Research Article
BibTex RIS Cite

Mera Ot Verimlerine Ait Bazı Parametrelerin İnsansız Hava Araçları Kullanılarak Tahmin Edilmesi: Tokat Ataköyü Merası Örnek Çalışması

Year 2023, Volume: 12 Issue: 2, 11 - 21, 17.11.2023

Abstract

Meraların verimli ve devamlı kullanımının sağlanması için mera kalitesinin zamansal ve mekânsal olarak düzenli bir şekilde izlenmesi gerekir. Son yıllarda gelişen İnsansız Hava Araçları (İHA) teknolojisi meralara ait önemli bilgilerin istenilen zamanda ve yüksek kalitede elde edilebilmesinde önemli fırsatlar sunmaktadır. Bu çalışmada da Tokat Ataköyü merasında belirlenen pilot bir alanda mera biyokütle parametrelerinden Yaş Biyokütle Ağırlığı (YBA), Kuru Biyokütle Ağırlığı (KBA), Kuru Madde Oranı (KMO) ve Kuru Madde Verimi (KMV)’nin İHA ile mekânsal olarak tahmin edilmesi amaçlanmıştır. Bu bağlamda pilot bölge içinden rastgele alınan beş örneğin verim parametreleri hesaplanarak İHA ‘nın görülebilir, kırmızı kenar, yakın kızılötesi spektral bandları ve bandlardan hesaplanan NDVI, GNDVI ve NDRE vejetasyon indeksleri ile arasındaki ilişki pearson korelasyon testi ile incelenmiştir. İHA ‘nın Yeşil bandı ile KBA arasında -0.91 (p<0.05) düzeyinde belirlenen anlamlı yüksek ilişki KBA’nın bu band ile tahmin edilebileceğini göstermiştir. İki değişken arasında doğrusal regresyon analizi sonucunda R2 0.82 ve RMSE 37.20 düzeyinde başarılı bir model oluşturulmuştır. Elde edilen model harita sonucuna göre pilot bölge içinde ortalama KBA 113.98 gr olarak hesaplanmıştır. Sonuçlar İHA ‘nın meraların biyokütle parametrelerinin tahminin de önemli potansiyel barındırdığını ve mera yönetimi konularında planlamacılara değerli bilgiler sunması açısından etkili araçlar olduğunu göstermektedir.

