Research Article
BibTex RIS Cite

Investigation of Zn recovery from Balikesir Balya Pb-Zn ore by hydrometallurgical methods

Year 2024, Volume: 39 Issue: 3, 1541 - 1554, 20.05.2024
https://doi.org/10.17341/gazimmfd.1183600

Abstract

In this study, the recovery of Zn from Balıkesir-Balya Pb-Zn ores by acid leaching method was investigated. In experiments with sulfuric acid (H2SO4), hydrochloric acid (HCl) and nitric acid (HNO3), 75-106-150 µm particle size, 5-10-15-20-25% solids ratio, 30-60-120-180 -240 min leaching time, 0.25-0.5-1-2-5 M acid dosage and 30-40-50-60-70 oC pulp temperature parameters were tested. Optimum results were obtained under the conditions of 75 µm (H2SO4 and HNO3) and 106 µm (HCl) particle size, 15% (H2SO4), 25% (HCl) and 20% (HNO3) solids ratio, 120 min (H2SO4) and 60 min (HCl and HNO3) leaching time, 0.5 M (H2SO4 and HCl) and 1M (HNO3) acid dosage and 50 oC (H2SO4 and HNO3) and 70 oC (HCl) pulp temperature. As a result of the experiments carried out under these optimum conditions, 97.32%, 96.38% and 96.06% Zn dissolution efficiencies were obtained, respectively. In addition, temperature-dependent kinetic analyzes were performed for all three acids in this study. For each acid, experiments were carried out under the conditions of -106+75 µm particle size, 1 M acid dosage, 20% solids ratio, 0-30 min leaching time, 50-90 oC pulp temperature and 250 rpm mixing speed. When the leaching kinetics for the H2SO4, HCl and HNO3 experiments were examined, the dissolution efficiencies obtained at different temperatures were plotted and the apparent rate constants and correlation coefficients were calculated from the slope of the lines obtained. When these values were examined, it was seen that the dissolution of Zn complied with the diffusion-controlled model in the Shrinking Core Model in all three acid media. Activation energies were calculated from the slope of the Arrhenius plot line as 3.615 kJ/mol for H2SO4, 4.811 kJ/mol for HCl, and 4.736 kJ/mol for HNO3.

