Research Article
BibTex RIS Cite

Hidrazin elektrooksidasyonu için gelişmiş karbon nanotüp destekli monometalik katalizörlerin sentezi ve karakterizasyonu

Year 2025, Volume: 40 Issue: 1, 155 - 164, 16.08.2024
https://doi.org/10.17341/gazimmfd.1277303

Abstract

Bu çalışmada, karbon nanotüp (CNT) destekli M(Bi, Cu, Fe, Nb) katalizörleri, hidrazin elektro-oksidasyonu için sodyum borohidrür (SBH) indirgeme yöntemiyle hazırlanmıştır. %3 Cu/CNT katalizörün yapısal ve morfolojik yüzey analizleri, X-Işını kırınımı (XRD) ve taramalı elektron mikroskobu-enerji dağıtıcı X-Işını (SEM-EDX) ve haritalama analizleri ile karakterize edilmiştir. Katalizörlerin katalitik aktiviteleri döngüsel voltametri (CV) analizi ile incelenmiştir. %3 Cu/CNT katalizörü, 34.7 mA/cm2'lik spesifik aktivite ile diğer katalizörlere kıyasla en iyi katalitik aktiviteyi sergiledi. %3 Cu/CNT katalizörün farklı tarama hızları ile elektrokatalitik performansı incelendi. Ayrıca elektrokimyasal empedans spektroskopisi (EIS) analizleri ile en iyi direnci sahip olduğu görülmüştür. Doğrudan hidrazin yakıt pilleri (DHYP) için umut verici bir anot katalizörü olabilme potansiyeline sahiptir.

