Araştırma Makalesi
BibTex RIS Kaynak Göster

Yeşil binalardaki düşey boşluklarda yangın güvenliği optimizasyonu: Duman tahliyesi ve sıcaklık kontrolü için performans ve duyarlılık analizi

Yıl 2025, Cilt: 40 Sayı: 3, 1543 - 1558
https://doi.org/10.17341/gazimmfd.1578525

Öz

Bu çalışmada, yeşil bina tasarımlarında düşey iç boşluklarda oluşan baca etkisine bağlı hareket eden hava akımları ve bu akımların doğrudan etkilediği dumanın tahliyesi ile bina içi sıcaklık kontrolünü sağlamak amacıyla performansa dayalı bir yangın tasarımı yaklaşımı geliştirilmiştir. Bu kapsamda, duman tahliyesinin hedeflendiği tasarım tahliye boşluğu içeren bir prototip bina modeli tasarlanmıştır. Modelde, boşluk genişliği ve yüksekliği, boşluktaki hava giriş ve çıkışı ile odalardaki pencere açıklıklarının genişliği ve yüksekliği olmak üzere altı değişkene dayalı tasarım senaryoları oluşturulmuştur. Parametrik analiz yöntemiyle her değişken sıralı olarak analiz edilip en iyi sonuç elde edildikten sonra bir sonraki değişkenin analizine geçilmiştir. Bu analizler sonucunda tasarım değişkenlerinin duman yayılımı ve sıcaklık kontrolü üzerindeki etkileri belirlenmiştir. Ardından, çok değişkenli regresyon analizi ile değişkenlerin ortam sıcaklığı üzerindeki etki düzeyleri istatistiksel olarak değerlendirilmiştir. Sonuç olarak duman tahliyesi ve ortam sıcaklığı kontrolü için tasarım parametrelerinin katkı düzeylerinin yaklaşık olarak aynı olduğu belirlenmiştir. Ancak boşluk yüksekliği duman tahliyesi için etkili olurken ortam sıcaklığını anlamlı olarak etkilemediği saptanmıştır. Çalışmada elde edilen regresyon denklemiyle model doğruluğu %99 oranında sağlanarak, elde edilen bulguların güvenilirliği teyit edilmiştir.