References

  • Adão, T., Hruška, J., Pádua, L., Bessa, J., Peres, E., Morais, R., Sousa, J. J., 2017. Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote sensing, 9(11), 1110.
  • Akbas, F., Gunal, H., Acir, N., 2017. Spatial variability of soil potassium and its relationship to land use and parent material.
  • Anonim., 2010. Tarımsal değerleri ölçme denemeleri teknik talimatı, T.C. Tarim Ve Köyişleri Bakanliği Tohum Tescil ve Sertifikasyon Merkezi, Sorgum (Sorghum spp.), 13s.
  • Betteridge, K., Schnug, E. and Haneklaus, S., 2008. Will site specific nutrient management live up to expectation?. Agriculture and Forestry Research. 58:283-294.
  • Boiarskii, B., Hasegawa, H., 2019. Comparison of NDVI and NDRE indices to detect differences in vegetation and chlorophyll content. J. Mech. Contin. Math. Sci, 4, 20-29.
  • Boval, M., Dixon, R., 2012. The importance of grasslands for animal production and other functions: A review on management and methodological progress in the tropics. Animal, 6, 748–762.
  • Burow, E., Rousing, T., Thomsen, P., Otten, N. D., Sørensen, J., 2013. Effect of grazing on the cow welfare of dairy herds evaluated by a multidimensional welfare index. Animal 7, 834–842.
  • de Oliveira, G. S, Marcato Junior, J., Polidoro, C., Osco, L. P., Siqueira, H., Rodrigues, L., Jank, L., Barrios, S., Valle, C., Simeão, R., Carromeu, C., Silveira, E., André de Castro Jorge, L., Gonçalves, W., Santos, M., Matsubara, E., 2021. Convolutional Neural Networks to Estimate Dry Matter Yield in a Guineagrass Breeding Program Using UAV Remote Sensing. Sensors. 21(12):3971. https://doi.org/10.3390/s21123971.
  • Demir, S., Başayiğit, L., 2021. Kısıtlı Sulama Uygulamalarının İHA Multispektral Algılamaya Dayalı Vejetasyon İndekslerine Etkisi. Yuzuncu Yıl University Journal of Agricultural Sciences, 31(3), 629-643.
  • Dusseux, P., Guyet, T., Pattier, P., Barbier, V., Nicolas, H., 2022. Monitoring of grassland productivity using Sentinel-2 remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 111, 102843.
  • Gitelson, A., Kaufman, Y.J., Merzlyak, M.N., 1996. Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS. Remote Sens. Environ. 58, 289–298
  • Gitelson, A., Merzlyak, M.N., 1994. Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol. B, 22, 247–252
  • Gómez-Giráldez, P. J., Pérez-Palazón, M. J., Polo, M. J., González-Dugo, M. P., 2020. Monitoring grass phenology and hydrological dynamics of an oak–grass savanna ecosystem using sentinel-2 and terrestrial photography. Remote Sensing, 12(4), 600.
  • Grüner, E., Astor, T., Wachendorf, M., 2019. Biomass prediction of heterogeneous temperate grasslands using an SfM approach based on UAV imaging. Agronomy, 9(2), 54.
  • Guerini Filho, M., Kuplich, T. M., Quadros, F. L. D., 2020. Estimating natural grassland biomass by vegetation indices using Sentinel 2 remote sensing data. International Journal of Remote Sensing, 41(8), 2861-2876. Guha, S., Govil, H., 2021. An assessment on the relationship between land surface temperature and normalized difference vegetation index. Environment, Development and Sustainability, 23(2), 1944-1963.
