Araştırma Makalesi
BibTex RIS Kaynak Göster

Face recognition system based on image transmission via LoRa in areas without Internet access

Yıl 2025, Cilt: 40 Sayı: 3, 1559 - 1572
https://doi.org/10.17341/gazimmfd.1434752

Öz

In environmental monitoring studies, monitoring image data and transferring the image to a specific center point for this purpose is very important. Transmitting visual data from difficult regions where there is no internet access via the LoRa network poses difficulties due to the large size of the image data and the high energy requirement for transmission. In this study, rather than transmitting each image; It is aimed to overcome this difficulty in an optimum way by first analyzing the images and transmitting the risky results via LoRa. The study is based on the fact that when a foreign face is detected by performing face recognition with the Haar classifier, the LoRa node in the sending position transmits this data and the foreign face image to the central LoRa node. Before the image is transmitted, it is compressed with the Huffman Algorithm, one of the compression techniques, and divided into packets. After transmission, the packets are combined and opened with the same technique. The study is important in terms of ensuring environmental security in environments where there is no internet access, with LoRa technology, which requires low energy and has the ability to communicate over kilometers long distances. In our study, it has been demonstrated, supported by real environment experiments, that LoRa can be used in environmental monitoring studies aiming to ensure environmental security and control for areas where there is no internet access at long distances, except for risky applications that cannot tolerate data loss. The results of the study show that image transmission with LoRa is possible, although it has difficulties due to its large size.

