (Guildf), 46, 10017-10026, 2005.
  • 31. Singla P., Mehta R., Berek D., Upadhyay S.N., Microwave assisted synthesis of poly (lactic acid) and its characterization using size exclusion chromatography, J Macromol Sci Part A, 49, 963-970, 2012.
  • 32. Chieng B.W., Azowa I.N., Yunus W., et al Effects of graphene nanopletelets on poly (lactic acid)/poly (ethylene glycol) polymer nanocomposites, In: Advanced Materials Research. Trans Tech Publ, 136-139, 2014.
  • 33. Yilmaz M., Yilmaz N.F., Effects of raster angle in single-and multi-oriented layers for the production of polyetherimide (PEI/ULTEM 1010) parts with fused deposition modelling, Mater Test, 64, 1651-1661, 2022.
  • 34. Wang X., Zhao L., Fuh J.Y.H., Lee H.P., Effect of porosity on mechanical properties of 3D printed polymers: Experiments and micromechanical modeling based on X-ray computed tomography analysis, Polymers (Basel), 11, 1154, 2019. 35. Von Windheim N., Collinson D.W., Lau T., et al The influence of porosity, crystallinity and interlayer adhesion on the tensile strength of 3D printed polylactic acid (PLA), Rapid Prototyp J, 2021.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Musa Yılmaz 0000-0002-8278-8828

Necip Fazıl Yılmaz 0000-0002-0166-9799

Ali Kılıç 0000-0002-3241-9944

Hidayet Mazı 0000-0001-7609-1824

Project Number MF.HZP.22.13
Early Pub Date October 18, 2023
Publication Date November 30, 2023
Submission Date December 4, 2022
Acceptance Date April 24, 2023
Published in Issue Year 2024 Volume: 39 Issue: 2

Cite

APA Yılmaz, M., Yılmaz, N. F., Kılıç, A., Mazı, H. (2023). Eklemeli imalat yönteminde polilaktik asit (PLA)/peroksit kompozitinin in-situ olarak çapraz bağlama tekniği ile üretilebilirliğinin araştırılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(2), 859-868. https://doi.org/10.17341/gazimmfd.1213974
AMA Yılmaz M, Yılmaz NF, Kılıç A, Mazı H. Eklemeli imalat yönteminde polilaktik asit (PLA)/peroksit kompozitinin in-situ olarak çapraz bağlama tekniği ile üretilebilirliğinin araştırılması. GUMMFD. November 2023;39(2):859-868. doi:10.17341/gazimmfd.1213974
Chicago Yılmaz, Musa, Necip Fazıl Yılmaz, Ali Kılıç, and Hidayet Mazı. “Eklemeli Imalat yönteminde Polilaktik Asit (PLA)/Peroksit Kompozitinin in-Situ Olarak çapraz bağlama tekniği Ile üretilebilirliğinin araştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39, no. 2 (November 2023): 859-68. https://doi.org/10.17341/gazimmfd.1213974.
EndNote Yılmaz M, Yılmaz NF, Kılıç A, Mazı H (November 1, 2023) Eklemeli imalat yönteminde polilaktik asit (PLA)/peroksit kompozitinin in-situ olarak çapraz bağlama tekniği ile üretilebilirliğinin araştırılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39 2 859–868.
IEEE M. Yılmaz, N. F. Yılmaz, A. Kılıç, and H. Mazı, “Eklemeli imalat yönteminde polilaktik asit (PLA)/peroksit kompozitinin in-situ olarak çapraz bağlama tekniği ile üretilebilirliğinin araştırılması”, GUMMFD, vol. 39, no. 2, pp. 859–868, 2023, doi: 10.17341/gazimmfd.1213974.
ISNAD Yılmaz, Musa et al. “Eklemeli Imalat yönteminde Polilaktik Asit (PLA)/Peroksit Kompozitinin in-Situ Olarak çapraz bağlama tekniği Ile üretilebilirliğinin araştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39/2 (November 2023), 859-868. https://doi.org/10.17341/gazimmfd.1213974.
JAMA Yılmaz M, Yılmaz NF, Kılıç A, Mazı H. Eklemeli imalat yönteminde polilaktik asit (PLA)/peroksit kompozitinin in-situ olarak çapraz bağlama tekniği ile üretilebilirliğinin araştırılması. GUMMFD. 2023;39:859–868.
MLA Yılmaz, Musa et al. “Eklemeli Imalat yönteminde Polilaktik Asit (PLA)/Peroksit Kompozitinin in-Situ Olarak çapraz bağlama tekniği Ile üretilebilirliğinin araştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 39, no. 2, 2023, pp. 859-68, doi:10.17341/gazimmfd.1213974.
Vancouver Yılmaz M, Yılmaz NF, Kılıç A, Mazı H. Eklemeli imalat yönteminde polilaktik asit (PLA)/peroksit kompozitinin in-situ olarak çapraz bağlama tekniği ile üretilebilirliğinin araştırılması. GUMMFD. 2023;39(2):859-68.