Research Article
BibTex RIS Cite

Farklı kurumsal amaçlar altında bulanık ÇKKV tekniklerine dayalı en iyi geri kazanım opsiyonunun belirlenmesi

Year 2024, Volume: 39 Issue: 3, 1849 - 1864, 20.05.2024
https://doi.org/10.17341/gazimmfd.1190745

Abstract

Kullanılmış ürünlerin geri kazanılarak kapalı döngü bir ekonomi oluşturulması, ekonomik ve çevresel sürdürülebilirliğin sağlanması açısından büyük önem taşımaktadır. Geri kazanım sürecinden elde edilen faydayı maksimize etmek açısından en uygun geri kazanım opsiyonuna göre ürünlerin sisteme dahil edilmesi büyük önem taşımaktadır. Geri kazanım süreci kapsamına giren en önemli ürün tiplerinden birisi de bu çalışma kapsamında ele alınan kiralık ürünlerdir. Kiralık ürünlerin doğası gereği sıklıkla geri kazanım sürecine girmesi, geri kazanım opsiyonlarından en uygun olanının belirlenmesi ihtiyacını daha da önemli hale getirmektedir. İlgili karar sürecinde, uygulamada karşılaşılan durumlardan birisi de kurumların farklı departmanlarının farklı amaçlar içermesidir. Geri kazanım opsiyonlarının değerleri ilgili amaçlara göre farklılaşabilmektedir. Bu çalışmayla farklı departmanların amaçlarının göz önünde tutularak her bir geri kazanım opsiyonu için skor üretilebilen bir yapı sunulması hedeflenmektedir. Bu yapıda bulanık Çok Kriterli Karar Verme (ÇKKV) tekniklerinden Küresel Bulanık AHP (KB-AHP) ve Küresel Bulanık TOPSIS (KB-TOPSIS) bütünleşik bir şekilde kullanılmıştır. Sunulan yaklaşımın geçerliliğini göstermek için Türkiye’nin büyük telekomünikasyon şirketlerinden birinde kiralık modemler üzerinde uygulama yapılmıştır. Farklı departman ağırlıkları ve kriterlerin alabileceği farklı durumlar altında olası bütün senaryolar çeşitli açılardan analiz edilmiş ve yorumlanmıştır. Böylece departman hedeflerinin kriterler üzerindeki etkileri gözlemlenmiş ve kararlar üzerindeki etkileri sayısal olarak incelenebilmiştir.

