Research Article
BibTex RIS Cite

Yapı duvarlarının ısıl yayınırlık ölçümleri için standart bir laboratuvar test yönteminin geliştirilmesi: Kızılötesi ısıl görüntüleme ve korumalı sıcak kutunun birlikte kullanımı

Year 2025, Volume: 40 Issue: 1, 529 - 540, 16.08.2024
https://doi.org/10.17341/gazimmfd.1296046

Abstract

Bir yapı duvarının ısıl yayınırlık değeri, bu duvarı oluşturan malzemelerin standartlarda ve/veya basılı yayınlarda listelenen termofiziksel özellikleri kullanılarak teorik olarak hesaplanabilmektedir. Bu listelerde, aynı kategoride yer alan yapı malzemeleri, farklı ısıl özellikleri ile tanımlanabilmekte; dolayısıyla teorik olarak hesaplanan ısıl yayınırlık değerleri, yanıltıcı olabilmektedir. Bu çalışmada, kızılötesi ısıl görüntüleme ve mahfazalı sıcak kutu yöntemleri bir arada kullanılarak yapı duvarlarının ısıl yayınırlık (α) değerini doğrudan ölçebilen bir deney düzeneği geliştirilmiştir. Pomza agregalı hafif beton blok ve harç ile 19cm kalınlığında bir duvar örneği hazırlanmış; bu duvar iklim koşulları takip edilen korunaklı sıcak ortam ve ardışık ısıl görüntüleme ile takip edilen soğuk ortam arasına yerleştirilmiştir. Örnek duvarın ısı yayınırlık değeri, zamana karşı sıcaklık değişimi verileri ve ilgili teorik denklem kullanılarak hesaplanmıştır. Bu duvarın standart laboratuvar testleri ile belirlenen ısıl özellikleri esas alınarak hesaplanan referans ısı yayınırlık değeri (αREF) 3,4014x10-7 m2/s’dir. Aynı duvarın, önerilen IRT-GHB deney düzeneği ile ölçülen ısıl yayınırlık değeri (αIRT) 3,3813x10-7 m2/s’dir. Yeni düzenek ile ölçülen değer, referans ısıl yayınırlık değeri ile benzerdir; sonuçlar, yeni deney düzeneğinin bir duvarın ısıl yayınırlık değerini doğrudan ölçebildiğini göstermiştir. Bu düzenek, mevcut ölçüm tekniklerine kıyasla zaman kazandıran ve ölçümler için mali yükü azaltan, bilimsel ve pratik bir analiz yönteminin temelini oluşturmaktadır.

Supporting Institution

Gazi Üniversitesi

Project Number

BAP 07/2018-21

Thanks

Bu çalışma, Gazi Üniversitesi BAP 07/2018-21 kodlu “Yapı duvarlarının ısıl yayınırlık (termal difüzivite) değerinin belirlenmesi için kızılötesi ısıl görüntülemenin kullanıldığı standart ölçüm yöntemlerinin geliştirilmesi” başlıklı proje ile desteklenmiştir.