  • Lee, H., Lee, H. J., Jung, J. S., Ko, H. J., 2015. Mapping herbage biomass on a hill pasture using a digital camera with an unmanned aerial vehicle system. Journal of the Korean Society of Grassland and Forage Science, 35(3), 225-231.
  • Lussem, U., Bolten, A., Menne, J., Gnyp, M. L., Schellberg, J., Bareth, G. 2019. Estimating biomass in temperate grassland with high resolution canopy surface models from UAV-based RGB images and vegetation indices. Journal of Applied Remote Sensing, 13(3), 034525.
  • Lyu, X., Li, X., Dang, D., Dou, H., Wang, K., Lou, A., 2022. Unmanned Aerial Vehicle (UAV) Remote Sensing in Grassland Ecosystem Monitoring: A Systematic Review. Remote Sensing, 14(5), 1096.
  • Mahajan, U., Bundel, B. R., 2016. Drones for normalized difference vegetation index (NDVI), to estimate crop health for precision agriculture: A cheaper alternative for spatial satellite sensors. In Proceedings of the International Conference on Innovative Research in Agriculture, Food Science, Forestry, Horticulture, Aquaculture, Animal Sciences, Biodiversity, Ecological Sciences and Climate Change (AFHABEC-2016), Delhi, India (Vol. 22).
  • Michez, A., Lejeune, P., Bauwens, S., Herinaina, A. A. L., Blaise, Y., Castro Muñoz, E., Bindelle, J., 2019. Mapping and monitoring of biomass and grazing in pasture with an unmanned aerial system. Remote Sensing, 11(5), 473. Qin, R., 2014. An object-based hierarchical method for change detection using unmanned aerial vehicle images. Remote Sensing, 6(9), 7911-7932.
  • Reis, B. P., Martins, S. V., Fernandes Filho, E. I., Sarcinelli, T. S., Gleriani, J. M., Leite, H. G., Halassy, M., 2019. Forest restoration monitoring through digital processing of high resolution images. Ecological Engineering, 127, 178-186.
  • Rouse Jr, J., Haas, R. H., Schell, J. A., and Deering, D. W., 1974. Monitoring vegetation systems in the Great Plains with ERTS. Scientific and Technical Information Office, National Aeronautics and Space Administration.
  • Shapiro, S.S., Francia, R.S., 1972. An approximate analysis of variance test for normality. Journal of the American Statistical Association, 67(337), 215-216. https://doi.org/10.10 80/01621459.1972.10481232
  • Shoko, C., Mutanga, O., 2017. Examining the strength of the newly-launched Sentinel 2 MSI sensor in detecting and discriminating subtle differences between C3 and C4 grass species. ISPRS journal of photogrammetry and remote sensing, 129, 32-40.
  • Tan, Z. A. M., Ayan, İ., Uğur, Aşçı, Ö.Ö., Mut H., Başaran, U., Gülemser, E., Can, M., Kaymak, G., 2020. Türkiye’de Yem Bitkileri Tarımının Durumu Ve Geliştirme Olanakları. Türkiye Ziraat Mühendisliği IX. Teknik Kongresi Bildiriler Kitabı-1, 529.
  • Théau, J., Lauzier-Hudon, É., Aubé, L., Devillers, N., 2021. Estimation of forage biomass and vegetation cover in grasslands using UAV imagery. PloS one, 16(1), e0245784.
  • Zhao, B., Li, J., Wang, L., Shi, Y., 2020. Positioning accuracy assessment of a commercial RTK UAS. Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping V, 11414, 47-53.
Year 2023, Volume: 12 Issue: 2, 11 - 21, 17.11.2023