Kaynakça

  • 1. Hadjisophocleous G. and Fu X., Effect of make-up air velocity and air curtain on smoke layer interface height with asymmetric fire in atrium fires, Journal of Building Engineering, 25, 100933, 2019.
  • 2. Ayala P., Cantizano A. and Rein G., Factors affecting the make-up air and their ınfluence on the dynamics of atrium fires, Fire Technology, 54, 1067–1091, 2018.
  • 3. Lei W., Zhang Z., Tai C., Zhang L., and Zhao S., Scaled experiment and numerical study on the effect of a novel makeup air system on smoke control in atrium fires, Journal of Building Engineering, 95, 110237, 2024.
  • 4. Ivanov M. L., Peng W., Wang Q., and Chow W. K. Sustainable smoke extraction system for atrium: a numerical study, Sustainability, 13, 7406-7428, 2021.
  • 5. Lin W., Liu Q., Zhang M., Cai B., Wang H., Chen, J., and Zhou Y., Numerical simulation on smoke temperature distribution in a large indoor pedestrian street fire, Fire, 6 (3), 115-133, 2023.
  • 6. Montes C. G., Rojas S., Kaiser A. S., and Viedma A., Numerical model and validation experiments of atrium enclosure fire in a new fire test facility, Building and Environment, 43 (11), 1912–1928, 2008.
  • 7. Montes C. G., Rojas S., Viedma A., and Rein G., Experimental data and numerical modelling of 1.3 and 2.3 MW fires in a 20 m cubic atrium, Building and Environment, 44 (9), 1827–1839, 2009.
  • 8. Al-Waked R., Nasif M., Groenhout N., and Partridge L., Natural ventilation of residential building Atrium under fire scenario, Case Studies in Thermal Engineering, 26, 101041-10105, 2021. https://doi.org/10.1016/j.csite.2021.101041
  • 9. Qin T. X., Yincheng G., Chan C. K., and Lin W. Y., Numerical simulation of the spread of smoke in an atrium under fire scenario, Building and Environment, 44, 56-65. 2009. https://doi.org/10.1016/j.buildenv.2008.01.014.
  • 10. Xu X. Y., Wang Z., Liu X., Ji C., Yu N., Zhu H., Li, J., and Wang, P., Study on fire smoke control in super-high building atrium, Procedia Engineering, 211, 844-852, 2018.
  • 11. Abdoh D. A., Kodur V. K. R., and Liew K. M, Smoothed particle hydrodynamics modeling of the thermal behavior of double skin facades in fires considering the effects of venetian blinds, Applied Mathematical Modelling, 84, 357-376, 2020.
  • 12. Huang Y., Yeboah S., and Shao J. Numerical data on fire in the cavity of naturally ventilated double skin façade with venetian blinds, Data in Brief, 46, 108859-108863, 2023.
  • 13. Huang Y., Yeboah S., and Shao, J. Numerical investigation of fire in the cavity of naturally ventilated double skin façade with venetian blinds, Building Services Engineering Research and Technology, 44 (1), 45-61. 2023.
  • 14. Shao J., Yeboah S. K., Zhu T., and Li, Y., Simulation study on the spreading of fire-induced smoke in natural-ventilated double-skin facade buildings, 11th International Symposium on Heating, Ventilation and Air Conditioning, Harbin, China, July 12-15, Springer, 2019.
  • 15. Livkiss K., Svensson S., Husted, B. and Patrick, H., Flame heights and heat transfer in façade system ventilation cavities, Fire Technol 54, 689–713, 2018.
  • 16. Chow C. L., A qualitative investigation on double-skin façade fires. MATEC Web of Conferences, 9, 03007, 2013.
  • 17. Yıldız M. A., Beyhan, F., Evaluation of vertical interior voids in green building designs in the context of smoke extraction, Journal of the Faculty of Engineering and Architecture of Gazi University, 39 (3), 1485–1498, 2024.
  • 18. Yıldız M. A., Beyhan, F., Evaluation of the effect of outer skin slope on fire safety in double-skin façade systems, SAUJS, 28 (1), 174–186, 2024.
  • 19. Miao L. and Chow C. L., A study on window plume from a room fire to the cavity of a double-skin façade, Applied Thermal Engineering, 129, 230-241, 2018.
  • 20. Aşlar E.E., G. Ulukavak Harputlugil G., Exploring fire safety conditions of double skin facades, Journal of the Faculty of Engineering and Architecture of Gazi University, 39 (2), 1083–1098, 2023.
  • 21. Yıldız, M. A., Yıldız, M. E. Numerical analysis of the effect of double-skin façade types on fire behaviour, GRAĐEVINAR, 76 (11), 1017-1028, 2024.
  • 22. Xudong C., Long S., Peng D., Guomin Z., Hui Y., and Jie L., Study on optimizing design of solar chimney for natural ventilation and smoke exhaustion, Energy and Buildings, 170, 145–156, 2018.
  • 23. Cheuk C., Initial buoyancy reduction in exhausting smoke with solar chimney design, Journal of Heat Transfer, 132, 014502, 2010.
  • 24. Hurley J M. SFPE Handbook of Fire Protection Engineering. Fifth Edition, New York, Springer, 2016.
  • 25. Pursel A. D. and McAllister J. L., Assessment of hazards to occupants from smoke, toxic gases, and heat. In: Hurley M J (Ed.) SFPE Handbook of Fire Protection Engineering. New York, Springer, 2308-2422, 2016.
  • 26. National Fire Protection Association, NFPA 101 Life Safety Code, 2021edition, National Fire Protection Association, Quincy, Massachusetts, 2021.
  • 27. National Fire Protection Association, NFPA 92 Standart for Smoke Control Systems, 2021edition, National Fire Protection Association, Quincy, Massachusetts, 2021.
  • 28. Mcgrattan K, Hostikka S, Mcdermott R, Floyd J, Weinschenk C, and Overholt K, Fire dynamics simulator, technical reference guide, Sixth edition, National Institute of Standards and Technology, Gaithersburg, 2013.
  • 29. Schneider A., Hommel G. and Blettner M., Linear regression analysis: Part 14 of a series on evaluation of scientific publications, Dtsch Arztebl Int., 107, 776–782, 2010.
  • 30. Khushbu K., and Suniti Y., Linear regression analysis study, Journal of the Practice of Cardiovascular Sciences, 4 (1), 33–36, 2018.