References

  • 1. Carslaw, H. S., Jaeger, J. C., Conduction of Heat in Solids, 2nd edition, Oxford University Press, London, 1959.
  • 2. Bird, B. R., Stewart, W. E., Lightfoot, E. N., Transport Phenomena Second Edition, John Wiley and Sons, A.B.D., 2002.
  • 3. Çengel, Y., Isı ve kütle transferi pratik bir yaklaşım (3. Baskı), Güven Kitabevi, İzmir, 1-70, 2011.
  • 4. Poirier, D.R., Geiger, G.H., Transport Phenomena in Materials Processing, The Minerals, Metals & Materials Society, Springer International Publishers, Switzerland, 2016.
  • 5. Masri, E. Y., Rakha, T., A scoping review of non-destructive testing (NDT) techniques in building performance diagnostic inspections, Construction and Building Materials, 265 (2020), 120542, 2020.
  • 6. Tavukçuoğlu, A., Non-destructive testing for building diagnostics and monitoring: experience achieved with case studies, MATEC Web of Conferences 149, 01015, 2018.
  • 7. Balaras, C. A., Argiriou, A. A., Infrared thermography for building diagnostics. Energy and Buildings, 34, 171-183. 2002.
  • 8. Kylili, A., Fokaides, A.P., Christou, P., Kalogirou, A.S., Infrared thermography (IRT) applications for building diagnostics: A review, Applied Energy, 134 (2014) 531–549, 2014.
  • 9. Titman, D. J., Applications of thermography in non-destructive testing of structures, NDT & E International, 34, 149-154, 2001.
  • 10. Grinzato, E., Vavilov, V., Kauppinen, T., Quantitative infrared thermography in buildings, Energy and Building, 29, 1-9, 1998.
  • 11. Tavukçuoğlu, A., Caner-Saltık E. N., Quantitative infrared thermography and ultrasonic testing for in-situ assessment of Nemrut Dag stone statues, Cultural Heritage, 2014.
  • 12. Tavukçuoğlu, A., Çiçek, Pınar., Grinzato, E., Thermal analysis of an historical Turkish bath by quantitative IR thermography, Quantitative InfraRed Thermography Journal, 5 (2), 151-173, 2008.
  • 13. Tavukçuoğlu, A., Akevren, S., Grinzato, E., In-situ examination of structural cracks at historic masonry structures by quantitative infrared thermography and ultrasonic testing, Journal of Modern Optics, 57(18), 1779-1789, 2010.
  • 14. Danielski, I., Froling, M., Diagnosis of buildings thermal performance-a quantitative method using thermography under non-steady state heat flow. Energy Procedia, 83, 2015.
  • 15. François, A., Ibos, L., Feuillet, V., Meulemans, J., In situ measurement method for the quantification of the thermal transmittance of a non-homogeneous wall or a thermal bridge using an inverse technique and active infrared thermography, Energy & Buildings, 233, 2021.
  • 16. Albatici, R., Tonelli, A. M., Chiogna, M., A., Comprehensive experimental approach for the validation of quantitative infrared thermography in the evaluation of building thermal transmittance, Applied Energy, 141, 218–228, 2015.
  • 17. Fokaides, P.A., Kalogirou, S.A., Application of infrared thermography for the determination of the overall heat transfer coefficient (U-Value) in building envelopes, Applied Energy, 88, 4358–43, 2011.
  • 18. Tuğla, R., Tavukçuoğlu, A., Arslan, M., Examination of thermal properties and failures of brick walls by the use of infrared thermography and hot box method, International Conference & Exhibition on Application of efficient & renewable energy technologies in low-cost buildings and construction, Ankara, Türkiye, 180-199, 2013.
  • 19. Sayın, M., Tavukçuoğlu, A., Quantitative assessment of thermal transmittance in building walls by in-situ Infrared Thermography, In A. Tavil and O.C. Celik (Eds.), Interdisciplinary Perspectives for Future Building Envelopes - ICBEST 2017 International Conference on Building Envelope Systems and Technologies, İstanbul Technical University, İstanbul, Türkiye, 202-215, 15-18 May, 2017.
  • 20. Bison, P. G., Marinetti, S., Mazzoldi, A., Grinzato, E., Bressan, C., Cross-comparison of thermal diffusivity measurements by thermal methods. Infrared Phys Technol, 43, 127–32, 2002.
  • 21. Parker, W. J., Jenkins, R. J., Butler, C. P., Abbott, G. L., Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity, Journal of Applied Physics, 32 (9), 1679–1684, 1961.
  • 22. ASTM E1461-13, Standard test method for thermal diffusivity by the flash method 1. American Society for Testing and Materials, USA, 2013.