References

  • 1. Caglar A., Kivrak H., Aktas N., Solak A.O., Fabrication of Carbon-Doped Titanium Dioxide Nanotubes as Anode Materials for Photocatalytic Glucose Fuel Cells, Journal of Electronic Materials, 50, 2242-2253, 2021.
  • 2. Sanli, A. Aytaç A., Response to Disselkamp: Direct peroxide/peroxide fuel cell as a novel type fuel cell, International Journal of Hydrogen Energy, 36, 869-875, 2011.
  • 3. Caglar A., Kivrak H., Highly active carbon nanotube supported PdAu alloy catalysts for ethanol electrooxidation in alkaline environment, International Journal of Hydrogen Energy, 44, 11734-11743, 2019.
  • 4. Ulas, B., Caglar A., Kivrak A. Kivrak H., Atomic molar ratio optimization of carbon nanotube supported PdAuCo catalysts for ethylene glycol and methanol electrooxidation in alkaline media, Chemical Papers, 73, 425-434, 2019.
  • 5. Ulas, B., Caglar A., Yılmaz S., Ecer U., Yilmaz Y., Sahan T., Kivrak H., Towards more active and stable PdAgCr electrocatalysts for formic acid electrooxidation: The role of optimization via response surface methodology, International Journal of Energy Research, 43, 8985-9000, 2019.
  • 6. Er, O.F., Caglar A., Kivrak H., Enhanced electrochemical glucose oxidation in alkaline solution over indium decorated carbon supported palladium nanoparticles, Materials Chemistry and Physics, 254, 123318, 2020. 7. Qiao, B., Yang T., Shi S., Jia N., Chen Y., Chen X., An Z. Chen P., Highly Active Hollow RhCu Nanoboxes toward Ethylene Glycol Electrooxidation, Small, 17, 2006534, 2021.
  • 8. Kaya, S., Caglar A. Kivrak H., Carbon nanotube supported Ga@PdAgCo anode catalysts for hydrazine electrooxidation in alkaline media, Fuel, 324, 124822, 2022.
  • 9. Bae, S., Park J., Hwang Y., Park J.-S., Lee J. Jeong B., Steam activation of Fe-N-C catalyst for advanced power performance of alkaline hydrazine fuel cells, Journal of Energy Chemistry, 64, 276-285, 2022.
  • 10. Crisafulli, R., de Barros V. V. S., Rodrigues de Oliveira F. E., de Araújo Rocha T., Zignani S., Spadaro L., Palella A., Dias J. A. Linares J. J., On the promotional effect of Cu on Pt for hydrazine electrooxidation in alkaline medium, Applied Catalysis B: Environmental, 236, 36-44, 2018.
  • 11. Xue, Q., Huang H., Zhu J.-Y., Zhao Y., Li F.-M., Chen P. Chen Y., Au@Rh core-shell nanowires for hydrazine electrooxidation, Applied Catalysis B: Environmental, 278, 119269, 2020.
  • 12. Deng, J., Li X., Imhanria S., Chen K., Deng X. Wang W., Molybdenum carbide-nitrogen doped carbon composites as effective non-precious electrocatalyst for direct hydrazine fuel cell, Electrochimica Acta, 384, 138417, 2021.
  • 13. Wu, L.-S., Dai H.-B., Wen X.-P. Wang P., Ni−Zn Alloy Nanosheets Arrayed on Nickel Foamas a Promising Catalyst for Electrooxidation of Hydrazine, ChemElectroChem, 4, 1944-1949, 2017.
  • 14. Firdous, N. Janjua N. K., CoPtx/γ-Al2O3 bimetallic nanoalloys as promising catalysts for hydrazine electrooxidation, Heliyon, 5, e01380, 2019.
  • 15. Wen, H., Gan L.-Y., Dai H.-B., Wen X.-P., Wu L.-S., Wu H. Wang P., In situ grown Ni phosphide nanowire array on Ni foam as a high-performance catalyst for hydrazine electrooxidation, Applied Catalysis B: Environmental, 241, 292-298, 2019.
  • 16. Kivrak, H. Aktas N., Promoting formic acid and ethylene glycol electrooxidation activity on Ga modified Pd based catalysts, International Journal of Hydrogen Energy, 47, 35265-35274, 2022.
  • 17. Zhang, X.-Y., Shi S. Yin H.-M., CuPd Alloy Oxide Nanobelts as Electrocatalyst Towards Hydrazine Oxidation, ChemElectroChem, 6, 1514-1519, 2019.
  • 18. Kim, J. D., Choi M. Y. Choi H. C., Graphene-oxide-supported Pt nanoparticles with high activity and stability for hydrazine electro-oxidation in a strong acidic solution, Applied Surface Science, 420, 700-706, 2017.
  • 19. Xue, Q., Huang H., Zhu J.-Y., Zhao Y., Li F.-M., Chen P. Chen Y., Au@Rh core-shell nanowires for hydrazine electrooxidation, Applied Catalysis B: Environmental, 278, 119269, 2020.
  • 20. Ömer, E., Cavak A., Aldemir A. Kıvrak H.D., Investigation of hydrazine electrooxidation performance of carbon nanotube supported Pd monometallic direct hydrazine fuel cell anode catalysts, MANAS Journal of Engineering, 8, 90-98, 2020.
  • 21. Zhang, Z., Tang P., Wen H. Wang P., Bicontinuous nanoporous Ni-Fe alloy as a highly active catalyst for hydrazine electrooxidation, Journal of Alloys and Compounds, 906, 164370, 2022.
  • 22. Er, O. F., Cavak A., Aldemir A. Kivrak H., Hydrazine electrooxidation activities of novel carbon nanotube supported Tin modified Palladium nanocatalysts, Surfaces and Interfaces, 28, 101680, 2022.
