Research Article
BibTex RIS Cite

Dikili Açıklarında Bir Açık Deniz Rüzgâr Çiftliğinin Kavramsal Tasarımı

Year 2022, Issue: 221, 7 - 23, 30.06.2022
https://doi.org/10.54926/gdt.1050615

Abstract

Bu çalışmada, Türkiye için açık deniz rüzgâr enerji potansiyelinin önemi vurgulanarak bir açık deniz rüzgâr çiftliğinin teknik açıdan kavramsal tasarımı sunulmaktadır. 640,000 m2 büyüklüğünde bir alanı kapsayacak şekilde önerilen açık deniz rüzgâr çiftliği için seçilen yer Türkiye'nin Ege Denizi bölgesinde bir sahil kasabası olan Dikili'nin güneybatı kıyılarıdır. Rüzgâr türbini modeli, göbek yüksekliği 78 m olan Vestas V80-2.0 Offshore (IEC IIA sınıfı) tipi olarak tavsiye edilmekte olup, önerilen açık deniz rüzgâr çiftliğinin kurulu gücü 20 MW olacaktır. Şebeke bağlantı noktası, önerilen açık deniz rüzgâr çiftliğine en yakın ve en uygun yer olan Narlıdere Limanı olarak belirlenmiştir. Temel tipi ise su derinliği ve deniz tabanı koşulları dikkate alınarak tek kazıklı (mono-pile) temel olarak seçilmiştir. Önerilen açık deniz rüzgâr çiftliğinin yıllık tahmini ortalama enerji üretimi 72 GW olacaktır.

References

  • Aquaret, https://www.aquaret.com/images/stories/aquaret/pdf/chapter5.pdf [date retrieved 12.10.2018].
  • Argin, M. and Yerci, V. (2015). The Assessment of Offshore Wind Power Potential of Turkey, Ninth International Conference on Electrical and Electronics Engineering (ELECO).
  • Barutçu, B. (2010). Wind Energy and Conversion Technology, EBT 527E Course Notes, Istanbul Technical University.
  • Beji, S. and Lützen, U. (2017). Offshore Wind Farm Design, ADM 507E Course Notes, Istanbul Technical University.
  • Dalén, G. (2013). Offshore Wind Power, M. Kaltschmitt et al. (eds.), Renewable Energy Systems, Springer, New York.
  • EIA (Energy Information Administration), https://www.eia.gov/opendata/qb.php?sdid=INTL.2-2-TUR-BKWH.A [date retrieved 11.03.2022].
  • Europe-geology, https://www.europe-geology.eu/marine-geology/seabed-substrate/ [date retrieved 05.01.2020].
  • GWA (Global Wind Atlas), https://globalwindatlas.info/Dikili [date retrieved 04.01.2020].
  • Hau, E. (2013). Wind Turbines: Fundamentals, Technologies, Application, Economics, Third translated edition, Springer, Heidelberg.
  • Manwell, J. F. (2013). Offshore Wind Energy Technology Trends, Challenges, and Risks, M. Kaltschmitt et al. (eds.), Renewable Energy Systems, Springer, New York.
  • Meteoblue, https://www.meteoblue.com/tr/hava/archive/export/karaada_türkiye_310395 [date retrieved 10.02.2020].
  • Mott MacDonald (2010). Schematic diagram of a mono-pile foundation system, Offshore Wind Presentation - IEEE Boston PES.
  • Openseamap, https://map.openseamap.org/Karaada [date retrieved 19.07.2019].
  • SAM (System Advisor Model). (2019). Turbine Power Curve, Turbine Layout Map, SAM version 2018.11.11.
  • Satir, M., Murphy, F., McDonnell, K. (2017). Feasibility Study of an Offshore Wind Farm in the Aegean Sea, Turkey, Renewable and Sustainable Energy Reviews.
  • Strach-Sonsalla, M., Stammler, M., Wenske, J., Jonkman, J., Vorpahl, F. (2016). Offshore Wind Energy, Ocean Renewable Energy-Part E/49. Wind Europe. (2019). Offshore Wind in Europe: Key Trends and Statistics 2018, Wind Europe Annual Report, Brussels.
  • Wind-turbine-models, https://en.wind-turbine-models.com/turbines/668-vestas-v80-offshore [date retrieved 29.10.2019].
  • World Bank Group, https://www.worldbank.org/en/topic/energy/publication/expanding-offshore-wind-in-emerging-markets [date retrieved 28.01.2020].