Fire safety optimization in vertical voids in green buildings: performance and sensitivity analysis for smoke extraction and temperature control

Yıl 2025, Cilt: 40 Sayı: 3, 1543 - 1558
https://doi.org/10.17341/gazimmfd.1578525

Öz

This study developed a performance-based fire design approach to ensure the extraction of smoke moving due to the chimney effect formed in vertical interior voids in green building designs and to ensure indoor temperature control. In this context, a prototype building model with an extraction void in its structure was designed for smoke. In the model, design scenarios based on six variables were created: the width and height of the void, the air inlet and outlet in the void, and the width and height of the window openings in the rooms. Each variable was analysed sequentially using the parametric analysis method, and after the best result was obtained, the following variable was analysed. As a result of these analyses, the effects of the design variables on smoke spread and temperature control were determined. The effect levels of the variables on the ambient temperature were statistically evaluated with multivariate regression analysis. As a result, it was determined that the contribution levels of the design parameters for smoke extraction and ambient temperature control were approximately the same. However, it was determined that the void height was effective for smoke extraction but did not significantly affect the ambient temperature. With the regression equation obtained in the study, the model accuracy was provided at a rate of 99%, and the reliability of the findings was confirmed.

Kaynakça

  • 1. Hadjisophocleous G. and Fu X., Effect of make-up air velocity and air curtain on smoke layer interface height with asymmetric fire in atrium fires, Journal of Building Engineering, 25, 100933, 2019.
  • 2. Ayala P., Cantizano A. and Rein G., Factors affecting the make-up air and their ınfluence on the dynamics of atrium fires, Fire Technology, 54, 1067–1091, 2018.
  • 3. Lei W., Zhang Z., Tai C., Zhang L., and Zhao S., Scaled experiment and numerical study on the effect of a novel makeup air system on smoke control in atrium fires, Journal of Building Engineering, 95, 110237, 2024.
  • 4. Ivanov M. L., Peng W., Wang Q., and Chow W. K. Sustainable smoke extraction system for atrium: a numerical study, Sustainability, 13, 7406-7428, 2021.
  • 5. Lin W., Liu Q., Zhang M., Cai B., Wang H., Chen, J., and Zhou Y., Numerical simulation on smoke temperature distribution in a large indoor pedestrian street fire, Fire, 6 (3), 115-133, 2023.
  • 6. Montes C. G., Rojas S., Kaiser A. S., and Viedma A., Numerical model and validation experiments of atrium enclosure fire in a new fire test facility, Building and Environment, 43 (11), 1912–1928, 2008.
  • 7. Montes C. G., Rojas S., Viedma A., and Rein G., Experimental data and numerical modelling of 1.3 and 2.3 MW fires in a 20 m cubic atrium, Building and Environment, 44 (9), 1827–1839, 2009.
  • 8. Al-Waked R., Nasif M., Groenhout N., and Partridge L., Natural ventilation of residential building Atrium under fire scenario, Case Studies in Thermal Engineering, 26, 101041-10105, 2021. https://doi.org/10.1016/j.csite.2021.101041
  • 9. Qin T. X., Yincheng G., Chan C. K., and Lin W. Y., Numerical simulation of the spread of smoke in an atrium under fire scenario, Building and Environment, 44, 56-65. 2009. https://doi.org/10.1016/j.buildenv.2008.01.014.
  • 10. Xu X. Y., Wang Z., Liu X., Ji C., Yu N., Zhu H., Li, J., and Wang, P., Study on fire smoke control in super-high building atrium, Procedia Engineering, 211, 844-852, 2018.