  • 23. Wan, Q., Liu Y., Wang Z., Wei W., Li B., Zou J. Yang N., Graphene nanoplatelets supported metal nanoparticles for electrochemical oxidation of hydrazine, Electrochemistry communications, 29, 29-32, 2013.
  • 24. Crisafulli, R., de Barros V.V.S., de Oliveira F.E.R., de Araújo Rocha T., Zignani S., Spadaro L., Palella A., Dias J.A. Linares J.J., On the promotional effect of Cu on Pt for hydrazine electrooxidation in alkaline medium, Applied Catalysis B: Environmental, 236, 36-44, 2018.
  • 25. Koçak, S., Aslışen B. Koçak Ç.C., Determination of Hydrazine at a Platinum Nanoparticle and Poly(Bromocresol Purple) Modified Carbon Nanotube Electrode, Analytical Letters, 49, 990-1003, 2016.
  • 26. Koçak, S. Aslışen B., Hydrazine oxidation at gold nanoparticles and poly (bromocresol purple) carbon nanotube modified glassy carbon electrode, Sensors and Actuators B: Chemical, 196, 610-618, 2014.
  • 27. Koçak, Ç. C., Altın A., Aslışen B. Koçak S., Electrochemical preparation and characterization of gold and platinum nanoparticles modified poly (taurine) film electrode and its application to hydrazine determination, International Journal of Electrochemical Science 11, 233-249, 2016.
  • 28. Hatip, M., Koçak S. Dursun Z., Simultaneous electrochemical determination of hydrazine and nitrite based on Au nanoparticles decorated on the poly (Nile Blue) modified carbon nanotube, Electroanalysis, 35, e202200132, 2023.
  • 29. Karaca, S. Koçak S., Fabrication and characterization of enhanced hydrazine electrochemical sensor based on gold nanoparticles decorated on the vanadium oxide, ruthenium oxide nanomaterials, and carbon nanotubes composites, Turkish Journal of Chemistry, 45, 1210-1223, 2021.
  • 30. Chen, L.-X., Jiang L.-Y., Wang A.-J., Chen Q.-Y. Feng J.-J., Simple synthesis of bimetallic AuPd dendritic alloyed nanocrystals with enhanced electrocatalytic performance for hydrazine oxidation reaction, Electrochimica Acta, 190, 872-878, 2016.
  • 31. Zhao, A., Sun H., Chen L., Huang Y. Lu X., Development of highly efficient and scalable free-standing electrodes for the fabrication of hydrazine-O2 fuel cell, Materials Research Express, 6, 085533, 2019.
  • 32. Ding, J., Kannan P., Wang P., Ji S., Wang H., Liu Q., Gai H., Liu F. Wang R., Synthesis of nitrogen-doped MnO/carbon network as an advanced catalyst for direct hydrazine fuel cells, Journal of Power Sources, 413, 209-215, 2019.
  • 33. Wang, W., Wang Y., Liu S., Yahia M., Dong Y. Lei Z., Carbon-supported phosphatized CuNi nanoparticle catalysts for hydrazine electrooxidation, International Journal of Hydrogen Energy, 44, 10637-10645, 2019.
  • 34. Chen, Y., Jiang H., Li D., Song H., Li Z., Sun X., Miao G. Zhao H., Improved field emission performance of carbon nanotube by introducing copper metallic particles, Nanoscale Research Letters, 6, 537, 2011.
  • 35. Safari, J. Gandomi-Ravandi S., Microwave-accelerated three components cyclocondensation in the synthesis of 2,3-dihydroquinazolin-4(1H)-ones promoted by Cu-CNTs, Journal of Molecular Catalysis A: Chemical, 371, 135-140, 2013.
  • 36. Asa G., The effect of Nicotinamide, the green inhibitor, to the corrosion of stainless steel in acidic media, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (3), 1431-1437, 2023.
  • 37. Okutan M., Electrochemical determination of ascorbic acid with thermally reduced graphene oxide, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (3), 1589-1602, 2020.
  • 38. Gürten İnal İ., Gökçe Y., Yağmur E., Aktaş Z., Investigation of supercapacitor performance of the biomass based activated carbon modified with nitric acid, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (3), 1243-1255, 2020.
  • 39. Li, X., Xu H. Yan W., Effects of twelve sodium dodecyl sulfate (SDS) on electro-catalytic performance and stability of PbO2 electrode, Journal of Alloys and Compounds, 718, 386-395, 2017.
  • 40. Soleimani-Lashkenari, M., Rezaei S., Fallah J. Rostami H., Electrocatalytic performance of Pd/PANI/TiO2 nanocomposites for methanol electrooxidation in alkaline media, Synthetic Metals, 235, 71-79, 2018.
  • 41. Hefnawy, M.A., Fadlallah S.A., El-Sherif R. M. Medany S.S., Nickel-manganese double hydroxide mixed with reduced graphene oxide electrocatalyst for efficient ethylene glycol electrooxidation and hydrogen evolution reaction, Synthetic Metals, 282, 116959, 2021.
  • 42. Zhang, D., Li X. Xiang Q., Triethanolamine as an efficient electrolyte additive for borohydride electrooxidation on Ni based catalyst, Materials Letters, 306, 130922, 2022.
  • 43. Caglar, A., Aktas N. Kivrak H., The role and effect of CdS-based TiO2 photocatalysts enhanced with a wetness impregnation method for efficient photocatalytic glucose electrooxidation, Surfaces and Interfaces, 33, 102250, 2022.