  • 23. Maglic, K.D., Taylor, R.E., The apparatus for thermal diffusivity measurement by the laser pulse method, compendium of thermophysical property measurement methods, Springer Science+Business Media, New York, 1992.
  • 24. ASTM C714-17, Standard test method for thermal diffusivity of carbon and graphite by a thermal pulse method. American Society for Testing and Materials, USA, 2017.
  • 25. ASTM E2585–09, Standard Practice for Thermal Diffusivity by the Flash Method, American Society for Testing and Materials, USA, 2015.
  • 26. Corbin, S.F., Turriff, D.M., Thermal Diffusivity by the Laser Flash Method. In Characterization of Materials, Kaufmann, E.N., Editör: John Wiley and Sons, Inc. New York, NY, USA, 1–10, 2012.
  • 27. Santos, W. N., Mummery, P., Wallwork A., Thermal diffusivity of polymers by the laser flash technique, Polymer Testing, 24, 628–634, 2005.
  • 28. Cernuschi, F., Bison P., Moscatelli, A., Microstructural characterization of porous thermal barrier coatings by laser flash technique, Acta Materialia, 57, 3460–3471, 2009.
  • 29. Cernuschi, F., Bison, P. G., Figari, A., Marinetti, S., Grinzato, E., Thermal diffusivity measurements by photothermal and thermographic techniques, International Journal of Thermophysics, 25 (2), 2004.
  • 30. ASTM E2582–21, Standard Practice for Infrared Flash Thermography of Composite Panels and Repair Patches Used in Aerospace Applications1. American Society for Testing and Materials, USA, 2021.
  • 31. Grinzato, E., Bison, P.G., Marinetti, S., Monitoring of the ancient buildings by the thermal method, Journal of Cultural Heritage, 3, 21–29, 2002.
  • 32. Salazar, A., Colom, M., Mendioroz, A., Laser-spot step-heating thermography to measure the thermal diffusivity of solids, International Journal of Thermal Sciences 170, 107124, 2021.
  • 33. Martin, C.S., Torres, C., Esparza, D., Bonilla, D., Thermal diffusivity measurements of spherical samples using active infrared thermography, Infrared Physics & Technology, 55, 469-474, 2012.
  • 34. Vozar, L., Hohenauer, W., Flash method of measuring the thermal diffusivity A review, High Temperatures- High Pressures, 2003/2004, 35/36, 253- 264, 2004.
  • 35. Taylor, R. E., Kelsic, B. H., Parameters governing thermal diffusivity measurements of unidirectional fiber-reinforced composites, ASME J Heat Transfer, 108, 161-165, 1986.
  • 36. Balageas, D. L., Luc, A. M., Transient thermal behavior of directional reinforced composites-applicability limits of homogeneous property model. AIAA journal, 24 (1), 109-114, 1986.
  • 37. TS EN ISO 8990, Thermal insulation-Determination of steady-State thermal transmission properties-Calibrated and guarded hot box, Turkish Standards Institution (TSE), Ankara, Turkiye, 2002.
  • 38. TS 825, Thermal insulation requirements for buildings, Turkish Standards Institution, Ankara, Turkiye, 1-80, 2013.
  • 39. TS EN 1745, Masonry and masonry products - Methods for determining design thermal values, Turkish Standards Institution, Ankara, Turkiye, 1-47, 2020.
  • 40. Horak, H. L., York, D. A., Hunn, B. D., Peterson, J. L., Roschke, M. A., Tucker, E. F., DOE-2 Reference Manual, 2, Los Alamos Scientific Laboratory, 1979.
  • 41. Clarke, J. A., Yaneske, P. P., Pinney, A. A., The Harmonisation of Thermal Properties of Building Materials, Watford, UK: Building Research Establishment, 1991.
  • 42. Clarke, J. A., Energy Simulation in Building Design, Routledge, 2007.
  • 43. Integrated Environmental Solutions Limited (IESVE). Specific Heat Capacity. https://help.iesve.com/ve2018/table_6_thermal_conductivity__specific_heat_capacity_and_density.htm?ms=IQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAI%3D&st=MA%3D%3D&sct=NDgz&mw=MjQw, Yayın Erişim Tarihi: 17.02.2023.
  • 44. Netbims Ürün Kataloğu. http://netbims.com/katologw/mobile/index.html#p=5, Erişim Tarihi: 17.02.2023.
  • 45. RILEM, Tentative Recommendations, Commissio –25–Pem, Recommended Test to Measure the Deterioration of Stone and to Assess the Effectiveness of Treatment Methods, Materials and Structures, 13 (73), 173-25, 1980.
  • 46. TS 4048, Determination of Specific Heat of Thermal Insulating Materials, Turkish Standards Institution, Ankara, Turkiye, 1-11, 2013.

