İntrakaviter Serviks Brakiterapisi için Ters Planlama Simüle Tavlama ve Manuel Optimizasyonun Dozimetrik Karşılaştırması
Year 2024,
Volume: 34 Issue: 1, 109 - 113, 29.02.2024
Osman Vefa Gül
,
Hamit Başaran
,
Mursel Duzova
,
Gökçen İnan
Abstract
Arkaplan/Hedefler: Brakiterapi tedavi planlamasında farklı optimizasyon yöntemleri kullanılmaktadır. Bu çalışmanın amacı, serviks kanserinin brakiterapisinde yaygın olarak kullanılan manuel optimizasyon (MO) ve ters planlama simüle edilmiş tavlama (IPSA) planlama teknikleri arasındaki dozimetrik farklılıkları değerlendirmektir.
Yöntemler: Bu çalışmaya on beş serviks kanseri hasta dahil edildi. Tedavide Nucletron standart tandem-ovoid (TO) aplikatörler kullanıldı. Yüksek riskli klinik tümör hacmi (HR-CTV), mesane, rektum ve sigmoid şekillendirme GEC-ESTRO tavsiyelerine göre yapıldı. IPSA ve MO teknikleri kullanılarak her hasta için iki plan oluşturuldu. Planlama aşamasında hedef hacme 700 cGy doz reçete edilirken, risk altındaki organların en iyi şekilde korunmasına çalışıldı. IPSA ve MO planlama teknikleri doz hacim histogramı (DVH) aracılığıyla karşılaştırıldı.
Bulgular: MO ve IPSA teknikleri için HR-CTV ve CI değerleri arasında anlamlı fark yoktu. Rektumun 2cm3 hacmi açısından IPSA ve MO teknikleri arasında anlamlı fark vardı (p= 0.002). IPSA tekniği ile mesanenin daha iyi korunduğu görüldü. Mesane için IPSA ve MO arasında %6,26 doz farkı vardı. Sigmoidin 2cm3 hacmi açısından IPSA ve MO teknikleri arasında anlamlı fark bulundu (p= 0.002). IPSA tekniği zaman açısından MO tekniğinden üstündü.
Sonuç: IPSA tekniği risk altındaki organların (OARs) korunması açısından MO tekniğinden üstündü. IPSA, serviks brakiterapisinde daha hızlı ve kaliteli bir plan sağlar.
References
- Viswanathan AN, Erickson BA. Three-Dimensional Imaging in Gynecologic Brachytherapy: A Survey of the American Brachytherapy Society. International Journal of Radiation Oncology*Biology*Physics. 2010;76(1):104-9.
- Mahantshetty U, Poetter R, Beriwal S, Grover S, Lavanya G, Rai B, et al. IBS-GEC ESTRO-ABS recommendations for CT based contouring in image guided adaptive brachytherapy for cervical cancer. Radiotherapy and Oncology. 2021;160:273-84.
- Viswanathan AN, Erickson B, Gaffney DK, Beriwal S, Bhatia SK, Lee Burnett O, et al. Comparison and Consensus Guidelines for Delineation of Clinical Target Volume for CT- and MR-Based Brachytherapy in Locally Advanced Cervical Cancer. International Journal of Radiation Oncology*Biology*Physics. 2014;90(2):320-8.
- Kim YJ, Kang H-C, Kim YS. Impact of intracavitary brachytherapy technique (2D versus 3D) on outcomes of cervical cancer: a systematic review and meta-analysis. Strahlentherapie und Onkologie. 2020;196(11):973-82.
- Gao M, Albuquerque K, Chi A, Rusu I. 3D CT-based volumetric dose assessment of 2D plans using GEC-ESTRO guidelines for cervical cancer brachytherapy. Brachytherapy. 2010;9(1):55-60.
- Kirisits C, Pötter R, Lang S, Dimopoulos J, Wachter-Gerstner N, Georg D. Dose and volume parameters for MRI-based treatment planning in intracavitary brachytherapy for cervical cancer. International Journal of Radiation Oncology*Biology*Physics. 2005;62(3):901-11.
- Jamema SV, Sharma S, Mahantshetty U, Engineer R, Shrivastava SK, Deshpande DD. Comparison of IPSA with dose-point optimization and manual optimization for interstitial template brachytherapy for gynecologic cancers. Brachytherapy. 2011;10(4):306-12.
- Morén B, Larsson T, Tedgren ÅC. Optimization in treatment planning of high dose‐rate brachytherapy — Review and analysis of mathematical models. Medical Physics. 2021;48(5):2057-82.
- Kannan RA, Gururajachar JM, Ponni A, Koushik K, Kumar M, Alva RC, et al. Comparison of manual and inverse optimisation techniques in high dose rate intracavitary brachytherapy of cervical cancer: A dosimetric study. Reports of Practical Oncology & Radiotherapy. 2015;20(5):365-9.