The synthesis and characterization of advanced carbon nanotube-supported monometallic catalysts for hydrazine electrooxidation

Year 2025, Volume: 40 Issue: 1, 155 - 164, 16.08.2024
https://doi.org/10.17341/gazimmfd.1277303

Abstract

In this study, carbon nanotube (CNT) supported M(Bi, Cu, Fe, Nb) catalysts were prepared by the sodium borohydride (SBH) reduction method for hydrazine electro-oxidation. The structural and morphological surface analyses of the 3% Cu/CNT catalyst were characterized by X-Ray diffraction (XRD) and scanning electron microscopy-energy dispersive X-Ray (SEM-EDX) and mapping analyses. The catalytic activities of the catalysts were investigated by cyclic voltammetry (CV) analysis. The 3% Cu/CNT catalyst exhibited the best catalytic activity compared to other catalysts, with a specific activity of 34.7 mA/cm2. The electrocatalytic performance of the 3% Cu/CNT catalyst was investigated with different scan rates. It was also found to have the best resistance by electrochemical impedance spectroscopy (EIS) analysis. It has the potential to be a promising anode catalyst for direct hydrazine fuel cells (DHYPs).

References

  • 1. Caglar A., Kivrak H., Aktas N., Solak A.O., Fabrication of Carbon-Doped Titanium Dioxide Nanotubes as Anode Materials for Photocatalytic Glucose Fuel Cells, Journal of Electronic Materials, 50, 2242-2253, 2021.
  • 2. Sanli, A. Aytaç A., Response to Disselkamp: Direct peroxide/peroxide fuel cell as a novel type fuel cell, International Journal of Hydrogen Energy, 36, 869-875, 2011.
  • 3. Caglar A., Kivrak H., Highly active carbon nanotube supported PdAu alloy catalysts for ethanol electrooxidation in alkaline environment, International Journal of Hydrogen Energy, 44, 11734-11743, 2019.
  • 4. Ulas, B., Caglar A., Kivrak A. Kivrak H., Atomic molar ratio optimization of carbon nanotube supported PdAuCo catalysts for ethylene glycol and methanol electrooxidation in alkaline media, Chemical Papers, 73, 425-434, 2019.
  • 5. Ulas, B., Caglar A., Yılmaz S., Ecer U., Yilmaz Y., Sahan T., Kivrak H., Towards more active and stable PdAgCr electrocatalysts for formic acid electrooxidation: The role of optimization via response surface methodology, International Journal of Energy Research, 43, 8985-9000, 2019.
  • 6. Er, O.F., Caglar A., Kivrak H., Enhanced electrochemical glucose oxidation in alkaline solution over indium decorated carbon supported palladium nanoparticles, Materials Chemistry and Physics, 254, 123318, 2020. 7. Qiao, B., Yang T., Shi S., Jia N., Chen Y., Chen X., An Z. Chen P., Highly Active Hollow RhCu Nanoboxes toward Ethylene Glycol Electrooxidation, Small, 17, 2006534, 2021.
  • 8. Kaya, S., Caglar A. Kivrak H., Carbon nanotube supported Ga@PdAgCo anode catalysts for hydrazine electrooxidation in alkaline media, Fuel, 324, 124822, 2022.
  • 9. Bae, S., Park J., Hwang Y., Park J.-S., Lee J. Jeong B., Steam activation of Fe-N-C catalyst for advanced power performance of alkaline hydrazine fuel cells, Journal of Energy Chemistry, 64, 276-285, 2022.
  • 10. Crisafulli, R., de Barros V. V. S., Rodrigues de Oliveira F. E., de Araújo Rocha T., Zignani S., Spadaro L., Palella A., Dias J. A. Linares J. J., On the promotional effect of Cu on Pt for hydrazine electrooxidation in alkaline medium, Applied Catalysis B: Environmental, 236, 36-44, 2018.
  • 11. Xue, Q., Huang H., Zhu J.-Y., Zhao Y., Li F.-M., Chen P. Chen Y., Au@Rh core-shell nanowires for hydrazine electrooxidation, Applied Catalysis B: Environmental, 278, 119269, 2020.