References

  • 1. Dutrizac, J. E., MacDonald, J. C., The Dissolution of sphalerite in ferric chloride solutions, Metallurgical Transactions B, 9B, 543-551, 1978.
  • 2. Aydogan, S., Dissolution kinetics of sphalerite with hydrogen peroxide in sulphuric acid medium, Chemical Engineering Journal, 123, 65-70, 2006.
  • 3. Baba, A. A., Adekola, F. A., Hydrometallurgical processing of a Nigerian sphalerite in hydrochloric acid: Characterization and dissolution kinetics, Hydrometallurgy, 101, 69-75, 2010.
  • 4. Onukwuli, O. D., Nnanwube, I. A., Hydrometallurgical processing of a Nigerian sphalerite ore in nitric acid: Characterization and dissolution kinetics, The International Journal Of Science & Technoledge, 6(3), 40-54, 2018.
  • 5. Nnanwube, I. A., Udeaja, J. N., Onukwuli, O. D., Kinetics of zinc recovery from sphalerite in acetic acid solution, Journal of Materials and Environmental Sciences, 11(3), 499-511, 2020.
  • 6. Baba, A.A., Adekola, F.A., Comparative analysis of the dissolution kinetics of galena in binary solutions of HCl/FeCl3 and HCl/H2O2, International Journal of Minerals, Metallurgy and Materials, 18, 9-17, 2011.
  • 7. Uçar, G., Kinetics of sphalerite dissolution by sodium chlorate in hydrochloric acid, Hydrometallurgy, 95, 39-43, 2009.
  • 8. Frenay, J., Leaching of oxidized zinc ores in various media, Hydrometallurgy, 15, 243-253, 1985.
  • 9. Peng, P., Xie, H., Lu, L., Leaching of a sphalerite concentrate with H2SO4–HNO3 solutions in the presence of C2Cl4, Hydrometallurgy, 80, 265-271, 2005.
  • 10. Adebayo, A. O., Ipinmoroti, K. O., Ajayi, O. O., Leaching of sphalerite with hydrogen peroxide and nitric acid solutions, Journal of Minerals & Materials Characterization & Engineering, 5(2), 167-177, 2006.
  • 11. Picazo-Rodríguez, N.G., Soria-Aguilar, M.d.J., Martínez-Luévanos, A., Almaguer-Guzmán, I., Chaidez-Félix, J., Carrillo-Pedroza, F.R., Direct acid leaching of sphalerite: An approach comparative and kinetics, Minerals, 10(4), 359, 1-14, 2020.
  • 12. Filippou, D., Innovative hydrometallurgical processes for the primary processing of zinc, Mineral Processing and Extractive Metallurgy Review, 25 (3), 205-252, 2004.
  • 13. Li, P., Cai, Q., Wei, B., Failure analysis of the impeller of slurry pump used in zinc hydrometallurgy process, Engineering Failure Analysis, 13, 876-885, 2006.
  • 14. Çopur, M., Solubility of ZnS concentrate containing pyrite and chalcopyrite in HNO3 solutions, Chem. Biochem. Eng. Q. 15 (4) 181–184, 2001.
  • 15. Jan, R.J., Hepworth, M.T., Fox, V.G., A kinetic study on the pressure leaching of sphalerite, Metallurgical Transactions B, 7B, 353-361, 1976.
  • 16. Baláž, P., Ebert, I., Oxidative leaching of mechanically activated sphalerite, Hydrometallurgy, 27(2), 141-150, 1991.
  • 17. Lochmannn, J., Pedĺik, M., Kinetic anomalies of dissolution of sphalerite in ferric sulfate solution, Hydrometallurgy, 37(1), 89-96, 1995.
  • 18. Ekinci, Z., Colak, S., Cakici, A., Sarac, H., Leaching kinetics of sphalerite with pyrite in chlorine saturated water, Minerals Engineering, 11(3), 279-283, 1998.
  • 19. Babu, M. N., Sahu, K. K., Pandey, B. D., Zinc recovery from sphalerite concentrate by direct oxidative leaching with ammonium, sodium and potassium persulphates, Hydrometallurgy, 64(2), 119-129, 2002.
  • 20. Kurama, H., Göktepe, F., Recovery of zinc from waste material using hydrometallurgical processes, Environmental Progress, 22(3), 161-166, 2003.
  • 21. Pecina, T., Franco, T., Castillo, P., Orrantia, E., Leaching of a zinc concentrate in H2SO4 solutions containing H2O2 and complexing agents, Minerals Engineering, 21, 23-30, 2008.
  • 22. Chenglong, Z., Youcai, Z., Mechanochemical leaching of sphalerite in an alkaline solution containing lead carbonate, Hydrometallurgy, 100(1-2), 56-59, 2009.
  • 23. Güler, E., 2016, Pressure acid leaching of sphalerite concentrate. Modeling and optimization by response surface methodology, Physicochemical Problems of Mineral Processing, 52(1), 2016, 479−496, 2016.
  • 24. Sethurajan, M., Huguenot, D., Jain, R., Lens, P. N. L., Horn, H. A., Figueiredo, L. H. A., Hullebusch, E. D., Leaching and selective zinc recovery from acidic leachates of zinc metallurgical leach residues, Journal of Hazardous Materials, 324(A), 71-82, 2017.
  • 25. Jin, B., Yang, X., Shen, Q., Kinetics of copper dissolution during pressure oxidative leaching of lead-containing copper matte, Hydrometallurgy, 99(1–2), 119-123, 2009.
  • 26. Faraji, F., Alizadeh, A., Rashchi, F., Mostoufi, N., Kinetics of leaching: a review, Reviews in Chemical Engineering, 38(2), 113-148, 2020.
  • 27. Dixon, D.G., Baxter, K.G., Sylwestrzak, L.A., Galvanox Treatment of Copper Concentrates, 2009.
  • 28. Li, Y., Kawashima, N., Li J., Chandra, A.P., A.R. Gerson, A.R., A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite, Advances in Colloid and Interface Science, 197–198, 1-32, 2013.
  • 29. Baba, A. A., Ayinla, K. I., Adekola, F. A., Ghosh, M. K., Ayanda, O. S., Bale, R. B., Sheik, A. R., Pradhan, S. R., A review on novel techniques for chalcopyrite ore processing, International Journal of Mining Engineering and Mineral Processing , 1(1), 1-16, 2012.
  • 30. Aydogan, S., Dissolution kinetics of sphalerite with hydrogen peroxide in sulphuric acid medium, Chemical Engineering Journal, 123, 65-70, 2006.
  • 31. Sokić, M., Marković, B., Matković, V., Živkovic, D., Štrbac, N., Stojanović, J., Kinetics and mechanism of sphalerite leaching by sodium nitrate in sulphuric acıd solution, Journal of Mining and Metallurgy, Section B: metallurgy, 48 (2), 185-195, 2012.
  • 32. Hasani, M., Koleini, S.M.J., Khodadadi, A., Kinetics of sphalerite leaching by sodium nitrate in sulfuric acid, Journal of Mining and Environment, 7 (1), 1-12, 2016.
  • 33. Aytekin, Y., A research on the production possibilities of copper-zinc-lead mixed concentrates by sulphuric acid curing and solutioning method, Bulletin of the Mineral Research and Exploration, 92, 24-39, 1979.
  • 34. Tkacova, K., Balaz, P., Misura, B., Vigdergauz, V.E., Chanturiya, V.A., Selective leaching of zinc from mechanically activated complex Cu-Pb-Zn concentrate, Hydrometallurgy, 33(3), 291-300, 1993.
  • 35. Rehman, M., Anwar, M.A., Iqbal, M., Akhtar, K., Khalid, A.M., Ghauri, M.A., Bioleaching of high grade Pb–Zn ore by mesophilic and moderately thermophilic iron and sulphur oxidizers, Hydrometallurgy, 97(1–2), 1-7, 2009.
  • 36. Ozboz, F., Uysal, M., Gul, H., Alp, A., 2017. Leaching of complex sulfured zinc ore in Rize region by anodic oxidation method, 5th International Symposium on Innovative Technologies in Engineering and Science (ISITES2017), Baku-Azerbaijan, 2017.
  • 37. Abraitis, P., D. Pattrick, R., Kelsall, G., Vaughan, D., Acid leaching and dissolution of major sulphide ore minerals: Processes and galvanic effects in complex systems, Mineralogical Magazine, 68(2), 343-351, 2004.

