Research Article
BibTex RIS Cite

Testing and comparison of different control methods on a gimbal system

Year 2025, Volume: 40 Issue: 1, 219 - 236, 16.08.2024
https://doi.org/10.17341/gazimmfd.1375758

Abstract

Gimbal systems serve as critical mechanisms for carrying payloads and accurately aligning them with specific lines of sight. Designing controllers for these gimbal systems necessitates robustness against external disturbances and variations in system parameters. Various control methods have been explored in existing literature to address this challenge. In the scope of this study, we investigate the performance of four distinct control strategies—Proportional-Integral (PI) control, Self-Tuning PI control, Integral Action Linear-Quadratic regulator (IA-LQR), and Relay Sliding Mode Control based on the Input-Output Model (RSMC-IO)—as speed controllers for a gimbal system. We assess their efficacy through both simulation-based experiments and real-world applications, offering a comprehensive analysis of their outcomes. Beyond speed control, we extend our investigation to include cascade position control, employing a PD control structure in the outer loop. Our study focuses on evaluating the performance of these diverse control structures when subjected to disturbances and variations in model parameters. To the best of our knowledge, this research marks the first attempt to apply the RSMC-IO approach to gimbal systems, enhancing our understanding of control strategies in this context and offering valuable insights into their practical implications.

References

  • 1. Hilkert J. M., Inertially stabilized platform technology, concepts and principles, IEEE Control Systems Magazine, 28 (5), 25-39, 2008.
  • 2. Kürkçü B. and Kasnakoğlu C., Estimation of unknown disturbances in gimbal systems, Applied Mechanics and Materials, 789, 951–956, 2015.
  • 3. Jia W., Cao Y. and Cao j., Self-tuning Control Method Based on Online Identification for Robot Servo System, 2022 China Automation Congress (CAC), Xiamen, China, 3471-3476, 25-27 November, 2022.
  • 4. Hwang S. and Carmichael R., Adaptive Tracking Control for a DC Motor, The First IEEE Regional Conference on Aerospace Control Systems, Westlake Village-USA, 231–235, 25-27 May, 1993.
  • 5. Utkin V. and Chang H., Sliding mode control on electro-mechanical systems, Mathematical Problems in Engineering (Math. Probl. Eng.), 8, 100–105, 2002.
  • 6. Kumbay Yıldız Ş., Relay sliding mode control based on the input-output model, Turkish Journal of Electrical Engineering & Computer Sciences, 2609-2626, 2016.
  • 7. Hernandex-Lerma O., Laura-Guarachi L.R., Continuous-Time Deterministic Systems, An Introduction to Optimal Control theory, 1st edition, Springer, Switzerland, 127-170, 2023.
  • 8. Ahmad M. H., Osman K., Zakeri M. F. M, and Samsudin S. I., Mathematical Modelling and PID Controller Design for Two DOF Gimbal System, 2021 IEEE 17th International Colloquium on Signal Processing and Its Applications (CSPA), Langkawi, 138–143, 5-6 March, 2021.
  • 9. Solaiappan S. K. and Anitha G., A novel self-tuning fuzzy logic-based pid controllers for two-axis gimbal stabilization in a missile seeker, International Journal of Aerospace Engineering (Int. J. Aerosp. Eng.) 2021, 1–12, 2021.
  • 10. Seong K., Kang H., Yeo B., and Lee H., The Stabilization Loop Design for a Two-Axis Gimbal System Using LQG/LTR Controller, 2006 SICE-ICASE International Joint Conference, Busan, 755–759, 18-21 October, 2006.
  • 11. Espinosa C., Mayen K., Lizarraga M., Romero S. S. H., and Lozano R., Sliding mode line-of-sight stabilization of a two-axes gimbal system, 2015 workshop on research, education and development of unmanned aerial systems (red-uas), Cancun, Mexico, 431–438, 23-25 November, 2015.
  • 12. Battistel A., Oliveira T. R., and Rodrigues V. H. P., Adaptive Control of an Unbalanced Two-Axis Gimbal for Application to Inertially Stabilized Platforms, 19th International Conference on Advanced Robotics (ICAR), Belo Horizonte, 99–104, 2-6 December, 2019.
  • 13. Lee S. and Jung S., RLS model identification-based robust control for gimbal axis of control moment gyroscope, 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). Munich, 584–589, 3-7 July, 2017.
  • 14. Ogata K., PID Controllers and Modified PID Controllers, Modern Control Engineering, 4th edition, Prentice Hall PTR, New Jersey - USA, 567-647, 2001.
  • 15. Aström K. J. and Hagglund T., Process Models, PID Controllers-Theory, Design, and Tuning, 2nd edition, Instrument Society of America, USA, 5-58, 1995.
  • 16. Gawthrop P., Least Squares Identification, Continuous-Time Self-Tuning Control Volume I – Design, 1st edition, Short Run Press Ltd, Great Britain, 140-161, 1987.
  • 17. Demircioğlu H, Continuous-Time Self-Tuning Algorithms, Ph.D. thesis, University of Glasgow, Faculty of Engineering, Glasgow, 1989.
  • 18. Aström K. J., Theory and applications of adaptive control, IFAC Proceedings, 14 (2),737–748, 1981.
  • 19. Hassan A., Sadek H., Bazzi A. and Daher N., LQI Control for Dual-input DC-DC Converter, 2020 IEEE Transportation Electrification Conference & Expo (ITEC), Chicago, USA, 556-560, 23-26 June, 2020
  • 20. Kumbay Yildiz, S, Demircioğlu, H, Relay sliding mode control based on the input-output model, Turkish Journal of Electrical Engineering and Computer Sciences, 24 (4), 2609-2626, 2016.
  • 21. Tsypkin Y.Z., Relay Control Systems. Cambridge University Press. Translated by C. Constanda, 1984.
  • 22. Poyrazoğlu, E., Detailed modeling and control of a 2-DOF gimbal system, Master’s thesis, Middle East Technical University, Ankara, 2017.

