Düşey düzlemde de hareket yeteneğine sahip olan su altı araçlarının manevra problemi aracın yörüngesini tanımlamak için tüm serbestlik derecelerinin matematiksel olarak dikkate alınmasını gerektiren zorlayıcı bir problemdir. Literatürde bu probleme çözüm getiren çalışmalar ağırlıklı olarak aracın derin dalmış durumunu dikkate alırlar. Bu çalışmalar problemin çözümünü kolaylaştıran sonsuz akışkan alanı varsayımına dayanırlar. Bunun yanında su altı araçlarının haberleşme, konum belirleme, solunum ve yanma havası ihtiyacını karşılama ve deniz tabanının sörveyi vb. gibi çeşitli operasyonel ihtiyaçlar sebebiyle akışkan sınırlarına yaklaşması kaçınılmaz bir zorunluluktur. Bu zorunluluk aracın manevra performansının sınır etkilerini de kapsayacak şekilde tahmin edilebilmesini gerektirir. Bu gereklilik ise problemin yapısının değişerek karmaşıklık seviyesinin artmasına ve dolayısıyla cevaplanması gereken yeni soruların ortaya çıkmasına sebep olur. Karşılıklı etkileşimler sebebiyle ortaya çıkan düzlem dışı kuvvetler, sevk parametreleri ile kontrol yüzeyleri üzerindeki etkiler ve tüm bu etkilerin manevra modelinde nasıl temsil edileceği gibi hususlar bu soruların en önemlilerindendir. Söz konusu soruların cevaplandırılabilmesi için öncelikle sınırların varlığı sebebiyle aracın manevra karakteristiklerinde gerçekleşen değişimlerin ayrı ayrı incelenip matematiksel olarak ifade edilmeleri gereklidir. Matematiksel olarak ifade edilen bu etkilerin manevra modelinde temsil edilmesi ise ikinci aşamayı oluşturur. Bu aşamada hidrodinamik katsayıların sınır akışlarını kontrol eden parametrelerin (Froude sayısı, derinlik, dip omurga mesafesi vb.) de bir fonksiyonu olacak şekliyle mevcut manevra modellerinde kullanımı literatürde yaygın kabul gören yaklaşımdır. Hareket denklemleri sınır etkilerini de dikkate alacak şekilde yeni bir manevra modeli türetilmesi seçeneği ise halihazırda kavramsal düzeyde kalmış bir yöntemdir. Operasyonel ihtiyaçların su altı araçlarının artan oranda akışkan sınırlarına yakın kullanımını gerektirmesi son yıllarda bu alandaki akademik çalışmalara olan ihtiyacı artırmıştır. Bu durum sınır etkilerinin farklı yönlerinin ayrıntılı olarak incelenmesi için araştırmacıları motive ederek bu alanda hatırı sayılır seviyede bir literatürün oluşmasına sebep olmuştur. “Su altı araçlarının manevra karakteristiklerinin değerlendirilmesi” ana başlığının ikinci bölümünü oluşturan bu çalışma kapsamında; mevcut literatür yatay ve düşey düzlem serbestlik derecelerinde serbest su yüzeyinin varlığı sebebiyle meydana gelen değişiklikler ile bu iki düzlemin karşılıklı etkileşimleri, serbest su yüzeyinin takıntılar ile karşılıklı etkileşimi ve sevk sistemi üzerindeki etkileri ve deniz tabanının etkileri başlıkları altında sınıflandırılmıştır. Bunun yanında bu etkilerin manevra modellerinde temsil edilebilmesi için gösterilen gayretlere ve sınırların varlığının problemin sayısal ve deneysel analizine getirdiği ilave zorluklara da yer verilmiştir. Böylece konu hakkında genel bir değerlendirme yapılması ve literatürde eksik kalan potansiyel araştırma alanlarının belirlenmesi hedeflenmiştir.
Amiri, M. M., Esperança, P. T., Vitola, M. A., & Sphaier, S. H. (2018). How Does the Free Surface Affect the Hydrodynamics of a Shallowly Submerged Submarine. Applied Ocean Research, 76(April), 34–50. https://doi.org/10.1016/j.apor.2018.04.008
Amiri, M. M., Esperança, P. T., Vitola, M. A., & Sphaier, S. H. (2019). An initial evaluation of the free surface effect on the maneuverability of underwater vehicles. Ocean Engineering, 196(December 2019), 106851. https://doi.org/10.1016/j.oceaneng.2019.106851
Amiri, M. M., Sphaier, S. H., Vitola, M. A., & Esperança, P. T. (2018). URANS Investigation of the Interaction Between the Free Surface and a Shallowly Submerged Underwater Vehicle at Steady Drift. Applied Ocean Research, 84(June 2018), 192–205. https://doi.org/10.1016/j.apor.2019.01.012
Bettle, M., Toxopeus, S. L., & Gerber, A. (2010). Calculation of Bottom Clearance Effects on Walrus Submarine Hydrodynamics. International Shipbuilding Progress, 57(3–4), 101–125.