  • 11. Abdoh D. A., Kodur V. K. R., and Liew K. M, Smoothed particle hydrodynamics modeling of the thermal behavior of double skin facades in fires considering the effects of venetian blinds, Applied Mathematical Modelling, 84, 357-376, 2020.
  • 12. Huang Y., Yeboah S., and Shao J. Numerical data on fire in the cavity of naturally ventilated double skin façade with venetian blinds, Data in Brief, 46, 108859-108863, 2023.
  • 13. Huang Y., Yeboah S., and Shao, J. Numerical investigation of fire in the cavity of naturally ventilated double skin façade with venetian blinds, Building Services Engineering Research and Technology, 44 (1), 45-61. 2023.
  • 14. Shao J., Yeboah S. K., Zhu T., and Li, Y., Simulation study on the spreading of fire-induced smoke in natural-ventilated double-skin facade buildings, 11th International Symposium on Heating, Ventilation and Air Conditioning, Harbin, China, July 12-15, Springer, 2019.
  • 15. Livkiss K., Svensson S., Husted, B. and Patrick, H., Flame heights and heat transfer in façade system ventilation cavities, Fire Technol 54, 689–713, 2018.
  • 16. Chow C. L., A qualitative investigation on double-skin façade fires. MATEC Web of Conferences, 9, 03007, 2013.
  • 17. Yıldız M. A., Beyhan, F., Evaluation of vertical interior voids in green building designs in the context of smoke extraction, Journal of the Faculty of Engineering and Architecture of Gazi University, 39 (3), 1485–1498, 2024.
  • 18. Yıldız M. A., Beyhan, F., Evaluation of the effect of outer skin slope on fire safety in double-skin façade systems, SAUJS, 28 (1), 174–186, 2024.
  • 19. Miao L. and Chow C. L., A study on window plume from a room fire to the cavity of a double-skin façade, Applied Thermal Engineering, 129, 230-241, 2018.
  • 20. Aşlar E.E., G. Ulukavak Harputlugil G., Exploring fire safety conditions of double skin facades, Journal of the Faculty of Engineering and Architecture of Gazi University, 39 (2), 1083–1098, 2023.
  • 21. Yıldız, M. A., Yıldız, M. E. Numerical analysis of the effect of double-skin façade types on fire behaviour, GRAĐEVINAR, 76 (11), 1017-1028, 2024.
  • 22. Xudong C., Long S., Peng D., Guomin Z., Hui Y., and Jie L., Study on optimizing design of solar chimney for natural ventilation and smoke exhaustion, Energy and Buildings, 170, 145–156, 2018.
  • 23. Cheuk C., Initial buoyancy reduction in exhausting smoke with solar chimney design, Journal of Heat Transfer, 132, 014502, 2010.
  • 24. Hurley J M. SFPE Handbook of Fire Protection Engineering. Fifth Edition, New York, Springer, 2016.
  • 25. Pursel A. D. and McAllister J. L., Assessment of hazards to occupants from smoke, toxic gases, and heat. In: Hurley M J (Ed.) SFPE Handbook of Fire Protection Engineering. New York, Springer, 2308-2422, 2016.
  • 26. National Fire Protection Association, NFPA 101 Life Safety Code, 2021edition, National Fire Protection Association, Quincy, Massachusetts, 2021.
  • 27. National Fire Protection Association, NFPA 92 Standart for Smoke Control Systems, 2021edition, National Fire Protection Association, Quincy, Massachusetts, 2021.
  • 28. Mcgrattan K, Hostikka S, Mcdermott R, Floyd J, Weinschenk C, and Overholt K, Fire dynamics simulator, technical reference guide, Sixth edition, National Institute of Standards and Technology, Gaithersburg, 2013.
  • 29. Schneider A., Hommel G. and Blettner M., Linear regression analysis: Part 14 of a series on evaluation of scientific publications, Dtsch Arztebl Int., 107, 776–782, 2010.
  • 30. Khushbu K., and Suniti Y., Linear regression analysis study, Journal of the Practice of Cardiovascular Sciences, 4 (1), 33–36, 2018.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mimarlık (Diğer)
Bölüm Makaleler
Yazarlar