Farklı denetim yöntemlerinin bir gimbal sistemi üzerinde sınanması ve karşılaştırılması

Year 2025, Volume: 40 Issue: 1, 219 - 236, 16.08.2024
https://doi.org/10.17341/gazimmfd.1375758

Abstract

Gimbal sistemleri, faydalı yükleri taşımak ve bunları belirli bakış hatlarına doğru şekilde hizalamak için kritik mekanizmalar olarak hizmet eder. Bu sistemler için denetleyici tasarımı, dış etkenlere ve sistem parametrelerindeki değişikliklere karşı gürbüzlük gerektirir. Bu zorluğun üstesinden gelmek için mevcut literatürde çeşitli kontrol yöntemleri araştırılmıştır. Bu çalışma kapsamında gimbal sisteminin için hız denetimi için dört farklı kontrol stratejisinin başarımı irdelenmektedir: Oransal-Tümlevsel (OTüm) denetim, Özayarlamalı OTüm Denetim, Tümlev Etkili Doğrusal Karesel Denetim (TE-DKD) ve Giriş Çıkış Modeline Dayalı Röle Kayan Kipli Denetim (GÇ-RKKD). Bu yaklaşımların etkinliği hem benzetimler hem de gerçek uygulamaları aracılığıyla değerlendirilmiş ve sonuçları kapsamlı bir şekilde irdelenmiştir. Hız denetimine ek olarak, dış döngüde bir Oransal Türevsel (OTür) denetim yapısı kullanılarak ardışık konum denetimi de gerçekleştirilmiştir. Çalışma, model parametrelerindeki değişimler ve bozulmalar etkisinde bu denetim yapılarının başarımını değerlendirmeye odaklanmaktadır. RSMC-IO yönteminin bir gimbal sistemine uygulandığı bir çalışma bilgimiz dahilinde bulunmamaktadır. Bu bağlamda bu çalışma denetim stratejileri anlayışımızı geliştirmekte ve bunların pratik sonuçlarına ilişkin önemli katkılar sunmaktadır.