Broglia, R., Di Mascio, A., & Muscari, R. (2007). Numerical study of confined water effects on a self-propelled submarine in steady manoeuvres. Proceedings of the International Offshore and Polar Engineering Conference, 17(2), 443–450.
Bystron, L., & Anderson, R. (2000). The submarine underwater maneuvering. Submarine Technology research and development. In The 5th International Conference on Submarines Selection (pp. 132–143). China Ship Scientific Research Center.
Carrica, P. M., Kim, Y., & Martin, J. E. (2019). Near-Surface Self Propulsion of a Generic Submarine in Calm Water and Waves. Ocean Engineering, 183(May), 87–105. https://doi.org/10.1016/j.oceaneng. 2019.04.082
Conway, A. S. T., Valentinis, F., & Seil, G. (2018). Characterisation of Suction Effects on a Submarine Body Operating Near the Free Surface. Proceedings of the 21st Australasian Fluid Mechanics Conference (10-13 December 2018), Adelaide, Australia. Retrieved from https://people.eng.unimelb. edu.au/imarusic/proceedings/21/Contribution_766_final.pdf
Crook, T. P. (1994). An Initial Assessment of Free Surface Effects on Submerged Bodies (Master's thesis). Naval Postgraduate School, Monterey, CA. Retrieved from http://hdl.handle.net/10945/42971
Dawson, D.W., “A Practical Computer Method for Solving Ship-Wave Problems”, Proc. 2nd Int. Conf. Nu- merical Ship Hydrodynamics, Office of Naval Research, USA, 30-38, 1977.
Dawson, E. (2014). An Investigation into the Effects of Submergence Depth , Speed and Hull Length-to-Diameter Ratio on the Near- Surface Operation of Conventional Submarines (Master's thesis). University of Tasmania, Australia. Retrieved from https://eprints.utas.edu.au/22368/
Doctors, L. J., & Beck, R. F. (1987). Numerical Aspects Of The Neumann-Kelvin Problem. Journal of Ship Research, 31(01), 1-13.
Doğrul, A. (2019). Hydrodynamic Investigation of a Submarine Moving Under Free Surface. Journal of ETA Maritime Science, 7(3), 212-227.
Du, X. xu, Wang, H., Hao, C. zhi, & Li, X. liang. (2014). Analysis of Hydrodynamic Characteristics of Unmanned Underwater Vehicle Moving Close to the Sea Bottom. Defence Technology, 10(1), 76–81. https://doi.org/10.1016/j.dt.2014.01.007
Dubbioso, G., Broglia, R., & Zaghi, S. (2017). CFD Analysis of Turning Abilities of a Submarine Model. Ocean Engineering, 129(October), 459–479. https://doi.org/10.1016/j.oceaneng.2016.10.046
Efremov, D. V., & Milanov, E. M. (2019). Hydrodynamics of DARPA SUBOFF Submarine at Shallowly Immersion Conditions. TransNav, 13(2), 337–342. https://doi.org/10.12716/1001.13.02.09
Farell, C. (1973). On the Wave Resistance of a Submerged Spheroid. Journal of Ship Research, 17(1), 1–11.
Farell, C., & Guven, O. (1973). On the Experimental Determination of the Resistance Components of a Submerged Spheroid. Journal of Ship Research, 17 (1973): 72–79. https://doi.org/10.5957/ jsr.1973.17.2.72
Gertler, M. (1950). Resistance Experiments On A Systematic Series Of Streamlined Bodies Of Revolution-For Application to the Design Of High-Speed Submarines (Report no. C-297). Navy Department David Taylor Model Basin, Washington D.C. Retrieved from https://apps.dtic.mil/dtic/tr/fulltext/ u2/a800144.pdf
Gertler, M., & Hagen, G. R. (1967). Standart Equations of Motion For Submarine Simulation (Report no. SR-009-01 01). Navy Ship Research and Development Center, Washington D.C.
Gourlay, T., & Dawson, E. (2015). A Havelock Source Panel Method for Near-Surface Submarines. Journal of Marine Science and Application, 14(3), 215–224. https://doi.org/10.1007/s11804-015-1319-5
Griffin, M. J. (2002). Numerical Prediction of the Maneuvering Characteristics of Submarines Operating Near the Free Surface (Doctoral dissertation). Massachusetts Institute of Technology, MA. Retrieved from https://dspace.mit.edu/ handle/1721.1/8327
Guanghua, H. (2013). An iterative Rankine BEM for wave-making analysis of submerged and surface-piercing bodies in finite water depth. Journal of Hydrodynamics, Ser. B. 25. 839–847. https://doi.org/10.1016/S1001-6058(13)60431-X.