Supporting Institution

TÜBİTAK

Project Number

121M176

References

  • Kilic, H. S., Zaim, S., Delen, D. 2014. “Development of a hybrid methodology for ERP system selection: The case of Turkish Airlines”, Decision Support Systems, 66, 82-92.
  • Alamerew, Y. A., Brissaud, D. 2019. “Circular economy assessment tool for end of life product recovery strategies”, Journal of Remanufacturing, 9 (3), 169-185.
  • Vahdani, B., Dehbari, S., & Beni, M. (2014). An artificial intelligence approach for fuzzy possibilistic-stochastic multi-objective logistics network design. Neural Comput & Applic, 1887–1902.
  • Alamerew, Y. A., Brissaud, D. 2018. “Modelling and assessment of product recovery strategies through systems Dynamics”, Procedia CIRP, 69, 822-826.
  • Okumura, S., Matsumoto, Y., Hatanaka, Y., Ogohara, K. 2016. “Simultaneous Evaluation of Environmental Impact and Incurred Cost on Selection of End-Of-Life Products Recovery Options”, International Journal of Automation Technology, 10(5), 699-707.
  • Evler, J., Asadi, E., Preis, H., Fricke, H. 2021. “Airline ground operations: Schedule recovery optimization approach with constrained resources”, Transportation Research Part C: Emerging Technologies, 128, 103129.
  • Chen, Y., Wang, J., Jia, X. 2020. “Refurbished or remanufactured An experimental study on consumer choice behavior”, Frontiers in psychology, 11, 781.
  • Meng, K., Cao, Y., Peng, X., Prybutok, V., Youcef-Toumi, K. 2020. “Smart recovery decision-making for end-of-life products in the context of ubiquitous information and computational intelligence”, Journal of Cleaner Production, 272, 122804.
  • Meng, K., Lou, P., Peng, X., Prybutok, V. 2016. “An improved co-evolutionary algorithm for green manufacturing by integration of recovery option selection and disassembly planning for end-of-life products”, International Journal of Production Research, 54 (18), 5567-5593.
  • Parlikad, A. K., McFarlane, D. 2009. “A Bayesian decision support system for vehicle component recovery”, International Journal of Sustainable Manufacturing, 1 (4), 415.
  • Barker, T., & Zabinsky, Z. (2011). A multicriteria decision making model for reverse logistics using analytical hierarchy process. Omega, 558–573.
  • Senthil, S., Srirangacharyulu, B., & Ramesh, A. (2014). A robust hybrid multi-criteria decision making methodology for contractor evaluation and selection in third-party reverse logistics. Expert Systems with Applications, 50-58.
  • Özceylan, E., & Paksoy, T. (2013). Fuzzy multi-objective linear programming approach for optimising a closed-loop supply chain network. International Journal of Production Research, 2443–2461.
  • Moghaddam, K. (2015). Fuzzy multi-objective model for supplier selection and order allocation in reverse logistics systems under supply and demand uncertainty. Expert Systems with Applications, 6237–6254.
  • Zadeh, L. A. (1996). Fuzzy sets. In Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by Lotfi A Zadeh (pp. 394-432).
  • Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20(1):87–96
  • Smarandache, F. (2003, September). Definiton of neutrosophic logic-a generalization of the intuitionistic fuzzy logic. In EUSFLAT Conf. (pp. 141-146).
  • Torra, V. (2010). Hesitant fuzzy sets. International journal of intelligent systems, 25(6), 529-539.
  • Kutlu Gündoğdu, F., & Kahraman, C. (2019). Spherical fuzzy sets and spherical fuzzy TOPSIS method. Journal of intelligent & fuzzy systems, 36(1), 337-352.
  • Yager, R. R. (2013, June). Pythagorean fuzzy subsets. In 2013 joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS) (pp. 57-61). IEEE.
  • Ayyildiz, E., & Taskin, A. (2022). A novel spherical fuzzy AHP-VIKOR methodology to determine serving petrol station selection during COVID-19 lockdown: A pilot study for İstanbul. Socio-Economic Planning Sciences, 101345.
  • Kul, Y., Şeker, A., & Yurdakul, M. (2014). Usage of fuzzy multı crıterıa decısıon makıng methods ın selectıon of nontradıtıonal manufacturıng methods. Journal of the Faculty of Engineering and Architecture of Gazi University, 29(3).
  • Erdemir, N., Öztürk, F., & Kaya, G. K. (2022). Integrated decision support model for performance evaluation of public staff: using AHP and fuzzy TOPSIS. Journal of the Faculty of Engineering and Architecture of Gazi University, 37(4), 1809-1822.
  • Saaty, T. (1980, November). The analytic hierarchy process (AHP) for decision making. In Kobe, Japan (pp. 1-69).
  • Sharaf, I. M. (2022). A New Approach for Spherical Fuzzy TOPSIS and Spherical Fuzzy VIKOR Applied to the Evaluation of Hydrogen Storage Systems.
Year 2024, Volume: 39 Issue: 3, 1849 - 1864, 20.05.2024
https://doi.org/10.17341/gazimmfd.1190745