Balıkesir Balya Pb-Zn cevherinden hidrometalurjik yöntemlerle Zn kazanımının araştırılması

Year 2024, Volume: 39 Issue: 3, 1541 - 1554, 20.05.2024
https://doi.org/10.17341/gazimmfd.1183600

Abstract

Bu çalışmada Balıkesir-Balya Pb-Zn cevherlerinden Zn’nin asit liçi yöntemi ile kazanımı araştırılmıştır. Sülfürik asit (H2SO4), hidroklorik asit (HCl) ve nitrik asit (HNO3) ile gerçekleştirilen kimyasal çözündürme deneylerinde; 75-106-150 µm tane boyutu, %5-10-15-20-25 katı oranı, 30-60-120-180-240 dak. liç süresi, 0,25-0,5-1-2-5 M asit dozajı ve 30-40-50-60-70 oC pülp sıcaklığı parametreleri denenmiştir. Zn için optimum sonuçlar 75 µm (H2SO4 ve HNO3) ve 106 µm (HCl) tane boyutu, %15 (H2SO4), %25 (HCl) ve %20 (HNO3) katı oranı, 120 dak. (H2SO4) ve 60 dak. (HCl ve HNO3) liç süresi, 0,5 M (H2SO4 ve HCl) ve 1M (HNO3) asit dozajı ve 50 oC (H2SO4 ve HNO3) ve 70 oC (HCl) pülp sıcaklığı şartlarında elde edilmiştir. Belirtilmiş olan bu optimum koşullarda gerçekleştirilen deneyler sonucunda sırasıyla %97,32, %96,38 ve %96,06 Zn çözünme verimleri elde edilmiştir. Ayrıca bu çalışmada her üç asit için de sıcaklığa bağlı kinetik analizler gerçekleştirilmiştir. Her asit için -106+75 µm tane boyutu, 1 M asit dozajı, %20 katı oranı, 0-30 dak. liç süresi, 50-90 oC pülp sıcaklığı, 250 dev./dak. karıştırma hızı koşullarında deneyler gerçekleştirilmiştir. H2SO4, HCl ve HNO3 deneyleri için liç kinetiği incelendiğinde farklı sıcaklıklarda elde edilmiş olan çözünme verimleri grafiklendirilerek elde edilen doğruların eğiminden görünür hız sabitleri ve korelasyon katsayıları hesaplanmıştır. Bu değerler incelendiği zaman Zn çözünmesinin her üç asit ortamında da Küçülen Çekirdek Modeli’nde difüzyon kontrollü modele uyduğu görülmüştür. Zn liçi çözünme verimlerinde farklı sıcaklıklar için elde edilen Arrhenius grafiği doğrusunun eğiminden aktivasyon enerjileri H2SO4 için 3,615 kJ/mol, HCl için 4,811 kJ/mol ve HNO3 için de 4,736 kJ/mol olarak hesaplanmıştır.