Havelock, T. (1931). The Wave Resistance of a Spheroid. In Royal Society (pp. 275–285). Royal Society. https://doi.org/https://doi.org/10.1098/rspa.1931.0052
Havelock, T. H. (1919). Wave Resistance: Some Cases of Three-Dimensional Fluid Motion. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 95(670), 354–365. https://doi.org/10.1098/rspa.1919.0014
Havelock, T. H. (1917). Some cases of wave motion due to a submerged obstacle. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 93(654), 520–532. https://doi.org/10.1098/rspa.1917.0036
Havelock, T. H. (1931). The wave resistance of an ellipsoid. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 132(820), 480–486. https://doi.org/10.1098/rspa.1931.0113
Hess, J. L., & Smith, A. M. O. (1964). Calculation of Nonlifting Potential Flow About Arbitrary Three-Dimensional Bodies. Journal of Ship Research, (8), 22–44. https://doi.org/10.5957/jsr.1964.8.4.22.
Hoerner, S. F. (1965). Fluid Dynamic Drag: Practical Information on Aerodynamic Drag and Hydrodynamic Resistance. Brick Town, New Jersey, USA.: Published by the author.
Huang, H., Zhou, Z., Li, H., Zhou, H., & Xu, Y. (2020). The Effects of the Circulating Water Tunnel Wall and Support Struts on Hydrodynamic Coefficients Estimation for Autonomous Underwater Vehicles. International Journal of Naval Architecture and Ocean Engineering, 12, 1–10. https://doi.org/10.1016/j.ijnaoe.2019.04.008
ITTC Specialist Committee. (2002). Final report and recommendations to the 23th ITTC, Recommended Procedures and Guidelines-Testing and Extrapolation Methods Propulsion, Propulsor Open Water Test. In Proceedings of the 23th International Towing Tank Conference (pp. 1–8).
Jagadeesh, P., & Murali, K. (2010). RANS Predictions of Free Surface Effects on Axisymmetric Underwater Body. Engineering Applications of Computational Fluid Mechanics, 4(2), 301–313. https://doi.org/10.1080/19942060.2010.11015318
Jagadeesh, P., Murali, K., & Idichandy, V. G. (2009). Experimental investigation of hydrodynamic force coefficients over AUV hull form. Ocean Engineering, 36(1), 113–118. https://doi.org/10.1016/j.oceaneng.2008.11.008
Kırıkbaş, O , Kınacı, Ö , Bal, Ş . (2021). Sualtı Araçlarının Manevra Karakteristiklerinin Değerlendirilmesi-I: Manevra Analizlerinde Kullanılan Yaklaşımlar . Gemi ve Deniz Teknolojisi , (219) , 6-58 . Retrieved from https://dergipark.org.tr/tr/pub/gdt/issue/63160/877594
Kim, S. E., Rhee, B. J., & Miller, R. W. (2013). Anatomy of Turbulent Flow Around DARPA SUBOFF Body in a Turning Maneuver Using High-Fidelity RANS Computations. International Shipbuilding Progress, 60(1–4), 207–231. https://doi.org/10.3233/ISP-130100
Liu, H., & Huang, T. T. (1998). Summary of DARPA Suboff Experimental Program Data (Report no. CRDKNSWC/HD-1298-11). Carderock Division, Naval Surface Warfare Center, West Bethesda, MD. Retrieved from https://apps.dtic.mil/sti/pdfs/ADA359226.pdf
Liu, T. L., & Guo, Z. M. (2013). Analysis of Wave Spectrum for Submerged Bodies Moving Near the Free Surface. Ocean Engineering, 58, 239–251. https://doi.org/10.1016/j.oceaneng.2012.10.003
Mackay, M. (2003). Estimation of Submarine Near-Bottom Hydrodynamic Loads and Squat (Report no. DRDC Atlantic TM 2003—078). Defence R&D Canada-Atlantic, Canada. Retrieved from https://apps.dtic.mil/dtic/tr/fulltext/u2/a418585.pdf
Moonesun, M., Javadi, M., Charmdooz, P., & Mikhailovich, K.U. (2013). Evaluation of submarine model test in towing tank and comparison with CFD and experimental formulas for fully submerged resistance.
Moonesun, M., Korol, Y. M., Valeri, N., Brazhko, A., & Ursolov, A. (2016). Bottom Effect on the Submarine Moving Close to the Sea Bottom. The Journal of Scientific and Engineering Research 6(1), 106-113
Nematollahi, Ali & Dadvand, Abdolrahman & Dawoodian, Mazyar. (2014). An axisymmetric underwater vehicle-free surface interaction: A numerical study. Ocean Engineering. 96. 205-214. https://doi.org/10.1016/j.oceaneng.2014.12.028.
Pétillon, F., Bordier, L., Dauce, F., & Maisonneuve, J. J. (2019). Shallow and Infinite Water Manoeuvring of Submarine: Integration of Computational Fluid Dynamics (CFD) in the Design Process.