  • 12. Deng, J., Li X., Imhanria S., Chen K., Deng X. Wang W., Molybdenum carbide-nitrogen doped carbon composites as effective non-precious electrocatalyst for direct hydrazine fuel cell, Electrochimica Acta, 384, 138417, 2021.
  • 13. Wu, L.-S., Dai H.-B., Wen X.-P. Wang P., Ni−Zn Alloy Nanosheets Arrayed on Nickel Foamas a Promising Catalyst for Electrooxidation of Hydrazine, ChemElectroChem, 4, 1944-1949, 2017.
  • 14. Firdous, N. Janjua N. K., CoPtx/γ-Al2O3 bimetallic nanoalloys as promising catalysts for hydrazine electrooxidation, Heliyon, 5, e01380, 2019.
  • 15. Wen, H., Gan L.-Y., Dai H.-B., Wen X.-P., Wu L.-S., Wu H. Wang P., In situ grown Ni phosphide nanowire array on Ni foam as a high-performance catalyst for hydrazine electrooxidation, Applied Catalysis B: Environmental, 241, 292-298, 2019.
  • 16. Kivrak, H. Aktas N., Promoting formic acid and ethylene glycol electrooxidation activity on Ga modified Pd based catalysts, International Journal of Hydrogen Energy, 47, 35265-35274, 2022.
  • 17. Zhang, X.-Y., Shi S. Yin H.-M., CuPd Alloy Oxide Nanobelts as Electrocatalyst Towards Hydrazine Oxidation, ChemElectroChem, 6, 1514-1519, 2019.
  • 18. Kim, J. D., Choi M. Y. Choi H. C., Graphene-oxide-supported Pt nanoparticles with high activity and stability for hydrazine electro-oxidation in a strong acidic solution, Applied Surface Science, 420, 700-706, 2017.
  • 19. Xue, Q., Huang H., Zhu J.-Y., Zhao Y., Li F.-M., Chen P. Chen Y., Au@Rh core-shell nanowires for hydrazine electrooxidation, Applied Catalysis B: Environmental, 278, 119269, 2020.
  • 20. Ömer, E., Cavak A., Aldemir A. Kıvrak H.D., Investigation of hydrazine electrooxidation performance of carbon nanotube supported Pd monometallic direct hydrazine fuel cell anode catalysts, MANAS Journal of Engineering, 8, 90-98, 2020.
  • 21. Zhang, Z., Tang P., Wen H. Wang P., Bicontinuous nanoporous Ni-Fe alloy as a highly active catalyst for hydrazine electrooxidation, Journal of Alloys and Compounds, 906, 164370, 2022.
  • 22. Er, O. F., Cavak A., Aldemir A. Kivrak H., Hydrazine electrooxidation activities of novel carbon nanotube supported Tin modified Palladium nanocatalysts, Surfaces and Interfaces, 28, 101680, 2022.
  • 23. Wan, Q., Liu Y., Wang Z., Wei W., Li B., Zou J. Yang N., Graphene nanoplatelets supported metal nanoparticles for electrochemical oxidation of hydrazine, Electrochemistry communications, 29, 29-32, 2013.
  • 24. Crisafulli, R., de Barros V.V.S., de Oliveira F.E.R., de Araújo Rocha T., Zignani S., Spadaro L., Palella A., Dias J.A. Linares J.J., On the promotional effect of Cu on Pt for hydrazine electrooxidation in alkaline medium, Applied Catalysis B: Environmental, 236, 36-44, 2018.
  • 25. Koçak, S., Aslışen B. Koçak Ç.C., Determination of Hydrazine at a Platinum Nanoparticle and Poly(Bromocresol Purple) Modified Carbon Nanotube Electrode, Analytical Letters, 49, 990-1003, 2016.
  • 26. Koçak, S. Aslışen B., Hydrazine oxidation at gold nanoparticles and poly (bromocresol purple) carbon nanotube modified glassy carbon electrode, Sensors and Actuators B: Chemical, 196, 610-618, 2014.
  • 27. Koçak, Ç. C., Altın A., Aslışen B. Koçak S., Electrochemical preparation and characterization of gold and platinum nanoparticles modified poly (taurine) film electrode and its application to hydrazine determination, International Journal of Electrochemical Science 11, 233-249, 2016.
  • 28. Hatip, M., Koçak S. Dursun Z., Simultaneous electrochemical determination of hydrazine and nitrite based on Au nanoparticles decorated on the poly (Nile Blue) modified carbon nanotube, Electroanalysis, 35, e202200132, 2023.