References

  • 1. Dutrizac, J. E., MacDonald, J. C., The Dissolution of sphalerite in ferric chloride solutions, Metallurgical Transactions B, 9B, 543-551, 1978.
  • 2. Aydogan, S., Dissolution kinetics of sphalerite with hydrogen peroxide in sulphuric acid medium, Chemical Engineering Journal, 123, 65-70, 2006.
  • 3. Baba, A. A., Adekola, F. A., Hydrometallurgical processing of a Nigerian sphalerite in hydrochloric acid: Characterization and dissolution kinetics, Hydrometallurgy, 101, 69-75, 2010.
  • 4. Onukwuli, O. D., Nnanwube, I. A., Hydrometallurgical processing of a Nigerian sphalerite ore in nitric acid: Characterization and dissolution kinetics, The International Journal Of Science & Technoledge, 6(3), 40-54, 2018.
  • 5. Nnanwube, I. A., Udeaja, J. N., Onukwuli, O. D., Kinetics of zinc recovery from sphalerite in acetic acid solution, Journal of Materials and Environmental Sciences, 11(3), 499-511, 2020.
  • 6. Baba, A.A., Adekola, F.A., Comparative analysis of the dissolution kinetics of galena in binary solutions of HCl/FeCl3 and HCl/H2O2, International Journal of Minerals, Metallurgy and Materials, 18, 9-17, 2011.
  • 7. Uçar, G., Kinetics of sphalerite dissolution by sodium chlorate in hydrochloric acid, Hydrometallurgy, 95, 39-43, 2009.
  • 8. Frenay, J., Leaching of oxidized zinc ores in various media, Hydrometallurgy, 15, 243-253, 1985.
  • 9. Peng, P., Xie, H., Lu, L., Leaching of a sphalerite concentrate with H2SO4–HNO3 solutions in the presence of C2Cl4, Hydrometallurgy, 80, 265-271, 2005.
  • 10. Adebayo, A. O., Ipinmoroti, K. O., Ajayi, O. O., Leaching of sphalerite with hydrogen peroxide and nitric acid solutions, Journal of Minerals & Materials Characterization & Engineering, 5(2), 167-177, 2006.
  • 11. Picazo-Rodríguez, N.G., Soria-Aguilar, M.d.J., Martínez-Luévanos, A., Almaguer-Guzmán, I., Chaidez-Félix, J., Carrillo-Pedroza, F.R., Direct acid leaching of sphalerite: An approach comparative and kinetics, Minerals, 10(4), 359, 1-14, 2020.
  • 12. Filippou, D., Innovative hydrometallurgical processes for the primary processing of zinc, Mineral Processing and Extractive Metallurgy Review, 25 (3), 205-252, 2004.
  • 13. Li, P., Cai, Q., Wei, B., Failure analysis of the impeller of slurry pump used in zinc hydrometallurgy process, Engineering Failure Analysis, 13, 876-885, 2006.
  • 14. Çopur, M., Solubility of ZnS concentrate containing pyrite and chalcopyrite in HNO3 solutions, Chem. Biochem. Eng. Q. 15 (4) 181–184, 2001.
  • 15. Jan, R.J., Hepworth, M.T., Fox, V.G., A kinetic study on the pressure leaching of sphalerite, Metallurgical Transactions B, 7B, 353-361, 1976.
  • 16. Baláž, P., Ebert, I., Oxidative leaching of mechanically activated sphalerite, Hydrometallurgy, 27(2), 141-150, 1991.
  • 17. Lochmannn, J., Pedĺik, M., Kinetic anomalies of dissolution of sphalerite in ferric sulfate solution, Hydrometallurgy, 37(1), 89-96, 1995.
  • 18. Ekinci, Z., Colak, S., Cakici, A., Sarac, H., Leaching kinetics of sphalerite with pyrite in chlorine saturated water, Minerals Engineering, 11(3), 279-283, 1998.
  • 19. Babu, M. N., Sahu, K. K., Pandey, B. D., Zinc recovery from sphalerite concentrate by direct oxidative leaching with ammonium, sodium and potassium persulphates, Hydrometallurgy, 64(2), 119-129, 2002.
  • 20. Kurama, H., Göktepe, F., Recovery of zinc from waste material using hydrometallurgical processes, Environmental Progress, 22(3), 161-166, 2003.