Phillips, A. B., Turnock, S. R., & Furlong, M. (2010). Influence of turbulence closure models on the vortical flow field around a submarine body undergoing steady drift. Journal of Marine Science and Technology, 15(3), 201–217. https://doi.org/10.1007/s00773-010-0090-1
Polis, C., Ranmuthugala, D., Duffy, J., & Renilson, M. (2013a). Characterisation of Near Surface Effects Acting on an Underwater Vehicle within the Vertical Plane. Proceedings of the International Naval Engineering Conference (14-16 May 2013), Singapore, pp. 1-5.
Polis, C., Ranmuthugala, D., Duffy, J., & Renilson, M. (2013b). Enabling the Prediction of Manoeuvring Characteristics of a Submarine Operating Near the Free Surface. Proceedings of the Pacific 2013 International Maritime Conference (7-9 October 2013), Darling Harbour, Australia, pp. 1-11.
Renilson, M. (2018). Manoeuvring and Control. In Submarine Hydrodynamics (pp. 33-118). Springer, Cham.
Renilson, M. R., Polis, C., Ranmuthugala, D., & Duffy, J. (2014). Prediction of the Hydroplane Angles Required due to High Speed Submarine Operations Near the Surface. RINA, Royal Institution of Naval Architects - Warship 2014: Naval Submarines and UUV’s, Papers, (June), 147–153.
Salari, M., & Rava, A. (2017). Numerical Investigation of Hydrodynamic Flow Over an AUV Moving in the Water-Surface Vicinity Considering the Laminar-Turbulent Transition. Journal of Marine Science and Application, 16(3), 298–304. https://doi.org/10.1007/s11804-017-1422-x
Saout, O. (2003). Computation of Hydrodynamic Coefficients and Determination of Dynamic Stability Characteristics of an Underwater Vehicle Including Free Surface Effects (Master's thesis). Florida Atlantic University, Boca Rotan, FL. Retrieved from http://fau.digital.flvc.org/islandora/object/ fau%3A9849/datastream/ OBJ/view
Saout, O., & Ananthakrishnan, P. (2011). Hydrodynamic and dynamic analysis to determine the directional stability of an underwater vehicle near a free surface. Applied Ocean Research, 33(2), 158–167. https://doi.org/10.1016/j.apor.2010.12.003
Shariati, S. K., & Mousavizadegan, S. H. (2017). The Effect of Appendages on the Hydrodynamic Characteristics of an Underwater Vehicle Near the Free Surface. Applied Ocean Research. Elsevier. https://doi.org/10.1016/j.apor.2017.07.001
Tahara, Y., & Stern, F. (1994). Validation of an interactive approach for calculating ship boundary layers and wakes for nonzero froude number. Computers and Fluids, 23(6), 785–816. https://doi.org/ 10.1016/0045-7930(94)90066-3
Tolliver, J. V. (1996). Studies on Submarine Control for Periscope Depth Operations. Thesis Collection (Master's thesis). Naval Postgraduate School, Monterey, CA. Retrieved from https:// apps.dtic.mil/sti/citations/ADA318492
Tupper, E. C., & Rawson, K. J. (2001). Basic Ship Theory, Combined Volume (5th ed.). Butterworth-Heinemann. pp. 387
Uslu, Y., & Bal, Ş. (2008). Numerical prediction of wave drag of 2-D and 3-D bodies under or on a free surface. Turkish Journal of Engineering and Environmental Sciences, 32(3), 177-188.
Vali, A., Saranjam, B., & Kamali, R. (2018). Experimental and Numerical Study of a Submarine and Propeller Behaviors in Submergence and Surface Conditions. Journal of Applied Fluid Mechanics, 11(5), 1297–1308. https://doi.org/10.29252/jafm.11.05.28693
Wang, L., Martin, J. E., Felli, M., & Carrica, P. M. (2020). Experimental and CFD for the Propeller Wake of a Generic Submarine Operating Near the Surface. Ocean Engineering, (206), 1–17. https://doi.org/https://doi.org/10.1016/j.oceaneng.2020.107304
Weinblum, G., Amtsberg, H., & Bock, W. (1950). Test on Wave Resistance of Immersed Bodies of Revolution (Report no. 1950-09-01). David Taylor Model Basin, Washington D.C. Retrieved from https://apps.dtic.mil/sti/citations/AD0827201.
Wigley, W. C. S. (1953). Water Forces on Submerged Bodies in Motion. Transactions, Institute of Naval Architects, (95), 268–279.
Wilson-Haffenden, S., Renilson, M., Ranmuthugala, D., & Dawson, E. (2010). An investigation into the wave making resistance of a submarine travelling below the free surface. In International Maritime Conference 2010: Maritime Industry-Challenges, Opportunities and Imperatives, 27-29 January 2010, Sydney, Australia (pp. 495-504). Engineers Australia.