Proje Numarası

FDK-2023-12503

Kaynakça

  • 1. Görmüş S., Aydın H., Ulutaş G., Security for the internet of things: a survey of existing mechanisms, protocols and open research issues, Journal of the Faculty of Engineering and Architecture of Gazi University, 33 (4), 1247-1272, 2018.
  • 2. Genç Y., Afacan, E., Identity-Based Encryption in the Internet of Things, 29th Signal Processing and Communications Applications Conference (SIU), Istanbul, Turkey, 1-4, 2021.
  • 3. Yılmaz Kaya, B., Adem, A., Dağdeviren, M., Dijital Ergonomi, Akıllı Fabrikalar Ve İşbirlikçi Robot Uygulamaları, 28. Ulusal Ergonomi Kongresi, Eskişehir, Turkey, 16 Ekim 2022.
  • 4. Lionel Sujay Vailshery. Number of IoT connected devices worldwide 2019-2023, with forecasts to 2030. Statista. https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/. Yayın tarihi Temmuz 27, 2023. Erişim tarihi Aralık 10, 2023.
  • 5. Semtech. Smart Cities Transformed Using LoRa Technology. Semtech White Paper. Yayın tarihi: Kasım 2016. Erişim tarihi: Aralık 12, 2023.
  • 6. Torres, N., Pinto, P., Lopes, S.I., Security Vulnerabilities in LPWANs-An Attack Vector Analysis for the IoT Ecosystem. Applied Sciences, 11 (7), 3176, 2021.
  • 7. Devare, M., Low Power Communication Protocols for IoT-Enabled Applications, Protocols and Applications for the Industrial Internet of Things, 64-94, 2018.
  • 8. Cerchecci, M., Luti, F., Mecocci, A., Parrino, S., Peruzzi, G., Pozzebon, A., A Low Power IoT Sensor Node Architecture for Waste Management Within Smart Cities Context, Sensors, 18 (4),1282, 2018.
  • 9. SX1272/3/6/7/8: LoRa Modem Designers Guide. Semtech Co., Camarillo, AN1200.13, 2013.
  • 10. Sheshalevich, V., LPWAN - Low-power wide-area network. communication for the Internet of Things. Bezopasnost informacionnyh tehnology, 24 (3), 7-17, 2017.
  • 11. Mdhaffar, A., Chaari, T., Larbi, K., Jmaiel, M., Freisleben, B., IoT-based health monitoring via LoRaWAN, IEEE EUROCON 2017 -17th International Conference on Smart Technologies, Ohrid, Macedonia, 519-524, 2017.
  • 12. Pham, C., Low-cost, low-power and long-range image sensor for visual surveillance, In Proceedings of the 2nd Workshop on Experiences in the Design and Implementation of Smart Objects, New York-USA, 35-40, 3-7 Ekim, 2016.
  • 13. Kirichek, R., Pham, V.D., Kolechkin, A., Al-Bahri, M., Paramonov, A., Transfer of Multimedia Data via LoRa, In Internet of Things, Smart Spaces and Next Generation Networks and Systems, Springer: Cham, Switzerland, 10531, 708-720, 2017.
  • 14. Jebril, A.H., Sali, A., Ismail, A., Rasid, M.F.A., Overcoming Limitations of LoRa Physical Layer in Image Transmission, Sensors, 18 (10), 3257, 2018.
  • 15. Fan, C., Ding, Q., A novel wireless visual sensor network protocol based on LoRa modulation, International Journal of Distributed Sensor Networks, 14 (3), 2018.
  • 16. Pham, C., Robust CSMA for long-range LoRa transmissions with image sensing devices, 2018 Wireless Days (WD), Dubai, United Arab Emirates, 116-122, 3-5 April, 2018.
  • 17. Wei, C.-C., Chen, S.-T., Su, P.-Y., Image transmission using LoRa Technology with various spreading factors, 2nd World Symposium on Communication Engineering (WSCE), Nagoya, Japan, 48-52, 20-23 December, 2019.
  • 18. Chen, T., Eager, D., Makaroff, D., Efficient image transmission using LoRa Technology in agricultural monitoring IoT systems, International Conference on iThings and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Atlanta, Georgia, USA, 937-944, 14-17 July, 2019.
  • 19. Ji, M., Yoon, J., Choo, J., Jang, M., Smith, A., LoRa-based Visual Monitoring Scheme for Agriculture IoT, 2019 IEEE Sensors Applications Symposium (SAS), Sophia Antipolis, France, 1-6, 11-13 March, 2019.
  • 20. Brazhenenko, M., Shevchenko, V., Bychkov, O., Jekov, B., Petrova, P., Kovatcheva, E., Adopting machine learning for images transferred with LoRaWAN, Information & Security: An International Journal, 47 (2), 172–186, 2020.
  • 21. Juliando, D. E., Putra, R. G., Sartika, D. A., Yudha, R. G. P., Study of Lora Module Ra-02 For Long Range, Low Power, Low Rate Picture Transfer Applications, Journal of Physics: Conference Series, 1845 (1), 012054, 2021.
  • 22. Zinonos, Z., Gkelios, S., Khalifeh, A. F., Hadjimitsis, D. G., Boutalis, Y. S., Chatzichristofis, S. A., Grape Leaf Diseases Identification System Using Convolutional Neural Networks and LoRa Technology, IEEE Access, 10, 122-133, 2022.
  • 23. Chaparro B., F., Pérez, M., Mendez, D., A Communication Framework for Image Transmission through LPWAN Technology, Electronics, 11 (11), 1764, 2022.
  • 24. Parameswari, P., Rajathi, N., Harshanaa, K. J., LoRa Based Framework to Detect Whitefly Infestation in Coconut Trees, International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA), Coimbatore, India, 1-5, 8-9 October, 2021.
  • 25. Staikopoulos, A., Kanakaris, V., Papakostas, G. A., Image Transmission via LoRa Networks-A Survey, IEEE 5th International Conference on Image, Vision and Computing (ICIVC), Beijing, China, 150-154, 10-12 July, 2020.