  • 21. Pecina, T., Franco, T., Castillo, P., Orrantia, E., Leaching of a zinc concentrate in H2SO4 solutions containing H2O2 and complexing agents, Minerals Engineering, 21, 23-30, 2008.
  • 22. Chenglong, Z., Youcai, Z., Mechanochemical leaching of sphalerite in an alkaline solution containing lead carbonate, Hydrometallurgy, 100(1-2), 56-59, 2009.
  • 23. Güler, E., 2016, Pressure acid leaching of sphalerite concentrate. Modeling and optimization by response surface methodology, Physicochemical Problems of Mineral Processing, 52(1), 2016, 479−496, 2016.
  • 24. Sethurajan, M., Huguenot, D., Jain, R., Lens, P. N. L., Horn, H. A., Figueiredo, L. H. A., Hullebusch, E. D., Leaching and selective zinc recovery from acidic leachates of zinc metallurgical leach residues, Journal of Hazardous Materials, 324(A), 71-82, 2017.
  • 25. Jin, B., Yang, X., Shen, Q., Kinetics of copper dissolution during pressure oxidative leaching of lead-containing copper matte, Hydrometallurgy, 99(1–2), 119-123, 2009.
  • 26. Faraji, F., Alizadeh, A., Rashchi, F., Mostoufi, N., Kinetics of leaching: a review, Reviews in Chemical Engineering, 38(2), 113-148, 2020.
  • 27. Dixon, D.G., Baxter, K.G., Sylwestrzak, L.A., Galvanox Treatment of Copper Concentrates, 2009.
  • 28. Li, Y., Kawashima, N., Li J., Chandra, A.P., A.R. Gerson, A.R., A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite, Advances in Colloid and Interface Science, 197–198, 1-32, 2013.
  • 29. Baba, A. A., Ayinla, K. I., Adekola, F. A., Ghosh, M. K., Ayanda, O. S., Bale, R. B., Sheik, A. R., Pradhan, S. R., A review on novel techniques for chalcopyrite ore processing, International Journal of Mining Engineering and Mineral Processing , 1(1), 1-16, 2012.
  • 30. Aydogan, S., Dissolution kinetics of sphalerite with hydrogen peroxide in sulphuric acid medium, Chemical Engineering Journal, 123, 65-70, 2006.
  • 31. Sokić, M., Marković, B., Matković, V., Živkovic, D., Štrbac, N., Stojanović, J., Kinetics and mechanism of sphalerite leaching by sodium nitrate in sulphuric acıd solution, Journal of Mining and Metallurgy, Section B: metallurgy, 48 (2), 185-195, 2012.
  • 32. Hasani, M., Koleini, S.M.J., Khodadadi, A., Kinetics of sphalerite leaching by sodium nitrate in sulfuric acid, Journal of Mining and Environment, 7 (1), 1-12, 2016.
  • 33. Aytekin, Y., A research on the production possibilities of copper-zinc-lead mixed concentrates by sulphuric acid curing and solutioning method, Bulletin of the Mineral Research and Exploration, 92, 24-39, 1979.
  • 34. Tkacova, K., Balaz, P., Misura, B., Vigdergauz, V.E., Chanturiya, V.A., Selective leaching of zinc from mechanically activated complex Cu-Pb-Zn concentrate, Hydrometallurgy, 33(3), 291-300, 1993.
  • 35. Rehman, M., Anwar, M.A., Iqbal, M., Akhtar, K., Khalid, A.M., Ghauri, M.A., Bioleaching of high grade Pb–Zn ore by mesophilic and moderately thermophilic iron and sulphur oxidizers, Hydrometallurgy, 97(1–2), 1-7, 2009.
  • 36. Ozboz, F., Uysal, M., Gul, H., Alp, A., 2017. Leaching of complex sulfured zinc ore in Rize region by anodic oxidation method, 5th International Symposium on Innovative Technologies in Engineering and Science (ISITES2017), Baku-Azerbaijan, 2017.
  • 37. Abraitis, P., D. Pattrick, R., Kelsall, G., Vaughan, D., Acid leaching and dissolution of major sulphide ore minerals: Processes and galvanic effects in complex systems, Mineralogical Magazine, 68(2), 343-351, 2004.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Tuğba Deniz Tombal 0000-0001-5658-6854