Wu, B. S., Xing, F., Kuang, X. F., & Miao, Q. M. (2005). Investigation of hydrodynamic characteristics of submarine moving close to the sea bottom with CFD methods. Chuan Bo Li Xue/Journal of Ship Mechanics. https://doi.org/10.3969/j.issn.1007-7294.2005.03.003
Zhang, J. T., Maxwell, J. A., Gerber, A. G., Holloway, A. G. L., & Watt, G. D. (2013). Simulation of the Flow Over Axisymmetric Submarine Hulls in Steady Turning. Ocean Engineering, 57, 180–196. https://doi.org/10.1016/j.oceaneng.2012.09.016
Zhang, N., & Zhang, S. L. (2014). Numerical Simulation of Hull/Propeller Interaction of Submarine in Submergence and near Surface Conditions. Journal of Hydrodynamics, 26(1), 50–56. https://doi.org/10.1016/S1001-6058(14)60006-8
Assessment of the Maneuvering Characteristics of Underwater Vehicles-II: Effects of Fluid Boundaries
Having the motion ability also in the vertical plane, the maneuvering problem of underwater vehicles is a challenging subject that requires mathematical consideration of all degrees of freedom to define the trajectory of the vehicle. Studies in the literature, which address this problem, are mainly focused on the deeply submerged condition of the vehicle. These studies are based on the assumption of infinite fluid field that simplifies the problem. Due to the operational requirements such as communication, positioning, meeting the need for breathing and combustion air, and the survey of the seabed etc. it is inevitable for underwater vehicles to approach fluid boundaries. As a result prediction of vehicle's maneuvering performance under the boundary effects is crucial. This requirement causing further increase in the level of complexity and arise new questions. Issues such as out-of-plane forces resulting from interference effects, effects on propulsion parameters and control surfaces and how all these effects will be represented in the maneuvering model are the most important ones. In order to address all these questions alterations in the maneuvering characteristics of the vehicle due to the presence of boundaries must be examined separately and expressed mathematically. The representation of these mathematically expressed effects in the maneuvering model forms the second phase. In this phase; the use of hydrodynamic coefficients which are functions of governing parameters of boundary flows (Froude number, depth, keel-seabed distance, etc.) in the existing maneuvering models is the widely accepted approach in the literature. The option of deriving a new set of motion equations which takes boundary effects into account is currently in the conceptual stage. Extensive use of underwater vehicles in the proximity of fluid boundaries due to the operational requirements has increased the need for academic studies in this field in recent years. This situation motivates the scholars to investigate the different aspects of the above mentioned topic and led to the gathering of a considerable amount of literature. The scope of this study -which constitutes the second part of the main topic of “assessment of the maneuvering characteristics of underwater vehicles”- is to classify the current literature. The topics to be covered are; changes in the horizontal and vertical planes due to the presence of the free surface and the interactions in between, the interactions between the free surface and appendages, free surface and propulsion system and the effects of the seabed. The efforts regarding the representation of all these effects in the maneuvering models are also discussed. Furthermore, additional difficulties brought by the existence of fluid boundaries in to the numerical and experimental analysis of the problem are mentioned. Thus, it is aimed to provide a general assessment of the subject and identify potential research areas that are not addressed in the literature yet.
Amiri, M. M., Esperança, P. T., Vitola, M. A., & Sphaier, S. H. (2018). How Does the Free Surface Affect the Hydrodynamics of a Shallowly Submerged Submarine. Applied Ocean Research, 76(April), 34–50. https://doi.org/10.1016/j.apor.2018.04.008
Amiri, M. M., Esperança, P. T., Vitola, M. A., & Sphaier, S. H. (2019). An initial evaluation of the free surface effect on the maneuverability of underwater vehicles. Ocean Engineering, 196(December 2019), 106851. https://doi.org/10.1016/j.oceaneng.2019.106851
Amiri, M. M., Sphaier, S. H., Vitola, M. A., & Esperança, P. T. (2018). URANS Investigation of the Interaction Between the Free Surface and a Shallowly Submerged Underwater Vehicle at Steady Drift. Applied Ocean Research, 84(June 2018), 192–205. https://doi.org/10.1016/j.apor.2019.01.012
Bettle, M., Toxopeus, S. L., & Gerber, A. (2010). Calculation of Bottom Clearance Effects on Walrus Submarine Hydrodynamics. International Shipbuilding Progress, 57(3–4), 101–125.
Broglia, R., Di Mascio, A., & Muscari, R. (2007). Numerical study of confined water effects on a self-propelled submarine in steady manoeuvres. Proceedings of the International Offshore and Polar Engineering Conference, 17(2), 443–450.
Bystron, L., & Anderson, R. (2000). The submarine underwater maneuvering. Submarine Technology research and development. In The 5th International Conference on Submarines Selection (pp. 132–143). China Ship Scientific Research Center.