  • 26. Aref, M., Sikora, A., Free space range measurements with Semtech Lora™ technology, 2nd International Symposium on Wireless Systems within the Conferences on Intelligent Data Acquisition and Advanced Computing Systems, Odessa, Ukraine, 19-23, 11-12 September, 2014.
  • 27. Codeluppi, G., Cilfone, A., Davoli, L., Ferrari, G., LoRaFarM: A LoRaWAN-based smart farming modular IoT architecture, Sensors, 20 (7), 2028, 2020.
  • 28. Yim, D., Chung, J., Cho, Y., Song, H., Jin, D., Kim, S., Ko, S., Smith, A., Riegsecker, A., An experimental LoRa performance evaluation in tree farm, IEEE Sensors Applications Symposium (SAS), Seoul, Korea (South), 1-6, 12-14 March, 2018.
  • 29. Li, Y., Han, S., Yang, L., Wang, F.-Y., Zhang, H., LoRa on the Move: Performance Evaluation of LoRa in V2X Communications, 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 1107-1111, 26-30 June, 2018.
  • 30. Ouya, A., De Aragon, B. M., Bouette, C., Habault, G., Montavont, N., Papadopoulos, G. Z., An efficient electric vehicle charging architecture based on lora communication, IEEE International Conference on Smart Grid Communications, 381-386, 23-26 October, 2017.
  • 31. Babayiğit, B., Doğan, F., LoRa Communication Evaluation Based Building Density in Ankara City, International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Ankara, Türkiye, 1-4, 9-11 June, 2022.
  • 32. Adelantado, F., Vilajosana, X., Tuset-Peiro, P., Martinez, B., Melia-Segui, J., Watteyne, T., Understanding the limits of LoRaWAN, IEEE Communications Magazine, 55 (9), 34-40, 2017.
  • 33. Lora Alliance, A technical overview of LoRa and LoRaWAN, Technical Marketing Workgroup 1.0., https://lora-developers.semtech.com/uploads/documents/files/LoRa_and_LoRaWAN-A_Tech_Overview-Downloadable.pdf, Yayın tarihi Aralık, 2019. Erişim tarihi: Aralık, 2023.
  • 34. Ertürk, M. A., Aydın, M. A., Büyükakkaşlar, M. T., Evirgen, H., A survey on LoRaWAN architecture, protocol and Technologies, Future Internet, 11 (10), 216, 2019.
  • 35. Wei, C.-C., Su, P.-Y., Chang, C.-C., Chang, K.-C., A study on LoRa Dynamic Image Transmission, 2021 IEEE 4th International Conference on Knowledge Innovation and Invention (ICKII), Taichung, Taiwan, 10-13, 2021.
  • 36. Faber, M. J., van der Zwaag, K. M., dos Santos, W. G. V., Rocha, H. R. d. O., Segatto, M. E. V., Silva, J. A. L., A Theoretical and Experimental Evaluation on the Performance of LoRa Technology, IEEE Sensors Journal, 20, 9480-9489, 2020.
  • 37. ETSI, ETSI TR 103 526 V.1.1.1 Technical Report, Erişim Linki: https://www.etsi.org/deliver/etsi_tr/103500_103599/103526/01.01.01_60/tr_103526v010101p.pdf, Erişim Tarihi: Ağustos 2024.
  • 38. The Things Network, Duty Cycle, Erişim Linki: https://www.thethingsnetwork.org/docs/lorawan/duty-cycle, Erişim Tarihi: 10 Mayıs 2024.
  • 39. Pham, C., QoS for Long-Range Wireless Sensors Under Duty-Cycle Regulations with Shared Activity Time Usage, ACM Transactions Sensor Networks, 12 (4), 31, 2016.
  • 40. Uyanık, H., Ovatman, T., An investigation of the transmission success in Lorawan enabled IoT-HAPS communication, Internet of Things, 20, 100611, 2022.
  • 41. Şahiner, M. K., Ayhan, E., Önder, M., Yeni Sınır Güvenliği Anlayışında Yapay Zekâ Yönetişimi: Fırsatlar ve Tehditler, Ulisa: Journal of International Studies, 5 (2), 83-95, 2021.
  • 42. He, K., Zhang, X., Ren, S., Sun, J., Deep Residual Learning for Image Recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 770-778, 2016.
  • 43. İnal Atik İ., Pneumonia detection on chest x-ray images using residual convolutional neural network, Journal of the Faculty of Engineering and Architecture of Gazi University, 39 (3), 1719-1732, 2024.
  • 44. Özçınar B., Kurnaz S., Artık Ağ Tabanlı Uygulamayla Gözlerde Bulunan Bakterilerin Sınıflandırılması, bbmd, 17 (1), 67-74, 2024.
  • 45. Berksan M., Ilgaz Sümer S., Sümer E., Gait-based gender recognition using convolutional neural network for hyper-personalized marketing, Journal of the Faculty of Engineering and Architecture of Gazi University, 40 (1), 603-614, 2024.
  • 46. Schroff, F., Kalenichenko, D., Philbin, J., FaceNet: A unified embedding for face recognition and clustering, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, 815-823, 2015.
  • 47. Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A., VGGFace2: A Dataset for Recognising Faces across Pose and Age, 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), 67–74, 2018.
  • 48. Aşşık M.M., Oral M., Determination of canonical Huffman codeword lengths by evolution strategies, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (2), 771-780, 2022.
  • 49. Lu, W.-W., Gough, M. P., A fast-adaptive Huffman coding algorithm, IEEE Transactions on Communications, 41 (4), 535-538, 1993.
  • 50. Waveshare, SX1262 868M LoRa HAT, Erişim Linki: https://www.waveshare.com/wiki/SX1262_868M_LoRa_HAT, Erişim Tarihi: Ağustos 2024.