Development of a standard laboratory testing method for thermal diffusivity measurements of building walls: Combined use of Infrared thermography and guarded hot box

Year 2025, Volume: 40 Issue: 1, 529 - 540, 16.08.2024
https://doi.org/10.17341/gazimmfd.1296046

Abstract

The thermal diffusivity value of a building wall can be calculated theoretically by using the thermophysical properties of its materials listed in standards and literature. In these lists, building materials in the same category can be defined by different thermal properties; therefore, the theoretically-calculated thermal diffusivity values can be misleading. In this study, an experimental setup was developed that can directly measure the thermal diffusivity (α) value of building walls by the combined use of infrared thermography and guarded hot box methods. A 19cm-thick wall sample made of lightweight concrete block with pumice aggregate and mortar was prepared; this wall is positioned between a controlled warm ambient on its one side and a cold ambient on the other side, where its surfaces were monitored by sequential IR imaging. The thermal diffusivity value of the sample wall was calculated using the data showing temperature change versus time and the relevant theoretical equation. The reference thermal diffusivity value (αREF) of the sample wall, calculated using thermal properties measured by standard laboratory tests, is 3.4014x10-7 m2/s. The thermal diffusivity (αIRT) of the same wall, measured with the proposed IRT-GHB experimental setup, is 3.3813x10-7 m2/s. The value measured with that new setup is similar to the reference thermal diffusivity value. The results show that the new experimental setup can directly measure the thermal diffusivity of a wall. Compared to the existing ones, the proposed experimental setup presents a measurement technique that saves time and sets the basis of a scientific, practical, and more economical analytical method.