References

  • 1. Hilkert J. M., Inertially stabilized platform technology, concepts and principles, IEEE Control Systems Magazine, 28 (5), 25-39, 2008.
  • 2. Kürkçü B. and Kasnakoğlu C., Estimation of unknown disturbances in gimbal systems, Applied Mechanics and Materials, 789, 951–956, 2015.
  • 3. Jia W., Cao Y. and Cao j., Self-tuning Control Method Based on Online Identification for Robot Servo System, 2022 China Automation Congress (CAC), Xiamen, China, 3471-3476, 25-27 November, 2022.
  • 4. Hwang S. and Carmichael R., Adaptive Tracking Control for a DC Motor, The First IEEE Regional Conference on Aerospace Control Systems, Westlake Village-USA, 231–235, 25-27 May, 1993.
  • 5. Utkin V. and Chang H., Sliding mode control on electro-mechanical systems, Mathematical Problems in Engineering (Math. Probl. Eng.), 8, 100–105, 2002.
  • 6. Kumbay Yıldız Ş., Relay sliding mode control based on the input-output model, Turkish Journal of Electrical Engineering & Computer Sciences, 2609-2626, 2016.
  • 7. Hernandex-Lerma O., Laura-Guarachi L.R., Continuous-Time Deterministic Systems, An Introduction to Optimal Control theory, 1st edition, Springer, Switzerland, 127-170, 2023.
  • 8. Ahmad M. H., Osman K., Zakeri M. F. M, and Samsudin S. I., Mathematical Modelling and PID Controller Design for Two DOF Gimbal System, 2021 IEEE 17th International Colloquium on Signal Processing and Its Applications (CSPA), Langkawi, 138–143, 5-6 March, 2021.
  • 9. Solaiappan S. K. and Anitha G., A novel self-tuning fuzzy logic-based pid controllers for two-axis gimbal stabilization in a missile seeker, International Journal of Aerospace Engineering (Int. J. Aerosp. Eng.) 2021, 1–12, 2021.
  • 10. Seong K., Kang H., Yeo B., and Lee H., The Stabilization Loop Design for a Two-Axis Gimbal System Using LQG/LTR Controller, 2006 SICE-ICASE International Joint Conference, Busan, 755–759, 18-21 October, 2006.
  • 11. Espinosa C., Mayen K., Lizarraga M., Romero S. S. H., and Lozano R., Sliding mode line-of-sight stabilization of a two-axes gimbal system, 2015 workshop on research, education and development of unmanned aerial systems (red-uas), Cancun, Mexico, 431–438, 23-25 November, 2015.
  • 12. Battistel A., Oliveira T. R., and Rodrigues V. H. P., Adaptive Control of an Unbalanced Two-Axis Gimbal for Application to Inertially Stabilized Platforms, 19th International Conference on Advanced Robotics (ICAR), Belo Horizonte, 99–104, 2-6 December, 2019.
  • 13. Lee S. and Jung S., RLS model identification-based robust control for gimbal axis of control moment gyroscope, 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). Munich, 584–589, 3-7 July, 2017.
  • 14. Ogata K., PID Controllers and Modified PID Controllers, Modern Control Engineering, 4th edition, Prentice Hall PTR, New Jersey - USA, 567-647, 2001.
  • 15. Aström K. J. and Hagglund T., Process Models, PID Controllers-Theory, Design, and Tuning, 2nd edition, Instrument Society of America, USA, 5-58, 1995.
  • 16. Gawthrop P., Least Squares Identification, Continuous-Time Self-Tuning Control Volume I – Design, 1st edition, Short Run Press Ltd, Great Britain, 140-161, 1987.
  • 17. Demircioğlu H, Continuous-Time Self-Tuning Algorithms, Ph.D. thesis, University of Glasgow, Faculty of Engineering, Glasgow, 1989.
  • 18. Aström K. J., Theory and applications of adaptive control, IFAC Proceedings, 14 (2),737–748, 1981.
  • 19. Hassan A., Sadek H., Bazzi A. and Daher N., LQI Control for Dual-input DC-DC Converter, 2020 IEEE Transportation Electrification Conference & Expo (ITEC), Chicago, USA, 556-560, 23-26 June, 2020
  • 20. Kumbay Yildiz, S, Demircioğlu, H, Relay sliding mode control based on the input-output model, Turkish Journal of Electrical Engineering and Computer Sciences, 24 (4), 2609-2626, 2016.
  • 21. Tsypkin Y.Z., Relay Control Systems. Cambridge University Press. Translated by C. Constanda, 1984.
  • 22. Poyrazoğlu, E., Detailed modeling and control of a 2-DOF gimbal system, Master’s thesis, Middle East Technical University, Ankara, 2017.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Control Theoryand Applications
Journal Section Makaleler
Authors