İnternet erişimsiz alanlarda LoRa ile görüntü aktarımına dayanan yüz tanıma sistemi

Yıl 2025, Cilt: 40 Sayı: 3, 1559 - 1572
https://doi.org/10.17341/gazimmfd.1434752

Öz

Çevre izlemeye yönelik çalışmalarda görüntü verilerinin izlenmesi ve bu amaçla görüntünün belirli bir merkez noktaya aktarımı oldukça önemlidir. İnternet erişiminin olmadığı zor bölgelerden görsel verilerin LoRa ağı ile iletilmesi, görüntü verilerinin boyutunun büyüklüğü ve iletimde fazla enerji gerektirmeleri sebebiyle, zorluklar içermektedir. Bu çalışmada, her görüntünün iletimindense; önce görüntülerin analizinin yapılıp riskli sonuçların, LoRa ile iletilmesi sağlanarak bu zorluğun optimum bir şekilde üstesinden gelinmesini amaçlanmıştır. Çalışma, Haar sınıflandırıcı ile yüz tanıma gerçekleştirilerek, yabancı yüz tespit edildiğinde gönderici konumdaki LoRa düğümünün, merkez LoRa düğümüne bu veriyi ve yabancı yüz görüntüsünü iletmesine dayalıdır. Görüntü iletilmeden önce sıkıştırma tekniklerinden Huffman Algoritması ile sıkıştırılmakta ve paketlere bölünmekte; iletim sonrası paketler birleştirilerek aynı teknikle açılmaktadır. Çalışma, internet erişiminin olmadığı ortamlarda çevre güvenliğinin, hem düşük enerji gerektirmesi hem de kilometrelerce uzun mesafelerde haberleşebilmesi yeteneklerine sahip LoRa teknolojisi ile gerçekleştirilmesi açısından önem arz etmektedir. Çalışmamızda riskli ve veri kayıplarını tolere edemeyen uygulamalar dışında, LoRa’nın, uzak mesafede internet erişiminin olmadığı alanlar için ortam güvenliğinin ve kontrolünün sağlanmasını amaçlayan çevre izleme çalışmalarında kullanılabileceği, gerçek ortam deneyleri ile de desteklenerek ortaya koyulmuştur. Çalışmanın sonuçları, büyük boyutlarından dolayı zorlukları olsa da LoRa ile görüntü iletiminin mümkün olduğunu göstermektedir.