Abstract

Project Number

121M176

References

  • Kilic, H. S., Zaim, S., Delen, D. 2014. “Development of a hybrid methodology for ERP system selection: The case of Turkish Airlines”, Decision Support Systems, 66, 82-92.
  • Alamerew, Y. A., Brissaud, D. 2019. “Circular economy assessment tool for end of life product recovery strategies”, Journal of Remanufacturing, 9 (3), 169-185.
  • Vahdani, B., Dehbari, S., & Beni, M. (2014). An artificial intelligence approach for fuzzy possibilistic-stochastic multi-objective logistics network design. Neural Comput & Applic, 1887–1902.
  • Alamerew, Y. A., Brissaud, D. 2018. “Modelling and assessment of product recovery strategies through systems Dynamics”, Procedia CIRP, 69, 822-826.
  • Okumura, S., Matsumoto, Y., Hatanaka, Y., Ogohara, K. 2016. “Simultaneous Evaluation of Environmental Impact and Incurred Cost on Selection of End-Of-Life Products Recovery Options”, International Journal of Automation Technology, 10(5), 699-707.
  • Evler, J., Asadi, E., Preis, H., Fricke, H. 2021. “Airline ground operations: Schedule recovery optimization approach with constrained resources”, Transportation Research Part C: Emerging Technologies, 128, 103129.
  • Chen, Y., Wang, J., Jia, X. 2020. “Refurbished or remanufactured An experimental study on consumer choice behavior”, Frontiers in psychology, 11, 781.
  • Meng, K., Cao, Y., Peng, X., Prybutok, V., Youcef-Toumi, K. 2020. “Smart recovery decision-making for end-of-life products in the context of ubiquitous information and computational intelligence”, Journal of Cleaner Production, 272, 122804.
  • Meng, K., Lou, P., Peng, X., Prybutok, V. 2016. “An improved co-evolutionary algorithm for green manufacturing by integration of recovery option selection and disassembly planning for end-of-life products”, International Journal of Production Research, 54 (18), 5567-5593.
  • Parlikad, A. K., McFarlane, D. 2009. “A Bayesian decision support system for vehicle component recovery”, International Journal of Sustainable Manufacturing, 1 (4), 415.
  • Barker, T., & Zabinsky, Z. (2011). A multicriteria decision making model for reverse logistics using analytical hierarchy process. Omega, 558–573.
  • Senthil, S., Srirangacharyulu, B., & Ramesh, A. (2014). A robust hybrid multi-criteria decision making methodology for contractor evaluation and selection in third-party reverse logistics. Expert Systems with Applications, 50-58.
  • Özceylan, E., & Paksoy, T. (2013). Fuzzy multi-objective linear programming approach for optimising a closed-loop supply chain network. International Journal of Production Research, 2443–2461.
  • Moghaddam, K. (2015). Fuzzy multi-objective model for supplier selection and order allocation in reverse logistics systems under supply and demand uncertainty. Expert Systems with Applications, 6237–6254.
  • Zadeh, L. A. (1996). Fuzzy sets. In Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by Lotfi A Zadeh (pp. 394-432).
  • Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20(1):87–96
  • Smarandache, F. (2003, September). Definiton of neutrosophic logic-a generalization of the intuitionistic fuzzy logic. In EUSFLAT Conf. (pp. 141-146).
  • Torra, V. (2010). Hesitant fuzzy sets. International journal of intelligent systems, 25(6), 529-539.
  • Kutlu Gündoğdu, F., & Kahraman, C. (2019). Spherical fuzzy sets and spherical fuzzy TOPSIS method. Journal of intelligent & fuzzy systems, 36(1), 337-352.
  • Yager, R. R. (2013, June). Pythagorean fuzzy subsets. In 2013 joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS) (pp. 57-61). IEEE.
  • Ayyildiz, E., & Taskin, A. (2022). A novel spherical fuzzy AHP-VIKOR methodology to determine serving petrol station selection during COVID-19 lockdown: A pilot study for İstanbul. Socio-Economic Planning Sciences, 101345.
  • Kul, Y., Şeker, A., & Yurdakul, M. (2014). Usage of fuzzy multı crıterıa decısıon makıng methods ın selectıon of nontradıtıonal manufacturıng methods. Journal of the Faculty of Engineering and Architecture of Gazi University, 29(3).
  • Erdemir, N., Öztürk, F., & Kaya, G. K. (2022). Integrated decision support model for performance evaluation of public staff: using AHP and fuzzy TOPSIS. Journal of the Faculty of Engineering and Architecture of Gazi University, 37(4), 1809-1822.
  • Saaty, T. (1980, November). The analytic hierarchy process (AHP) for decision making. In Kobe, Japan (pp. 1-69).
  • Sharaf, I. M. (2022). A New Approach for Spherical Fuzzy TOPSIS and Spherical Fuzzy VIKOR Applied to the Evaluation of Hydrogen Storage Systems.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Sevan Katrancıoğlu 0000-0002-4111-2186