Abstract

References

  • Adão, T., Hruška, J., Pádua, L., Bessa, J., Peres, E., Morais, R., Sousa, J. J., 2017. Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote sensing, 9(11), 1110.
  • Akbas, F., Gunal, H., Acir, N., 2017. Spatial variability of soil potassium and its relationship to land use and parent material.
  • Anonim., 2010. Tarımsal değerleri ölçme denemeleri teknik talimatı, T.C. Tarim Ve Köyişleri Bakanliği Tohum Tescil ve Sertifikasyon Merkezi, Sorgum (Sorghum spp.), 13s.
  • Betteridge, K., Schnug, E. and Haneklaus, S., 2008. Will site specific nutrient management live up to expectation?. Agriculture and Forestry Research. 58:283-294.
  • Boiarskii, B., Hasegawa, H., 2019. Comparison of NDVI and NDRE indices to detect differences in vegetation and chlorophyll content. J. Mech. Contin. Math. Sci, 4, 20-29.
  • Boval, M., Dixon, R., 2012. The importance of grasslands for animal production and other functions: A review on management and methodological progress in the tropics. Animal, 6, 748–762.
  • Burow, E., Rousing, T., Thomsen, P., Otten, N. D., Sørensen, J., 2013. Effect of grazing on the cow welfare of dairy herds evaluated by a multidimensional welfare index. Animal 7, 834–842.
  • de Oliveira, G. S, Marcato Junior, J., Polidoro, C., Osco, L. P., Siqueira, H., Rodrigues, L., Jank, L., Barrios, S., Valle, C., Simeão, R., Carromeu, C., Silveira, E., André de Castro Jorge, L., Gonçalves, W., Santos, M., Matsubara, E., 2021. Convolutional Neural Networks to Estimate Dry Matter Yield in a Guineagrass Breeding Program Using UAV Remote Sensing. Sensors. 21(12):3971. https://doi.org/10.3390/s21123971.
  • Demir, S., Başayiğit, L., 2021. Kısıtlı Sulama Uygulamalarının İHA Multispektral Algılamaya Dayalı Vejetasyon İndekslerine Etkisi. Yuzuncu Yıl University Journal of Agricultural Sciences, 31(3), 629-643.
  • Dusseux, P., Guyet, T., Pattier, P., Barbier, V., Nicolas, H., 2022. Monitoring of grassland productivity using Sentinel-2 remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 111, 102843.
  • Gitelson, A., Kaufman, Y.J., Merzlyak, M.N., 1996. Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS. Remote Sens. Environ. 58, 289–298
  • Gitelson, A., Merzlyak, M.N., 1994. Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol. B, 22, 247–252
  • Gómez-Giráldez, P. J., Pérez-Palazón, M. J., Polo, M. J., González-Dugo, M. P., 2020. Monitoring grass phenology and hydrological dynamics of an oak–grass savanna ecosystem using sentinel-2 and terrestrial photography. Remote Sensing, 12(4), 600.
  • Grüner, E., Astor, T., Wachendorf, M., 2019. Biomass prediction of heterogeneous temperate grasslands using an SfM approach based on UAV imaging. Agronomy, 9(2), 54.
  • Guerini Filho, M., Kuplich, T. M., Quadros, F. L. D., 2020. Estimating natural grassland biomass by vegetation indices using Sentinel 2 remote sensing data. International Journal of Remote Sensing, 41(8), 2861-2876. Guha, S., Govil, H., 2021. An assessment on the relationship between land surface temperature and normalized difference vegetation index. Environment, Development and Sustainability, 23(2), 1944-1963.
  • Lee, H., Lee, H. J., Jung, J. S., Ko, H. J., 2015. Mapping herbage biomass on a hill pasture using a digital camera with an unmanned aerial vehicle system. Journal of the Korean Society of Grassland and Forage Science, 35(3), 225-231.
  • Lussem, U., Bolten, A., Menne, J., Gnyp, M. L., Schellberg, J., Bareth, G. 2019. Estimating biomass in temperate grassland with high resolution canopy surface models from UAV-based RGB images and vegetation indices. Journal of Applied Remote Sensing, 13(3), 034525.
  • Lyu, X., Li, X., Dang, D., Dou, H., Wang, K., Lou, A., 2022. Unmanned Aerial Vehicle (UAV) Remote Sensing in Grassland Ecosystem Monitoring: A Systematic Review. Remote Sensing, 14(5), 1096.
  • Mahajan, U., Bundel, B. R., 2016. Drones for normalized difference vegetation index (NDVI), to estimate crop health for precision agriculture: A cheaper alternative for spatial satellite sensors. In Proceedings of the International Conference on Innovative Research in Agriculture, Food Science, Forestry, Horticulture, Aquaculture, Animal Sciences, Biodiversity, Ecological Sciences and Climate Change (AFHABEC-2016), Delhi, India (Vol. 22).
  • Michez, A., Lejeune, P., Bauwens, S., Herinaina, A. A. L., Blaise, Y., Castro Muñoz, E., Bindelle, J., 2019. Mapping and monitoring of biomass and grazing in pasture with an unmanned aerial system. Remote Sensing, 11(5), 473. Qin, R., 2014. An object-based hierarchical method for change detection using unmanned aerial vehicle images. Remote Sensing, 6(9), 7911-7932.
  • Reis, B. P., Martins, S. V., Fernandes Filho, E. I., Sarcinelli, T. S., Gleriani, J. M., Leite, H. G., Halassy, M., 2019. Forest restoration monitoring through digital processing of high resolution images. Ecological Engineering, 127, 178-186.
  • Rouse Jr, J., Haas, R. H., Schell, J. A., and Deering, D. W., 1974. Monitoring vegetation systems in the Great Plains with ERTS. Scientific and Technical Information Office, National Aeronautics and Space Administration.
  • Shapiro, S.S., Francia, R.S., 1972. An approximate analysis of variance test for normality. Journal of the American Statistical Association, 67(337), 215-216. https://doi.org/10.10 80/01621459.1972.10481232
  • Shoko, C., Mutanga, O., 2017. Examining the strength of the newly-launched Sentinel 2 MSI sensor in detecting and discriminating subtle differences between C3 and C4 grass species. ISPRS journal of photogrammetry and remote sensing, 129, 32-40.
  • Tan, Z. A. M., Ayan, İ., Uğur, Aşçı, Ö.Ö., Mut H., Başaran, U., Gülemser, E., Can, M., Kaymak, G., 2020. Türkiye’de Yem Bitkileri Tarımının Durumu Ve Geliştirme Olanakları. Türkiye Ziraat Mühendisliği IX. Teknik Kongresi Bildiriler Kitabı-1, 529.
  • Théau, J., Lauzier-Hudon, É., Aubé, L., Devillers, N., 2021. Estimation of forage biomass and vegetation cover in grasslands using UAV imagery. PloS one, 16(1), e0245784.
  • Zhao, B., Li, J., Wang, L., Shi, Y., 2020. Positioning accuracy assessment of a commercial RTK UAS. Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping V, 11414, 47-53.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Araştırma Makaleleri
Authors