  • 29. Karaca, S. Koçak S., Fabrication and characterization of enhanced hydrazine electrochemical sensor based on gold nanoparticles decorated on the vanadium oxide, ruthenium oxide nanomaterials, and carbon nanotubes composites, Turkish Journal of Chemistry, 45, 1210-1223, 2021.
  • 30. Chen, L.-X., Jiang L.-Y., Wang A.-J., Chen Q.-Y. Feng J.-J., Simple synthesis of bimetallic AuPd dendritic alloyed nanocrystals with enhanced electrocatalytic performance for hydrazine oxidation reaction, Electrochimica Acta, 190, 872-878, 2016.
  • 31. Zhao, A., Sun H., Chen L., Huang Y. Lu X., Development of highly efficient and scalable free-standing electrodes for the fabrication of hydrazine-O2 fuel cell, Materials Research Express, 6, 085533, 2019.
  • 32. Ding, J., Kannan P., Wang P., Ji S., Wang H., Liu Q., Gai H., Liu F. Wang R., Synthesis of nitrogen-doped MnO/carbon network as an advanced catalyst for direct hydrazine fuel cells, Journal of Power Sources, 413, 209-215, 2019.
  • 33. Wang, W., Wang Y., Liu S., Yahia M., Dong Y. Lei Z., Carbon-supported phosphatized CuNi nanoparticle catalysts for hydrazine electrooxidation, International Journal of Hydrogen Energy, 44, 10637-10645, 2019.
  • 34. Chen, Y., Jiang H., Li D., Song H., Li Z., Sun X., Miao G. Zhao H., Improved field emission performance of carbon nanotube by introducing copper metallic particles, Nanoscale Research Letters, 6, 537, 2011.
  • 35. Safari, J. Gandomi-Ravandi S., Microwave-accelerated three components cyclocondensation in the synthesis of 2,3-dihydroquinazolin-4(1H)-ones promoted by Cu-CNTs, Journal of Molecular Catalysis A: Chemical, 371, 135-140, 2013.
  • 36. Asa G., The effect of Nicotinamide, the green inhibitor, to the corrosion of stainless steel in acidic media, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (3), 1431-1437, 2023.
  • 37. Okutan M., Electrochemical determination of ascorbic acid with thermally reduced graphene oxide, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (3), 1589-1602, 2020.
  • 38. Gürten İnal İ., Gökçe Y., Yağmur E., Aktaş Z., Investigation of supercapacitor performance of the biomass based activated carbon modified with nitric acid, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (3), 1243-1255, 2020.
  • 39. Li, X., Xu H. Yan W., Effects of twelve sodium dodecyl sulfate (SDS) on electro-catalytic performance and stability of PbO2 electrode, Journal of Alloys and Compounds, 718, 386-395, 2017.
  • 40. Soleimani-Lashkenari, M., Rezaei S., Fallah J. Rostami H., Electrocatalytic performance of Pd/PANI/TiO2 nanocomposites for methanol electrooxidation in alkaline media, Synthetic Metals, 235, 71-79, 2018.
  • 41. Hefnawy, M.A., Fadlallah S.A., El-Sherif R. M. Medany S.S., Nickel-manganese double hydroxide mixed with reduced graphene oxide electrocatalyst for efficient ethylene glycol electrooxidation and hydrogen evolution reaction, Synthetic Metals, 282, 116959, 2021.
  • 42. Zhang, D., Li X. Xiang Q., Triethanolamine as an efficient electrolyte additive for borohydride electrooxidation on Ni based catalyst, Materials Letters, 306, 130922, 2022.
  • 43. Caglar, A., Aktas N. Kivrak H., The role and effect of CdS-based TiO2 photocatalysts enhanced with a wetness impregnation method for efficient photocatalytic glucose electrooxidation, Surfaces and Interfaces, 33, 102250, 2022.
There are 42 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Aykut Çağlar 0000-0002-0681-1096