A Conceptual Design of an Offshore Wind Farm off the Dikili Shores

Year 2022, Issue: 221, 7 - 23, 30.06.2022
https://doi.org/10.54926/gdt.1050615

Abstract

In this study, importance of the offshore wind energy potential for Turkey is emphasized by working out a technical conceptual design of an offshore wind farm (OWF). The site selected for the proposed OWF with an area of 640,000 m2 is located in the southwestern shores of Dikili, a coastal town in the Aegean Sea region of Turkey. The wind turbine model recommended is Vestas V80 - 2.0 Offshore (IEC IIA class) type with a hub height of 78 m, hence the installed power of the OWF composed of ten units is 20 MW. The grid connection point is determined as the Port of Narlıdere, which is the nearest convenient place to the proposed OWF. The foundation type is selected as mono-pile foundation according to the water depth and seabed conditions. The proposed OWF is estimated to yield average annual energy of 72 GW.

Thanks

The authors are indebted to Dipl. Ing. Uwe Lützen for his help in calculations of estimated energy production.

References

  • Aquaret, https://www.aquaret.com/images/stories/aquaret/pdf/chapter5.pdf [date retrieved 12.10.2018].
  • Argin, M. and Yerci, V. (2015). The Assessment of Offshore Wind Power Potential of Turkey, Ninth International Conference on Electrical and Electronics Engineering (ELECO).
  • Barutçu, B. (2010). Wind Energy and Conversion Technology, EBT 527E Course Notes, Istanbul Technical University.
  • Beji, S. and Lützen, U. (2017). Offshore Wind Farm Design, ADM 507E Course Notes, Istanbul Technical University.
  • Dalén, G. (2013). Offshore Wind Power, M. Kaltschmitt et al. (eds.), Renewable Energy Systems, Springer, New York.
  • EIA (Energy Information Administration), https://www.eia.gov/opendata/qb.php?sdid=INTL.2-2-TUR-BKWH.A [date retrieved 11.03.2022].
  • Europe-geology, https://www.europe-geology.eu/marine-geology/seabed-substrate/ [date retrieved 05.01.2020].
  • GWA (Global Wind Atlas), https://globalwindatlas.info/Dikili [date retrieved 04.01.2020].
  • Hau, E. (2013). Wind Turbines: Fundamentals, Technologies, Application, Economics, Third translated edition, Springer, Heidelberg.
  • Manwell, J. F. (2013). Offshore Wind Energy Technology Trends, Challenges, and Risks, M. Kaltschmitt et al. (eds.), Renewable Energy Systems, Springer, New York.
  • Meteoblue, https://www.meteoblue.com/tr/hava/archive/export/karaada_türkiye_310395 [date retrieved 10.02.2020].
  • Mott MacDonald (2010). Schematic diagram of a mono-pile foundation system, Offshore Wind Presentation - IEEE Boston PES.
  • Openseamap, https://map.openseamap.org/Karaada [date retrieved 19.07.2019].
  • SAM (System Advisor Model). (2019). Turbine Power Curve, Turbine Layout Map, SAM version 2018.11.11.
  • Satir, M., Murphy, F., McDonnell, K. (2017). Feasibility Study of an Offshore Wind Farm in the Aegean Sea, Turkey, Renewable and Sustainable Energy Reviews.
  • Strach-Sonsalla, M., Stammler, M., Wenske, J., Jonkman, J., Vorpahl, F. (2016). Offshore Wind Energy, Ocean Renewable Energy-Part E/49. Wind Europe. (2019). Offshore Wind in Europe: Key Trends and Statistics 2018, Wind Europe Annual Report, Brussels.
  • Wind-turbine-models, https://en.wind-turbine-models.com/turbines/668-vestas-v80-offshore [date retrieved 29.10.2019].
  • World Bank Group, https://www.worldbank.org/en/topic/energy/publication/expanding-offshore-wind-in-emerging-markets [date retrieved 28.01.2020].
There are 18 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Erdem Acar This is me 0000-0002-4645-2606

Serdar Beji 0000-0002-1927-9262

Publication Date June 30, 2022
Published in Issue Year 2022 Issue: 221

Cite

APA Acar, E., & Beji, S. (2022). A Conceptual Design of an Offshore Wind Farm off the Dikili Shores. Gemi Ve Deniz Teknolojisi(221), 7-23. https://doi.org/10.54926/gdt.1050615