Project Number

BAP 07/2018-21

References

  • 1. Carslaw, H. S., Jaeger, J. C., Conduction of Heat in Solids, 2nd edition, Oxford University Press, London, 1959.
  • 2. Bird, B. R., Stewart, W. E., Lightfoot, E. N., Transport Phenomena Second Edition, John Wiley and Sons, A.B.D., 2002.
  • 3. Çengel, Y., Isı ve kütle transferi pratik bir yaklaşım (3. Baskı), Güven Kitabevi, İzmir, 1-70, 2011.
  • 4. Poirier, D.R., Geiger, G.H., Transport Phenomena in Materials Processing, The Minerals, Metals & Materials Society, Springer International Publishers, Switzerland, 2016.
  • 5. Masri, E. Y., Rakha, T., A scoping review of non-destructive testing (NDT) techniques in building performance diagnostic inspections, Construction and Building Materials, 265 (2020), 120542, 2020.
  • 6. Tavukçuoğlu, A., Non-destructive testing for building diagnostics and monitoring: experience achieved with case studies, MATEC Web of Conferences 149, 01015, 2018.
  • 7. Balaras, C. A., Argiriou, A. A., Infrared thermography for building diagnostics. Energy and Buildings, 34, 171-183. 2002.
  • 8. Kylili, A., Fokaides, A.P., Christou, P., Kalogirou, A.S., Infrared thermography (IRT) applications for building diagnostics: A review, Applied Energy, 134 (2014) 531–549, 2014.
  • 9. Titman, D. J., Applications of thermography in non-destructive testing of structures, NDT & E International, 34, 149-154, 2001.
  • 10. Grinzato, E., Vavilov, V., Kauppinen, T., Quantitative infrared thermography in buildings, Energy and Building, 29, 1-9, 1998.
  • 11. Tavukçuoğlu, A., Caner-Saltık E. N., Quantitative infrared thermography and ultrasonic testing for in-situ assessment of Nemrut Dag stone statues, Cultural Heritage, 2014.
  • 12. Tavukçuoğlu, A., Çiçek, Pınar., Grinzato, E., Thermal analysis of an historical Turkish bath by quantitative IR thermography, Quantitative InfraRed Thermography Journal, 5 (2), 151-173, 2008.
  • 13. Tavukçuoğlu, A., Akevren, S., Grinzato, E., In-situ examination of structural cracks at historic masonry structures by quantitative infrared thermography and ultrasonic testing, Journal of Modern Optics, 57(18), 1779-1789, 2010.
  • 14. Danielski, I., Froling, M., Diagnosis of buildings thermal performance-a quantitative method using thermography under non-steady state heat flow. Energy Procedia, 83, 2015.
  • 15. François, A., Ibos, L., Feuillet, V., Meulemans, J., In situ measurement method for the quantification of the thermal transmittance of a non-homogeneous wall or a thermal bridge using an inverse technique and active infrared thermography, Energy & Buildings, 233, 2021.
  • 16. Albatici, R., Tonelli, A. M., Chiogna, M., A., Comprehensive experimental approach for the validation of quantitative infrared thermography in the evaluation of building thermal transmittance, Applied Energy, 141, 218–228, 2015.
  • 17. Fokaides, P.A., Kalogirou, S.A., Application of infrared thermography for the determination of the overall heat transfer coefficient (U-Value) in building envelopes, Applied Energy, 88, 4358–43, 2011.
  • 18. Tuğla, R., Tavukçuoğlu, A., Arslan, M., Examination of thermal properties and failures of brick walls by the use of infrared thermography and hot box method, International Conference & Exhibition on Application of efficient & renewable energy technologies in low-cost buildings and construction, Ankara, Türkiye, 180-199, 2013.
  • 19. Sayın, M., Tavukçuoğlu, A., Quantitative assessment of thermal transmittance in building walls by in-situ Infrared Thermography, In A. Tavil and O.C. Celik (Eds.), Interdisciplinary Perspectives for Future Building Envelopes - ICBEST 2017 International Conference on Building Envelope Systems and Technologies, İstanbul Technical University, İstanbul, Türkiye, 202-215, 15-18 May, 2017.
  • 20. Bison, P. G., Marinetti, S., Mazzoldi, A., Grinzato, E., Bressan, C., Cross-comparison of thermal diffusivity measurements by thermal methods. Infrared Phys Technol, 43, 127–32, 2002.
  • 21. Parker, W. J., Jenkins, R. J., Butler, C. P., Abbott, G. L., Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity, Journal of Applied Physics, 32 (9), 1679–1684, 1961.
  • 22. ASTM E1461-13, Standard test method for thermal diffusivity by the flash method 1. American Society for Testing and Materials, USA, 2013.