Early Pub Date May 17, 2024
Publication Date August 16, 2024
Submission Date April 4, 2023
Acceptance Date September 22, 2023
Published in Issue Year 2025 Volume: 40 Issue: 1

Cite

APA Çağlar, A. (2024). Hidrazin elektrooksidasyonu için gelişmiş karbon nanotüp destekli monometalik katalizörlerin sentezi ve karakterizasyonu. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 40(1), 155-164. https://doi.org/10.17341/gazimmfd.1277303
AMA Çağlar A. Hidrazin elektrooksidasyonu için gelişmiş karbon nanotüp destekli monometalik katalizörlerin sentezi ve karakterizasyonu. GUMMFD. August 2024;40(1):155-164. doi:10.17341/gazimmfd.1277303
Chicago Çağlar, Aykut. “Hidrazin Elektrooksidasyonu için gelişmiş Karbon nanotüp Destekli Monometalik katalizörlerin Sentezi Ve Karakterizasyonu”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40, no. 1 (August 2024): 155-64. https://doi.org/10.17341/gazimmfd.1277303.
EndNote Çağlar A (August 1, 2024) Hidrazin elektrooksidasyonu için gelişmiş karbon nanotüp destekli monometalik katalizörlerin sentezi ve karakterizasyonu. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40 1 155–164.
IEEE A. Çağlar, “Hidrazin elektrooksidasyonu için gelişmiş karbon nanotüp destekli monometalik katalizörlerin sentezi ve karakterizasyonu”, GUMMFD, vol. 40, no. 1, pp. 155–164, 2024, doi: 10.17341/gazimmfd.1277303.
ISNAD Çağlar, Aykut. “Hidrazin Elektrooksidasyonu için gelişmiş Karbon nanotüp Destekli Monometalik katalizörlerin Sentezi Ve Karakterizasyonu”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40/1 (August 2024), 155-164. https://doi.org/10.17341/gazimmfd.1277303.
JAMA Çağlar A. Hidrazin elektrooksidasyonu için gelişmiş karbon nanotüp destekli monometalik katalizörlerin sentezi ve karakterizasyonu. GUMMFD. 2024;40:155–164.
MLA Çağlar, Aykut. “Hidrazin Elektrooksidasyonu için gelişmiş Karbon nanotüp Destekli Monometalik katalizörlerin Sentezi Ve Karakterizasyonu”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 40, no. 1, 2024, pp. 155-64, doi:10.17341/gazimmfd.1277303.
Vancouver Çağlar A. Hidrazin elektrooksidasyonu için gelişmiş karbon nanotüp destekli monometalik katalizörlerin sentezi ve karakterizasyonu. GUMMFD. 2024;40(1):155-64.