Muharrem Mandacı 0009-0006-6729-8552

Şölen Kumbay Yıldız 0000-0003-4042-2374

Early Pub Date May 20, 2024
Publication Date August 16, 2024
Submission Date October 13, 2023
Acceptance Date February 23, 2024
Published in Issue Year 2025 Volume: 40 Issue: 1

Cite

APA Mandacı, M., & Yıldız, Ş. K. (2024). Farklı denetim yöntemlerinin bir gimbal sistemi üzerinde sınanması ve karşılaştırılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 40(1), 219-236. https://doi.org/10.17341/gazimmfd.1375758
AMA Mandacı M, Yıldız ŞK. Farklı denetim yöntemlerinin bir gimbal sistemi üzerinde sınanması ve karşılaştırılması. GUMMFD. August 2024;40(1):219-236. doi:10.17341/gazimmfd.1375758
Chicago Mandacı, Muharrem, and Şölen Kumbay Yıldız. “Farklı Denetim yöntemlerinin Bir Gimbal Sistemi üzerinde sınanması Ve karşılaştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40, no. 1 (August 2024): 219-36. https://doi.org/10.17341/gazimmfd.1375758.
EndNote Mandacı M, Yıldız ŞK (August 1, 2024) Farklı denetim yöntemlerinin bir gimbal sistemi üzerinde sınanması ve karşılaştırılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40 1 219–236.
IEEE M. Mandacı and Ş. K. Yıldız, “Farklı denetim yöntemlerinin bir gimbal sistemi üzerinde sınanması ve karşılaştırılması”, GUMMFD, vol. 40, no. 1, pp. 219–236, 2024, doi: 10.17341/gazimmfd.1375758.
ISNAD Mandacı, Muharrem - Yıldız, Şölen Kumbay. “Farklı Denetim yöntemlerinin Bir Gimbal Sistemi üzerinde sınanması Ve karşılaştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40/1 (August 2024), 219-236. https://doi.org/10.17341/gazimmfd.1375758.
JAMA Mandacı M, Yıldız ŞK. Farklı denetim yöntemlerinin bir gimbal sistemi üzerinde sınanması ve karşılaştırılması. GUMMFD. 2024;40:219–236.
MLA Mandacı, Muharrem and Şölen Kumbay Yıldız. “Farklı Denetim yöntemlerinin Bir Gimbal Sistemi üzerinde sınanması Ve karşılaştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 40, no. 1, 2024, pp. 219-36, doi:10.17341/gazimmfd.1375758.
Vancouver Mandacı M, Yıldız ŞK. Farklı denetim yöntemlerinin bir gimbal sistemi üzerinde sınanması ve karşılaştırılması. GUMMFD. 2024;40(1):219-36.