Carrica, P. M., Kim, Y., & Martin, J. E. (2019). Near-Surface Self Propulsion of a Generic Submarine in Calm Water and Waves. Ocean Engineering, 183(May), 87–105. https://doi.org/10.1016/j.oceaneng. 2019.04.082
Conway, A. S. T., Valentinis, F., & Seil, G. (2018). Characterisation of Suction Effects on a Submarine Body Operating Near the Free Surface. Proceedings of the 21st Australasian Fluid Mechanics Conference (10-13 December 2018), Adelaide, Australia. Retrieved from https://people.eng.unimelb. edu.au/imarusic/proceedings/21/Contribution_766_final.pdf
Crook, T. P. (1994). An Initial Assessment of Free Surface Effects on Submerged Bodies (Master's thesis). Naval Postgraduate School, Monterey, CA. Retrieved from http://hdl.handle.net/10945/42971
Dawson, D.W., “A Practical Computer Method for Solving Ship-Wave Problems”, Proc. 2nd Int. Conf. Nu- merical Ship Hydrodynamics, Office of Naval Research, USA, 30-38, 1977.
Dawson, E. (2014). An Investigation into the Effects of Submergence Depth , Speed and Hull Length-to-Diameter Ratio on the Near- Surface Operation of Conventional Submarines (Master's thesis). University of Tasmania, Australia. Retrieved from https://eprints.utas.edu.au/22368/
Doctors, L. J., & Beck, R. F. (1987). Numerical Aspects Of The Neumann-Kelvin Problem. Journal of Ship Research, 31(01), 1-13.
Doğrul, A. (2019). Hydrodynamic Investigation of a Submarine Moving Under Free Surface. Journal of ETA Maritime Science, 7(3), 212-227.
Du, X. xu, Wang, H., Hao, C. zhi, & Li, X. liang. (2014). Analysis of Hydrodynamic Characteristics of Unmanned Underwater Vehicle Moving Close to the Sea Bottom. Defence Technology, 10(1), 76–81. https://doi.org/10.1016/j.dt.2014.01.007
Dubbioso, G., Broglia, R., & Zaghi, S. (2017). CFD Analysis of Turning Abilities of a Submarine Model. Ocean Engineering, 129(October), 459–479. https://doi.org/10.1016/j.oceaneng.2016.10.046
Efremov, D. V., & Milanov, E. M. (2019). Hydrodynamics of DARPA SUBOFF Submarine at Shallowly Immersion Conditions. TransNav, 13(2), 337–342. https://doi.org/10.12716/1001.13.02.09
Farell, C. (1973). On the Wave Resistance of a Submerged Spheroid. Journal of Ship Research, 17(1), 1–11.
Farell, C., & Guven, O. (1973). On the Experimental Determination of the Resistance Components of a Submerged Spheroid. Journal of Ship Research, 17 (1973): 72–79. https://doi.org/10.5957/ jsr.1973.17.2.72
Gertler, M. (1950). Resistance Experiments On A Systematic Series Of Streamlined Bodies Of Revolution-For Application to the Design Of High-Speed Submarines (Report no. C-297). Navy Department David Taylor Model Basin, Washington D.C. Retrieved from https://apps.dtic.mil/dtic/tr/fulltext/ u2/a800144.pdf
Gertler, M., & Hagen, G. R. (1967). Standart Equations of Motion For Submarine Simulation (Report no. SR-009-01 01). Navy Ship Research and Development Center, Washington D.C.
Gourlay, T., & Dawson, E. (2015). A Havelock Source Panel Method for Near-Surface Submarines. Journal of Marine Science and Application, 14(3), 215–224. https://doi.org/10.1007/s11804-015-1319-5
Griffin, M. J. (2002). Numerical Prediction of the Maneuvering Characteristics of Submarines Operating Near the Free Surface (Doctoral dissertation). Massachusetts Institute of Technology, MA. Retrieved from https://dspace.mit.edu/ handle/1721.1/8327
Guanghua, H. (2013). An iterative Rankine BEM for wave-making analysis of submerged and surface-piercing bodies in finite water depth. Journal of Hydrodynamics, Ser. B. 25. 839–847. https://doi.org/10.1016/S1001-6058(13)60431-X.
Havelock, T. (1931). The Wave Resistance of a Spheroid. In Royal Society (pp. 275–285). Royal Society. https://doi.org/https://doi.org/10.1098/rspa.1931.0052
Havelock, T. H. (1919). Wave Resistance: Some Cases of Three-Dimensional Fluid Motion. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 95(670), 354–365. https://doi.org/10.1098/rspa.1919.0014
Havelock, T. H. (1917). Some cases of wave motion due to a submerged obstacle. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 93(654), 520–532. https://doi.org/10.1098/rspa.1917.0036
Havelock, T. H. (1931). The wave resistance of an ellipsoid. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 132(820), 480–486. https://doi.org/10.1098/rspa.1931.0113
Hess, J. L., & Smith, A. M. O. (1964). Calculation of Nonlifting Potential Flow About Arbitrary Three-Dimensional Bodies. Journal of Ship Research, (8), 22–44. https://doi.org/10.5957/jsr.1964.8.4.22.
Hoerner, S. F. (1965). Fluid Dynamic Drag: Practical Information on Aerodynamic Drag and Hydrodynamic Resistance. Brick Town, New Jersey, USA.: Published by the author.