İlgin Kurşun Ünver 0000-0001-7348-6054

Early Pub Date January 19, 2024
Publication Date May 20, 2024
Submission Date October 3, 2022
Acceptance Date August 24, 2023
Published in Issue Year 2024 Volume: 39 Issue: 3

Cite

APA Tombal, T. D., & Kurşun Ünver, İ. (2024). Balıkesir Balya Pb-Zn cevherinden hidrometalurjik yöntemlerle Zn kazanımının araştırılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(3), 1541-1554. https://doi.org/10.17341/gazimmfd.1183600
AMA Tombal TD, Kurşun Ünver İ. Balıkesir Balya Pb-Zn cevherinden hidrometalurjik yöntemlerle Zn kazanımının araştırılması. GUMMFD. May 2024;39(3):1541-1554. doi:10.17341/gazimmfd.1183600
Chicago Tombal, Tuğba Deniz, and İlgin Kurşun Ünver. “Balıkesir Balya Pb-Zn Cevherinden Hidrometalurjik yöntemlerle Zn kazanımının araştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39, no. 3 (May 2024): 1541-54. https://doi.org/10.17341/gazimmfd.1183600.
EndNote Tombal TD, Kurşun Ünver İ (May 1, 2024) Balıkesir Balya Pb-Zn cevherinden hidrometalurjik yöntemlerle Zn kazanımının araştırılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39 3 1541–1554.
IEEE T. D. Tombal and İ. Kurşun Ünver, “Balıkesir Balya Pb-Zn cevherinden hidrometalurjik yöntemlerle Zn kazanımının araştırılması”, GUMMFD, vol. 39, no. 3, pp. 1541–1554, 2024, doi: 10.17341/gazimmfd.1183600.
ISNAD Tombal, Tuğba Deniz - Kurşun Ünver, İlgin. “Balıkesir Balya Pb-Zn Cevherinden Hidrometalurjik yöntemlerle Zn kazanımının araştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39/3 (May 2024), 1541-1554. https://doi.org/10.17341/gazimmfd.1183600.
JAMA Tombal TD, Kurşun Ünver İ. Balıkesir Balya Pb-Zn cevherinden hidrometalurjik yöntemlerle Zn kazanımının araştırılması. GUMMFD. 2024;39:1541–1554.
MLA Tombal, Tuğba Deniz and İlgin Kurşun Ünver. “Balıkesir Balya Pb-Zn Cevherinden Hidrometalurjik yöntemlerle Zn kazanımının araştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 39, no. 3, 2024, pp. 1541-54, doi:10.17341/gazimmfd.1183600.
Vancouver Tombal TD, Kurşun Ünver İ. Balıkesir Balya Pb-Zn cevherinden hidrometalurjik yöntemlerle Zn kazanımının araştırılması. GUMMFD. 2024;39(3):1541-54.