Destekleyen Kurum

Erciyes Üniversitesi Bilimsel Araştırma Projeleri Birimi

Proje Numarası

FDK-2023-12503

Kaynakça

  • 1. Görmüş S., Aydın H., Ulutaş G., Security for the internet of things: a survey of existing mechanisms, protocols and open research issues, Journal of the Faculty of Engineering and Architecture of Gazi University, 33 (4), 1247-1272, 2018.
  • 2. Genç Y., Afacan, E., Identity-Based Encryption in the Internet of Things, 29th Signal Processing and Communications Applications Conference (SIU), Istanbul, Turkey, 1-4, 2021.
  • 3. Yılmaz Kaya, B., Adem, A., Dağdeviren, M., Dijital Ergonomi, Akıllı Fabrikalar Ve İşbirlikçi Robot Uygulamaları, 28. Ulusal Ergonomi Kongresi, Eskişehir, Turkey, 16 Ekim 2022.
  • 4. Lionel Sujay Vailshery. Number of IoT connected devices worldwide 2019-2023, with forecasts to 2030. Statista. https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/. Yayın tarihi Temmuz 27, 2023. Erişim tarihi Aralık 10, 2023.
  • 5. Semtech. Smart Cities Transformed Using LoRa Technology. Semtech White Paper. Yayın tarihi: Kasım 2016. Erişim tarihi: Aralık 12, 2023.
  • 6. Torres, N., Pinto, P., Lopes, S.I., Security Vulnerabilities in LPWANs-An Attack Vector Analysis for the IoT Ecosystem. Applied Sciences, 11 (7), 3176, 2021.
  • 7. Devare, M., Low Power Communication Protocols for IoT-Enabled Applications, Protocols and Applications for the Industrial Internet of Things, 64-94, 2018.
  • 8. Cerchecci, M., Luti, F., Mecocci, A., Parrino, S., Peruzzi, G., Pozzebon, A., A Low Power IoT Sensor Node Architecture for Waste Management Within Smart Cities Context, Sensors, 18 (4),1282, 2018.
  • 9. SX1272/3/6/7/8: LoRa Modem Designers Guide. Semtech Co., Camarillo, AN1200.13, 2013.
  • 10. Sheshalevich, V., LPWAN - Low-power wide-area network. communication for the Internet of Things. Bezopasnost informacionnyh tehnology, 24 (3), 7-17, 2017.
  • 11. Mdhaffar, A., Chaari, T., Larbi, K., Jmaiel, M., Freisleben, B., IoT-based health monitoring via LoRaWAN, IEEE EUROCON 2017 -17th International Conference on Smart Technologies, Ohrid, Macedonia, 519-524, 2017.
  • 12. Pham, C., Low-cost, low-power and long-range image sensor for visual surveillance, In Proceedings of the 2nd Workshop on Experiences in the Design and Implementation of Smart Objects, New York-USA, 35-40, 3-7 Ekim, 2016.
  • 13. Kirichek, R., Pham, V.D., Kolechkin, A., Al-Bahri, M., Paramonov, A., Transfer of Multimedia Data via LoRa, In Internet of Things, Smart Spaces and Next Generation Networks and Systems, Springer: Cham, Switzerland, 10531, 708-720, 2017.
  • 14. Jebril, A.H., Sali, A., Ismail, A., Rasid, M.F.A., Overcoming Limitations of LoRa Physical Layer in Image Transmission, Sensors, 18 (10), 3257, 2018.
  • 15. Fan, C., Ding, Q., A novel wireless visual sensor network protocol based on LoRa modulation, International Journal of Distributed Sensor Networks, 14 (3), 2018.
  • 16. Pham, C., Robust CSMA for long-range LoRa transmissions with image sensing devices, 2018 Wireless Days (WD), Dubai, United Arab Emirates, 116-122, 3-5 April, 2018.
  • 17. Wei, C.-C., Chen, S.-T., Su, P.-Y., Image transmission using LoRa Technology with various spreading factors, 2nd World Symposium on Communication Engineering (WSCE), Nagoya, Japan, 48-52, 20-23 December, 2019.
  • 18. Chen, T., Eager, D., Makaroff, D., Efficient image transmission using LoRa Technology in agricultural monitoring IoT systems, International Conference on iThings and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Atlanta, Georgia, USA, 937-944, 14-17 July, 2019.
  • 19. Ji, M., Yoon, J., Choo, J., Jang, M., Smith, A., LoRa-based Visual Monitoring Scheme for Agriculture IoT, 2019 IEEE Sensors Applications Symposium (SAS), Sophia Antipolis, France, 1-6, 11-13 March, 2019.
  • 20. Brazhenenko, M., Shevchenko, V., Bychkov, O., Jekov, B., Petrova, P., Kovatcheva, E., Adopting machine learning for images transferred with LoRaWAN, Information & Security: An International Journal, 47 (2), 172–186, 2020.
  • 21. Juliando, D. E., Putra, R. G., Sartika, D. A., Yudha, R. G. P., Study of Lora Module Ra-02 For Long Range, Low Power, Low Rate Picture Transfer Applications, Journal of Physics: Conference Series, 1845 (1), 012054, 2021.
  • 22. Zinonos, Z., Gkelios, S., Khalifeh, A. F., Hadjimitsis, D. G., Boutalis, Y. S., Chatzichristofis, S. A., Grape Leaf Diseases Identification System Using Convolutional Neural Networks and LoRa Technology, IEEE Access, 10, 122-133, 2022.
  • 23. Chaparro B., F., Pérez, M., Mendez, D., A Communication Framework for Image Transmission through LPWAN Technology, Electronics, 11 (11), 1764, 2022.
  • 24. Parameswari, P., Rajathi, N., Harshanaa, K. J., LoRa Based Framework to Detect Whitefly Infestation in Coconut Trees, International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA), Coimbatore, India, 1-5, 8-9 October, 2021.
  • 25. Staikopoulos, A., Kanakaris, V., Papakostas, G. A., Image Transmission via LoRa Networks-A Survey, IEEE 5th International Conference on Image, Vision and Computing (ICIVC), Beijing, China, 150-154, 10-12 July, 2020.