Huang, H., Zhou, Z., Li, H., Zhou, H., & Xu, Y. (2020). The Effects of the Circulating Water Tunnel Wall and Support Struts on Hydrodynamic Coefficients Estimation for Autonomous Underwater Vehicles. International Journal of Naval Architecture and Ocean Engineering, 12, 1–10. https://doi.org/10.1016/j.ijnaoe.2019.04.008
ITTC Specialist Committee. (2002). Final report and recommendations to the 23th ITTC, Recommended Procedures and Guidelines-Testing and Extrapolation Methods Propulsion, Propulsor Open Water Test. In Proceedings of the 23th International Towing Tank Conference (pp. 1–8).
Jagadeesh, P., & Murali, K. (2010). RANS Predictions of Free Surface Effects on Axisymmetric Underwater Body. Engineering Applications of Computational Fluid Mechanics, 4(2), 301–313. https://doi.org/10.1080/19942060.2010.11015318
Jagadeesh, P., Murali, K., & Idichandy, V. G. (2009). Experimental investigation of hydrodynamic force coefficients over AUV hull form. Ocean Engineering, 36(1), 113–118. https://doi.org/10.1016/j.oceaneng.2008.11.008
Kırıkbaş, O , Kınacı, Ö , Bal, Ş . (2021). Sualtı Araçlarının Manevra Karakteristiklerinin Değerlendirilmesi-I: Manevra Analizlerinde Kullanılan Yaklaşımlar . Gemi ve Deniz Teknolojisi , (219) , 6-58 . Retrieved from https://dergipark.org.tr/tr/pub/gdt/issue/63160/877594
Kim, S. E., Rhee, B. J., & Miller, R. W. (2013). Anatomy of Turbulent Flow Around DARPA SUBOFF Body in a Turning Maneuver Using High-Fidelity RANS Computations. International Shipbuilding Progress, 60(1–4), 207–231. https://doi.org/10.3233/ISP-130100
Liu, H., & Huang, T. T. (1998). Summary of DARPA Suboff Experimental Program Data (Report no. CRDKNSWC/HD-1298-11). Carderock Division, Naval Surface Warfare Center, West Bethesda, MD. Retrieved from https://apps.dtic.mil/sti/pdfs/ADA359226.pdf
Liu, T. L., & Guo, Z. M. (2013). Analysis of Wave Spectrum for Submerged Bodies Moving Near the Free Surface. Ocean Engineering, 58, 239–251. https://doi.org/10.1016/j.oceaneng.2012.10.003
Mackay, M. (2003). Estimation of Submarine Near-Bottom Hydrodynamic Loads and Squat (Report no. DRDC Atlantic TM 2003—078). Defence R&D Canada-Atlantic, Canada. Retrieved from https://apps.dtic.mil/dtic/tr/fulltext/u2/a418585.pdf
Moonesun, M., Javadi, M., Charmdooz, P., & Mikhailovich, K.U. (2013). Evaluation of submarine model test in towing tank and comparison with CFD and experimental formulas for fully submerged resistance.
Moonesun, M., Korol, Y. M., Valeri, N., Brazhko, A., & Ursolov, A. (2016). Bottom Effect on the Submarine Moving Close to the Sea Bottom. The Journal of Scientific and Engineering Research 6(1), 106-113
Nematollahi, Ali & Dadvand, Abdolrahman & Dawoodian, Mazyar. (2014). An axisymmetric underwater vehicle-free surface interaction: A numerical study. Ocean Engineering. 96. 205-214. https://doi.org/10.1016/j.oceaneng.2014.12.028.
Pétillon, F., Bordier, L., Dauce, F., & Maisonneuve, J. J. (2019). Shallow and Infinite Water Manoeuvring of Submarine: Integration of Computational Fluid Dynamics (CFD) in the Design Process.
Phillips, A. B., Turnock, S. R., & Furlong, M. (2010). Influence of turbulence closure models on the vortical flow field around a submarine body undergoing steady drift. Journal of Marine Science and Technology, 15(3), 201–217. https://doi.org/10.1007/s00773-010-0090-1
Polis, C., Ranmuthugala, D., Duffy, J., & Renilson, M. (2013a). Characterisation of Near Surface Effects Acting on an Underwater Vehicle within the Vertical Plane. Proceedings of the International Naval Engineering Conference (14-16 May 2013), Singapore, pp. 1-5.
Polis, C., Ranmuthugala, D., Duffy, J., & Renilson, M. (2013b). Enabling the Prediction of Manoeuvring Characteristics of a Submarine Operating Near the Free Surface. Proceedings of the Pacific 2013 International Maritime Conference (7-9 October 2013), Darling Harbour, Australia, pp. 1-11.
Renilson, M. (2018). Manoeuvring and Control. In Submarine Hydrodynamics (pp. 33-118). Springer, Cham.