  • 23. Maglic, K.D., Taylor, R.E., The apparatus for thermal diffusivity measurement by the laser pulse method, compendium of thermophysical property measurement methods, Springer Science+Business Media, New York, 1992.
  • 24. ASTM C714-17, Standard test method for thermal diffusivity of carbon and graphite by a thermal pulse method. American Society for Testing and Materials, USA, 2017.
  • 25. ASTM E2585–09, Standard Practice for Thermal Diffusivity by the Flash Method, American Society for Testing and Materials, USA, 2015.
  • 26. Corbin, S.F., Turriff, D.M., Thermal Diffusivity by the Laser Flash Method. In Characterization of Materials, Kaufmann, E.N., Editör: John Wiley and Sons, Inc. New York, NY, USA, 1–10, 2012.
  • 27. Santos, W. N., Mummery, P., Wallwork A., Thermal diffusivity of polymers by the laser flash technique, Polymer Testing, 24, 628–634, 2005.
  • 28. Cernuschi, F., Bison P., Moscatelli, A., Microstructural characterization of porous thermal barrier coatings by laser flash technique, Acta Materialia, 57, 3460–3471, 2009.
  • 29. Cernuschi, F., Bison, P. G., Figari, A., Marinetti, S., Grinzato, E., Thermal diffusivity measurements by photothermal and thermographic techniques, International Journal of Thermophysics, 25 (2), 2004.
  • 30. ASTM E2582–21, Standard Practice for Infrared Flash Thermography of Composite Panels and Repair Patches Used in Aerospace Applications1. American Society for Testing and Materials, USA, 2021.
  • 31. Grinzato, E., Bison, P.G., Marinetti, S., Monitoring of the ancient buildings by the thermal method, Journal of Cultural Heritage, 3, 21–29, 2002.
  • 32. Salazar, A., Colom, M., Mendioroz, A., Laser-spot step-heating thermography to measure the thermal diffusivity of solids, International Journal of Thermal Sciences 170, 107124, 2021.
  • 33. Martin, C.S., Torres, C., Esparza, D., Bonilla, D., Thermal diffusivity measurements of spherical samples using active infrared thermography, Infrared Physics & Technology, 55, 469-474, 2012.
  • 34. Vozar, L., Hohenauer, W., Flash method of measuring the thermal diffusivity A review, High Temperatures- High Pressures, 2003/2004, 35/36, 253- 264, 2004.
  • 35. Taylor, R. E., Kelsic, B. H., Parameters governing thermal diffusivity measurements of unidirectional fiber-reinforced composites, ASME J Heat Transfer, 108, 161-165, 1986.
  • 36. Balageas, D. L., Luc, A. M., Transient thermal behavior of directional reinforced composites-applicability limits of homogeneous property model. AIAA journal, 24 (1), 109-114, 1986.
  • 37. TS EN ISO 8990, Thermal insulation-Determination of steady-State thermal transmission properties-Calibrated and guarded hot box, Turkish Standards Institution (TSE), Ankara, Turkiye, 2002.
  • 38. TS 825, Thermal insulation requirements for buildings, Turkish Standards Institution, Ankara, Turkiye, 1-80, 2013.
  • 39. TS EN 1745, Masonry and masonry products - Methods for determining design thermal values, Turkish Standards Institution, Ankara, Turkiye, 1-47, 2020.
  • 40. Horak, H. L., York, D. A., Hunn, B. D., Peterson, J. L., Roschke, M. A., Tucker, E. F., DOE-2 Reference Manual, 2, Los Alamos Scientific Laboratory, 1979.
  • 41. Clarke, J. A., Yaneske, P. P., Pinney, A. A., The Harmonisation of Thermal Properties of Building Materials, Watford, UK: Building Research Establishment, 1991.
  • 42. Clarke, J. A., Energy Simulation in Building Design, Routledge, 2007.
  • 43. Integrated Environmental Solutions Limited (IESVE). Specific Heat Capacity. https://help.iesve.com/ve2018/table_6_thermal_conductivity__specific_heat_capacity_and_density.htm?ms=IQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAI%3D&st=MA%3D%3D&sct=NDgz&mw=MjQw, Yayın Erişim Tarihi: 17.02.2023.
  • 44. Netbims Ürün Kataloğu. http://netbims.com/katologw/mobile/index.html#p=5, Erişim Tarihi: 17.02.2023.
  • 45. RILEM, Tentative Recommendations, Commissio –25–Pem, Recommended Test to Measure the Deterioration of Stone and to Assess the Effectiveness of Treatment Methods, Materials and Structures, 13 (73), 173-25, 1980.
  • 46. TS 4048, Determination of Specific Heat of Thermal Insulating Materials, Turkish Standards Institution, Ankara, Turkiye, 1-11, 2013.
There are 46 citations in total.