  • 26. Aref, M., Sikora, A., Free space range measurements with Semtech Lora™ technology, 2nd International Symposium on Wireless Systems within the Conferences on Intelligent Data Acquisition and Advanced Computing Systems, Odessa, Ukraine, 19-23, 11-12 September, 2014.
  • 27. Codeluppi, G., Cilfone, A., Davoli, L., Ferrari, G., LoRaFarM: A LoRaWAN-based smart farming modular IoT architecture, Sensors, 20 (7), 2028, 2020.
  • 28. Yim, D., Chung, J., Cho, Y., Song, H., Jin, D., Kim, S., Ko, S., Smith, A., Riegsecker, A., An experimental LoRa performance evaluation in tree farm, IEEE Sensors Applications Symposium (SAS), Seoul, Korea (South), 1-6, 12-14 March, 2018.
  • 29. Li, Y., Han, S., Yang, L., Wang, F.-Y., Zhang, H., LoRa on the Move: Performance Evaluation of LoRa in V2X Communications, 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 1107-1111, 26-30 June, 2018.
  • 30. Ouya, A., De Aragon, B. M., Bouette, C., Habault, G., Montavont, N., Papadopoulos, G. Z., An efficient electric vehicle charging architecture based on lora communication, IEEE International Conference on Smart Grid Communications, 381-386, 23-26 October, 2017.
  • 31. Babayiğit, B., Doğan, F., LoRa Communication Evaluation Based Building Density in Ankara City, International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Ankara, Türkiye, 1-4, 9-11 June, 2022.
  • 32. Adelantado, F., Vilajosana, X., Tuset-Peiro, P., Martinez, B., Melia-Segui, J., Watteyne, T., Understanding the limits of LoRaWAN, IEEE Communications Magazine, 55 (9), 34-40, 2017.
  • 33. Lora Alliance, A technical overview of LoRa and LoRaWAN, Technical Marketing Workgroup 1.0., https://lora-developers.semtech.com/uploads/documents/files/LoRa_and_LoRaWAN-A_Tech_Overview-Downloadable.pdf, Yayın tarihi Aralık, 2019. Erişim tarihi: Aralık, 2023.
  • 34. Ertürk, M. A., Aydın, M. A., Büyükakkaşlar, M. T., Evirgen, H., A survey on LoRaWAN architecture, protocol and Technologies, Future Internet, 11 (10), 216, 2019.
  • 35. Wei, C.-C., Su, P.-Y., Chang, C.-C., Chang, K.-C., A study on LoRa Dynamic Image Transmission, 2021 IEEE 4th International Conference on Knowledge Innovation and Invention (ICKII), Taichung, Taiwan, 10-13, 2021.
  • 36. Faber, M. J., van der Zwaag, K. M., dos Santos, W. G. V., Rocha, H. R. d. O., Segatto, M. E. V., Silva, J. A. L., A Theoretical and Experimental Evaluation on the Performance of LoRa Technology, IEEE Sensors Journal, 20, 9480-9489, 2020.
  • 37. ETSI, ETSI TR 103 526 V.1.1.1 Technical Report, Erişim Linki: https://www.etsi.org/deliver/etsi_tr/103500_103599/103526/01.01.01_60/tr_103526v010101p.pdf, Erişim Tarihi: Ağustos 2024.
  • 38. The Things Network, Duty Cycle, Erişim Linki: https://www.thethingsnetwork.org/docs/lorawan/duty-cycle, Erişim Tarihi: 10 Mayıs 2024.
  • 39. Pham, C., QoS for Long-Range Wireless Sensors Under Duty-Cycle Regulations with Shared Activity Time Usage, ACM Transactions Sensor Networks, 12 (4), 31, 2016.
  • 40. Uyanık, H., Ovatman, T., An investigation of the transmission success in Lorawan enabled IoT-HAPS communication, Internet of Things, 20, 100611, 2022.
  • 41. Şahiner, M. K., Ayhan, E., Önder, M., Yeni Sınır Güvenliği Anlayışında Yapay Zekâ Yönetişimi: Fırsatlar ve Tehditler, Ulisa: Journal of International Studies, 5 (2), 83-95, 2021.
  • 42. He, K., Zhang, X., Ren, S., Sun, J., Deep Residual Learning for Image Recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 770-778, 2016.
  • 43. İnal Atik İ., Pneumonia detection on chest x-ray images using residual convolutional neural network, Journal of the Faculty of Engineering and Architecture of Gazi University, 39 (3), 1719-1732, 2024.
  • 44. Özçınar B., Kurnaz S., Artık Ağ Tabanlı Uygulamayla Gözlerde Bulunan Bakterilerin Sınıflandırılması, bbmd, 17 (1), 67-74, 2024.
  • 45. Berksan M., Ilgaz Sümer S., Sümer E., Gait-based gender recognition using convolutional neural network for hyper-personalized marketing, Journal of the Faculty of Engineering and Architecture of Gazi University, 40 (1), 603-614, 2024.
  • 46. Schroff, F., Kalenichenko, D., Philbin, J., FaceNet: A unified embedding for face recognition and clustering, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, 815-823, 2015.
  • 47. Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A., VGGFace2: A Dataset for Recognising Faces across Pose and Age, 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), 67–74, 2018.
  • 48. Aşşık M.M., Oral M., Determination of canonical Huffman codeword lengths by evolution strategies, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (2), 771-780, 2022.
  • 49. Lu, W.-W., Gough, M. P., A fast-adaptive Huffman coding algorithm, IEEE Transactions on Communications, 41 (4), 535-538, 1993.
  • 50. Waveshare, SX1262 868M LoRa HAT, Erişim Linki: https://www.waveshare.com/wiki/SX1262_868M_LoRa_HAT, Erişim Tarihi: Ağustos 2024.
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Görüntü İşleme, Ağ Oluşturma ve İletişim, Siberfizik Sistemleri ve Nesnelerin İnterneti, Gömülü Sistemler
Bölüm Makaleler
Yazarlar