Renilson, M. R., Polis, C., Ranmuthugala, D., & Duffy, J. (2014). Prediction of the Hydroplane Angles Required due to High Speed Submarine Operations Near the Surface. RINA, Royal Institution of Naval Architects - Warship 2014: Naval Submarines and UUV’s, Papers, (June), 147–153.
Salari, M., & Rava, A. (2017). Numerical Investigation of Hydrodynamic Flow Over an AUV Moving in the Water-Surface Vicinity Considering the Laminar-Turbulent Transition. Journal of Marine Science and Application, 16(3), 298–304. https://doi.org/10.1007/s11804-017-1422-x
Saout, O. (2003). Computation of Hydrodynamic Coefficients and Determination of Dynamic Stability Characteristics of an Underwater Vehicle Including Free Surface Effects (Master's thesis). Florida Atlantic University, Boca Rotan, FL. Retrieved from http://fau.digital.flvc.org/islandora/object/ fau%3A9849/datastream/ OBJ/view
Saout, O., & Ananthakrishnan, P. (2011). Hydrodynamic and dynamic analysis to determine the directional stability of an underwater vehicle near a free surface. Applied Ocean Research, 33(2), 158–167. https://doi.org/10.1016/j.apor.2010.12.003
Shariati, S. K., & Mousavizadegan, S. H. (2017). The Effect of Appendages on the Hydrodynamic Characteristics of an Underwater Vehicle Near the Free Surface. Applied Ocean Research. Elsevier. https://doi.org/10.1016/j.apor.2017.07.001
Tahara, Y., & Stern, F. (1994). Validation of an interactive approach for calculating ship boundary layers and wakes for nonzero froude number. Computers and Fluids, 23(6), 785–816. https://doi.org/ 10.1016/0045-7930(94)90066-3
Tolliver, J. V. (1996). Studies on Submarine Control for Periscope Depth Operations. Thesis Collection (Master's thesis). Naval Postgraduate School, Monterey, CA. Retrieved from https:// apps.dtic.mil/sti/citations/ADA318492
Tupper, E. C., & Rawson, K. J. (2001). Basic Ship Theory, Combined Volume (5th ed.). Butterworth-Heinemann. pp. 387
Uslu, Y., & Bal, Ş. (2008). Numerical prediction of wave drag of 2-D and 3-D bodies under or on a free surface. Turkish Journal of Engineering and Environmental Sciences, 32(3), 177-188.
Vali, A., Saranjam, B., & Kamali, R. (2018). Experimental and Numerical Study of a Submarine and Propeller Behaviors in Submergence and Surface Conditions. Journal of Applied Fluid Mechanics, 11(5), 1297–1308. https://doi.org/10.29252/jafm.11.05.28693
Wang, L., Martin, J. E., Felli, M., & Carrica, P. M. (2020). Experimental and CFD for the Propeller Wake of a Generic Submarine Operating Near the Surface. Ocean Engineering, (206), 1–17. https://doi.org/https://doi.org/10.1016/j.oceaneng.2020.107304
Weinblum, G., Amtsberg, H., & Bock, W. (1950). Test on Wave Resistance of Immersed Bodies of Revolution (Report no. 1950-09-01). David Taylor Model Basin, Washington D.C. Retrieved from https://apps.dtic.mil/sti/citations/AD0827201.
Wigley, W. C. S. (1953). Water Forces on Submerged Bodies in Motion. Transactions, Institute of Naval Architects, (95), 268–279.
Wilson-Haffenden, S., Renilson, M., Ranmuthugala, D., & Dawson, E. (2010). An investigation into the wave making resistance of a submarine travelling below the free surface. In International Maritime Conference 2010: Maritime Industry-Challenges, Opportunities and Imperatives, 27-29 January 2010, Sydney, Australia (pp. 495-504). Engineers Australia.
Wu, B. S., Xing, F., Kuang, X. F., & Miao, Q. M. (2005). Investigation of hydrodynamic characteristics of submarine moving close to the sea bottom with CFD methods. Chuan Bo Li Xue/Journal of Ship Mechanics. https://doi.org/10.3969/j.issn.1007-7294.2005.03.003
Zhang, J. T., Maxwell, J. A., Gerber, A. G., Holloway, A. G. L., & Watt, G. D. (2013). Simulation of the Flow Over Axisymmetric Submarine Hulls in Steady Turning. Ocean Engineering, 57, 180–196. https://doi.org/10.1016/j.oceaneng.2012.09.016
Zhang, N., & Zhang, S. L. (2014). Numerical Simulation of Hull/Propeller Interaction of Submarine in Submergence and near Surface Conditions. Journal of Hydrodynamics, 26(1), 50–56. https://doi.org/10.1016/S1001-6058(14)60006-8
Kırıkbaş, O., Kınacı, Ö. K., & Bal, Ş. (2021). Su Altı Araçlarının Manevra Karakteristiklerinin Değerlendirilmesi-II: Akışkan Sınırlarının Etkileri. Gemi Ve Deniz Teknolojisi(220), 135-174. https://doi.org/10.54926/gdt.983658