Details

Primary Language Turkish
Subjects Architecture, Engineering
Journal Section Makaleler
Authors

Rukiye Koçkar Tuğla 0000-0001-9731-4206

Ayse Tavukcuoglu 0000-0002-1529-9186

Salih Yazıcıoğlu 0000-0002-6767-2026

Project Number BAP 07/2018-21
Early Pub Date July 22, 2024
Publication Date August 16, 2024
Submission Date June 4, 2023
Acceptance Date May 4, 2024
Published in Issue Year 2025 Volume: 40 Issue: 1

Cite

APA Koçkar Tuğla, R., Tavukcuoglu, A., & Yazıcıoğlu, S. (2024). Yapı duvarlarının ısıl yayınırlık ölçümleri için standart bir laboratuvar test yönteminin geliştirilmesi: Kızılötesi ısıl görüntüleme ve korumalı sıcak kutunun birlikte kullanımı. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 40(1), 529-540. https://doi.org/10.17341/gazimmfd.1296046
AMA Koçkar Tuğla R, Tavukcuoglu A, Yazıcıoğlu S. Yapı duvarlarının ısıl yayınırlık ölçümleri için standart bir laboratuvar test yönteminin geliştirilmesi: Kızılötesi ısıl görüntüleme ve korumalı sıcak kutunun birlikte kullanımı. GUMMFD. August 2024;40(1):529-540. doi:10.17341/gazimmfd.1296046
Chicago Koçkar Tuğla, Rukiye, Ayse Tavukcuoglu, and Salih Yazıcıoğlu. “Yapı duvarlarının ısıl yayınırlık ölçümleri için Standart Bir Laboratuvar Test yönteminin geliştirilmesi: Kızılötesi ısıl görüntüleme Ve Korumalı sıcak Kutunun Birlikte kullanımı”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40, no. 1 (August 2024): 529-40. https://doi.org/10.17341/gazimmfd.1296046.
EndNote Koçkar Tuğla R, Tavukcuoglu A, Yazıcıoğlu S (August 1, 2024) Yapı duvarlarının ısıl yayınırlık ölçümleri için standart bir laboratuvar test yönteminin geliştirilmesi: Kızılötesi ısıl görüntüleme ve korumalı sıcak kutunun birlikte kullanımı. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40 1 529–540.
IEEE R. Koçkar Tuğla, A. Tavukcuoglu, and S. Yazıcıoğlu, “Yapı duvarlarının ısıl yayınırlık ölçümleri için standart bir laboratuvar test yönteminin geliştirilmesi: Kızılötesi ısıl görüntüleme ve korumalı sıcak kutunun birlikte kullanımı”, GUMMFD, vol. 40, no. 1, pp. 529–540, 2024, doi: 10.17341/gazimmfd.1296046.
ISNAD Koçkar Tuğla, Rukiye et al. “Yapı duvarlarının ısıl yayınırlık ölçümleri için Standart Bir Laboratuvar Test yönteminin geliştirilmesi: Kızılötesi ısıl görüntüleme Ve Korumalı sıcak Kutunun Birlikte kullanımı”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40/1 (August 2024), 529-540. https://doi.org/10.17341/gazimmfd.1296046.
JAMA Koçkar Tuğla R, Tavukcuoglu A, Yazıcıoğlu S. Yapı duvarlarının ısıl yayınırlık ölçümleri için standart bir laboratuvar test yönteminin geliştirilmesi: Kızılötesi ısıl görüntüleme ve korumalı sıcak kutunun birlikte kullanımı. GUMMFD. 2024;40:529–540.
MLA Koçkar Tuğla, Rukiye et al. “Yapı duvarlarının ısıl yayınırlık ölçümleri için Standart Bir Laboratuvar Test yönteminin geliştirilmesi: Kızılötesi ısıl görüntüleme Ve Korumalı sıcak Kutunun Birlikte kullanımı”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 40, no. 1, 2024, pp. 529-40, doi:10.17341/gazimmfd.1296046.
Vancouver Koçkar Tuğla R, Tavukcuoglu A, Yazıcıoğlu S. Yapı duvarlarının ısıl yayınırlık ölçümleri için standart bir laboratuvar test yönteminin geliştirilmesi: Kızılötesi ısıl görüntüleme ve korumalı sıcak kutunun birlikte kullanımı. GUMMFD. 2024;40(1):529-40.