Mehmet Akif Yıldız 0000-0001-7248-6191

Figen Beyhan 0000-0002-4287-1037

Erken Görünüm Tarihi 15 Nisan 2025
Yayımlanma Tarihi
Gönderilme Tarihi 3 Kasım 2024
Kabul Tarihi 24 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 40 Sayı: 3

Kaynak Göster

APA Yıldız, M. A., & Beyhan, F. (2025). Yeşil binalardaki düşey boşluklarda yangın güvenliği optimizasyonu: Duman tahliyesi ve sıcaklık kontrolü için performans ve duyarlılık analizi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 40(3), 1543-1558. https://doi.org/10.17341/gazimmfd.1578525
AMA Yıldız MA, Beyhan F. Yeşil binalardaki düşey boşluklarda yangın güvenliği optimizasyonu: Duman tahliyesi ve sıcaklık kontrolü için performans ve duyarlılık analizi. GUMMFD. Nisan 2025;40(3):1543-1558. doi:10.17341/gazimmfd.1578525
Chicago Yıldız, Mehmet Akif, ve Figen Beyhan. “Yeşil Binalardaki düşey boşluklarda yangın güvenliği Optimizasyonu: Duman Tahliyesi Ve sıcaklık Kontrolü için Performans Ve duyarlılık Analizi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40, sy. 3 (Nisan 2025): 1543-58. https://doi.org/10.17341/gazimmfd.1578525.
EndNote Yıldız MA, Beyhan F (01 Nisan 2025) Yeşil binalardaki düşey boşluklarda yangın güvenliği optimizasyonu: Duman tahliyesi ve sıcaklık kontrolü için performans ve duyarlılık analizi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40 3 1543–1558.
IEEE M. A. Yıldız ve F. Beyhan, “Yeşil binalardaki düşey boşluklarda yangın güvenliği optimizasyonu: Duman tahliyesi ve sıcaklık kontrolü için performans ve duyarlılık analizi”, GUMMFD, c. 40, sy. 3, ss. 1543–1558, 2025, doi: 10.17341/gazimmfd.1578525.
ISNAD Yıldız, Mehmet Akif - Beyhan, Figen. “Yeşil Binalardaki düşey boşluklarda yangın güvenliği Optimizasyonu: Duman Tahliyesi Ve sıcaklık Kontrolü için Performans Ve duyarlılık Analizi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40/3 (Nisan 2025), 1543-1558. https://doi.org/10.17341/gazimmfd.1578525.
JAMA Yıldız MA, Beyhan F. Yeşil binalardaki düşey boşluklarda yangın güvenliği optimizasyonu: Duman tahliyesi ve sıcaklık kontrolü için performans ve duyarlılık analizi. GUMMFD. 2025;40:1543–1558.
MLA Yıldız, Mehmet Akif ve Figen Beyhan. “Yeşil Binalardaki düşey boşluklarda yangın güvenliği Optimizasyonu: Duman Tahliyesi Ve sıcaklık Kontrolü için Performans Ve duyarlılık Analizi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 40, sy. 3, 2025, ss. 1543-58, doi:10.17341/gazimmfd.1578525.
Vancouver Yıldız MA, Beyhan F. Yeşil binalardaki düşey boşluklarda yangın güvenliği optimizasyonu: Duman tahliyesi ve sıcaklık kontrolü için performans ve duyarlılık analizi. GUMMFD. 2025;40(3):1543-58.