Orhan Mete Kılıç 0000-0002-6723-1984

Shıva Sadıghfard 0000-0003-0617-4856

Early Pub Date September 30, 2023
Publication Date November 17, 2023
Published in Issue Year 2023 Volume: 12 Issue: 2

Cite

APA Kılıç, O. M., & Sadıghfard, S. (2023). Mera Ot Verimlerine Ait Bazı Parametrelerin İnsansız Hava Araçları Kullanılarak Tahmin Edilmesi: Tokat Ataköyü Merası Örnek Çalışması. Gaziosmanpaşa Bilimsel Araştırma Dergisi, 12(2), 11-21.
AMA Kılıç OM, Sadıghfard S. Mera Ot Verimlerine Ait Bazı Parametrelerin İnsansız Hava Araçları Kullanılarak Tahmin Edilmesi: Tokat Ataköyü Merası Örnek Çalışması. GBAD. November 2023;12(2):11-21.
Chicago Kılıç, Orhan Mete, and Shıva Sadıghfard. “Mera Ot Verimlerine Ait Bazı Parametrelerin İnsansız Hava Araçları Kullanılarak Tahmin Edilmesi: Tokat Ataköyü Merası Örnek Çalışması”. Gaziosmanpaşa Bilimsel Araştırma Dergisi 12, no. 2 (November 2023): 11-21.
EndNote Kılıç OM, Sadıghfard S (November 1, 2023) Mera Ot Verimlerine Ait Bazı Parametrelerin İnsansız Hava Araçları Kullanılarak Tahmin Edilmesi: Tokat Ataköyü Merası Örnek Çalışması. Gaziosmanpaşa Bilimsel Araştırma Dergisi 12 2 11–21.
IEEE O. M. Kılıç and S. Sadıghfard, “Mera Ot Verimlerine Ait Bazı Parametrelerin İnsansız Hava Araçları Kullanılarak Tahmin Edilmesi: Tokat Ataköyü Merası Örnek Çalışması”, GBAD, vol. 12, no. 2, pp. 11–21, 2023.
ISNAD Kılıç, Orhan Mete - Sadıghfard, Shıva. “Mera Ot Verimlerine Ait Bazı Parametrelerin İnsansız Hava Araçları Kullanılarak Tahmin Edilmesi: Tokat Ataköyü Merası Örnek Çalışması”. Gaziosmanpaşa Bilimsel Araştırma Dergisi 12/2 (November 2023), 11-21.
JAMA Kılıç OM, Sadıghfard S. Mera Ot Verimlerine Ait Bazı Parametrelerin İnsansız Hava Araçları Kullanılarak Tahmin Edilmesi: Tokat Ataköyü Merası Örnek Çalışması. GBAD. 2023;12:11–21.
MLA Kılıç, Orhan Mete and Shıva Sadıghfard. “Mera Ot Verimlerine Ait Bazı Parametrelerin İnsansız Hava Araçları Kullanılarak Tahmin Edilmesi: Tokat Ataköyü Merası Örnek Çalışması”. Gaziosmanpaşa Bilimsel Araştırma Dergisi, vol. 12, no. 2, 2023, pp. 11-21.
Vancouver Kılıç OM, Sadıghfard S. Mera Ot Verimlerine Ait Bazı Parametrelerin İnsansız Hava Araçları Kullanılarak Tahmin Edilmesi: Tokat Ataköyü Merası Örnek Çalışması. GBAD. 2023;12(2):11-2.