Bilal Babayiğit 0000-0002-2923-5263

Fatma Yarlı Doğan 0000-0002-5755-7753

Proje Numarası FDK-2023-12503
Erken Görünüm Tarihi 15 Nisan 2025
Yayımlanma Tarihi
Gönderilme Tarihi 10 Şubat 2024
Kabul Tarihi 25 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 40 Sayı: 3

Kaynak Göster

APA Babayiğit, B., & Yarlı Doğan, F. (2025). İnternet erişimsiz alanlarda LoRa ile görüntü aktarımına dayanan yüz tanıma sistemi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 40(3), 1559-1572. https://doi.org/10.17341/gazimmfd.1434752
AMA Babayiğit B, Yarlı Doğan F. İnternet erişimsiz alanlarda LoRa ile görüntü aktarımına dayanan yüz tanıma sistemi. GUMMFD. Nisan 2025;40(3):1559-1572. doi:10.17341/gazimmfd.1434752
Chicago Babayiğit, Bilal, ve Fatma Yarlı Doğan. “İnternet erişimsiz Alanlarda LoRa Ile görüntü aktarımına Dayanan yüz tanıma Sistemi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40, sy. 3 (Nisan 2025): 1559-72. https://doi.org/10.17341/gazimmfd.1434752.
EndNote Babayiğit B, Yarlı Doğan F (01 Nisan 2025) İnternet erişimsiz alanlarda LoRa ile görüntü aktarımına dayanan yüz tanıma sistemi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40 3 1559–1572.
IEEE B. Babayiğit ve F. Yarlı Doğan, “İnternet erişimsiz alanlarda LoRa ile görüntü aktarımına dayanan yüz tanıma sistemi”, GUMMFD, c. 40, sy. 3, ss. 1559–1572, 2025, doi: 10.17341/gazimmfd.1434752.
ISNAD Babayiğit, Bilal - Yarlı Doğan, Fatma. “İnternet erişimsiz Alanlarda LoRa Ile görüntü aktarımına Dayanan yüz tanıma Sistemi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40/3 (Nisan 2025), 1559-1572. https://doi.org/10.17341/gazimmfd.1434752.
JAMA Babayiğit B, Yarlı Doğan F. İnternet erişimsiz alanlarda LoRa ile görüntü aktarımına dayanan yüz tanıma sistemi. GUMMFD. 2025;40:1559–1572.
MLA Babayiğit, Bilal ve Fatma Yarlı Doğan. “İnternet erişimsiz Alanlarda LoRa Ile görüntü aktarımına Dayanan yüz tanıma Sistemi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 40, sy. 3, 2025, ss. 1559-72, doi:10.17341/gazimmfd.1434752.
Vancouver Babayiğit B, Yarlı Doğan F. İnternet erişimsiz alanlarda LoRa ile görüntü aktarımına dayanan yüz tanıma sistemi. GUMMFD. 2025;40(3):1559-72.