Hüseyin Selçuk Kılıç 0000-0003-3356-0162

Zeynep Tuğçe Kalender 0000-0002-9491-7252

Çiğdem Uslu 0000-0002-4594-1360

Project Number 121M176
Early Pub Date May 16, 2024
Publication Date May 20, 2024
Submission Date October 17, 2022
Acceptance Date September 17, 2023
Published in Issue Year 2024 Volume: 39 Issue: 3

Cite

APA Katrancıoğlu, S., Kılıç, H. S., Kalender, Z. T., Uslu, Ç. (2024). Farklı kurumsal amaçlar altında bulanık ÇKKV tekniklerine dayalı en iyi geri kazanım opsiyonunun belirlenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(3), 1849-1864. https://doi.org/10.17341/gazimmfd.1190745
AMA Katrancıoğlu S, Kılıç HS, Kalender ZT, Uslu Ç. Farklı kurumsal amaçlar altında bulanık ÇKKV tekniklerine dayalı en iyi geri kazanım opsiyonunun belirlenmesi. GUMMFD. May 2024;39(3):1849-1864. doi:10.17341/gazimmfd.1190745
Chicago Katrancıoğlu, Sevan, Hüseyin Selçuk Kılıç, Zeynep Tuğçe Kalender, and Çiğdem Uslu. “Farklı Kurumsal amaçlar altında bulanık ÇKKV Tekniklerine Dayalı En Iyi Geri kazanım Opsiyonunun Belirlenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39, no. 3 (May 2024): 1849-64. https://doi.org/10.17341/gazimmfd.1190745.
EndNote Katrancıoğlu S, Kılıç HS, Kalender ZT, Uslu Ç (May 1, 2024) Farklı kurumsal amaçlar altında bulanık ÇKKV tekniklerine dayalı en iyi geri kazanım opsiyonunun belirlenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39 3 1849–1864.
IEEE S. Katrancıoğlu, H. S. Kılıç, Z. T. Kalender, and Ç. Uslu, “Farklı kurumsal amaçlar altında bulanık ÇKKV tekniklerine dayalı en iyi geri kazanım opsiyonunun belirlenmesi”, GUMMFD, vol. 39, no. 3, pp. 1849–1864, 2024, doi: 10.17341/gazimmfd.1190745.
ISNAD Katrancıoğlu, Sevan et al. “Farklı Kurumsal amaçlar altında bulanık ÇKKV Tekniklerine Dayalı En Iyi Geri kazanım Opsiyonunun Belirlenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39/3 (May 2024), 1849-1864. https://doi.org/10.17341/gazimmfd.1190745.
JAMA Katrancıoğlu S, Kılıç HS, Kalender ZT, Uslu Ç. Farklı kurumsal amaçlar altında bulanık ÇKKV tekniklerine dayalı en iyi geri kazanım opsiyonunun belirlenmesi. GUMMFD. 2024;39:1849–1864.
MLA Katrancıoğlu, Sevan et al. “Farklı Kurumsal amaçlar altında bulanık ÇKKV Tekniklerine Dayalı En Iyi Geri kazanım Opsiyonunun Belirlenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 39, no. 3, 2024, pp. 1849-64, doi:10.17341/gazimmfd.1190745.
Vancouver Katrancıoğlu S, Kılıç HS, Kalender ZT, Uslu Ç. Farklı kurumsal amaçlar altında bulanık ÇKKV tekniklerine dayalı en iyi geri kazanım opsiyonunun belirlenmesi. GUMMFD. 2024;39(3):1849-64.