- Deist TM, Gorissen BL. High-dose-rate prostate brachytherapy inverse planning on dose-volume criteria by simulated annealing. Physics in Medicine and Biology. 2016;61(3):1155-70.
- Liu Z, Liang H, Wang X, Yang H, Deng Y, Luo T, et al. Comparison of graphical optimization or IPSA for improving brachytheraphy plans associated with inadequate target coverage for cervical cancer. Scientific Reports. 2017;7(1).
- Jamema SV, Kirisits C, Mahantshetty U, Trnkova P, Deshpande DD, Shrivastava SK, et al. Comparison of DVH parameters and loading patterns of standard loading, manual and inverse optimization for intracavitary brachytherapy on a subset of tandem/ovoid cases. Radiotherapy and Oncology. 2010;97(3):501-6.
- Trnková P, Pötter R, Baltas D, Karabis A, Fidarova E, Dimopoulos J, et al. New inverse planning technology for image-guided cervical cancer brachytherapy: Description and evaluation within a clinical frame. Radiotherapy and Oncology. 2009;93(2):331-40.
- Anderson J, Huang Y, Kim Y. Physics Contributions Dosimetric impact of point A definition on high-dose-rate brachytherapy for cervical cancer: evaluations on conventional point A and MRI-guided, conformal plans. Journal of Contemporary Brachytherapy. 2012;4:241-6.
- Choi CH, Park S-Y, Kim J-i, Kim JH, Kim K, Carlson J, et al. Quality of tri-Co-60 MR-IGRT treatment plans in comparison with VMAT treatment plans for spine SABR. The British Journal of Radiology. 2017;90(1070).
- Palmqvist T, Dybdahl Wanderås A, Langeland Marthinsen AB, Sundset M, Langdal I, Danielsen S, et al. Dosimetric evaluation of manually and inversely optimized treatment planning for high dose rate brachytherapy of cervical cancer. Acta Oncologica. 2014;53(8):1012-8.
- Tinkle CL, Weinberg V, Chen L-M, Littell R, Cunha JAM, Sethi RA, et al. Inverse Planned High-Dose-Rate Brachytherapy for Locoregionally Advanced Cervical Cancer: 4-Year Outcomes. International Journal of Radiation Oncology*Biology*Physics. 2015;92(5):1093-100.
- Trnková P, Baltas D, Karabis A, Stock M, Dimopoulos J, Georg D, et al. Physics Contributions Original article A detailed dosimetric comparison between manual and inverse plans in HDR intracavitary/interstitial cervical cancer brachytherapy. Journal of Contemporary Brachytherapy. 2010;4:163-70.
- Fu Q, Xu Y, Zuo J, An J, Huang M, Yang X, et al. Comparison of two inverse planning algorithms for cervical cancer brachytherapy. Journal of Applied Clinical Medical Physics. 2021;22(3):157-65.
- Roy S, Subramani V, Singh K, Rathi A. Dosimetric impact of dwell time deviation constraint on inverse brachytherapy treatment planning and comparison with conventional optimization method for interstitial brachytherapy implants. Journal of Cancer Research and Therapeutics. 2021;17(2).
- Wang X, Wang P, Tang B, Kang S, Hou Q, Wu Z, et al. An Inverse Dose Optimization Algorithm for Three-Dimensional Brachytherapy. Frontiers in Oncology. 2020;10.
- Tang B, Liu X, Wang X, Kang S, Wang P, Li J, et al. Dosimetric comparison of graphical optimization and inverse planning simulated annealing for brachytherapy of cervical cancer. J Contemp Brachytherapy. 2019;11(4):379-83.
Dosimetric Comparison of Inverse Planning Simulated Annealing and Manual Optimization for Intracavitary Cervix Brachytherapy
Year 2024,
Volume: 34 Issue: 1, 109 - 113, 29.02.2024
Osman Vefa Gül
,
Hamit Başaran
,
Mursel Duzova
,
Gökçen İnan
Abstract
Background/Aims: Different optimization methods in brachytherapy treatment planning is used. The aim of this study is to evaluate dosimetric differences between manual optimization (MO) and inverse planning simulated annealing (IPSA) planning techniques commonly used in brachytherapy of cervical cancer.
Methods: Fifteen cervical cancer patients were included in this study. Nucletron standard tandem-ovoid (TO) applicators were used for treatment. High-risk clinical tumor volume (HR-CTV), bladder, rectum, and sigmoid contouring were performed according to GEC-ESTRO recommendations. Two plans were created for each patient using IPSA and MO techniques. While a dose of 700 cGy was prescribed to the target volume during the planning phase, an effort was made to protect the organs at risk in the best way possible. IPSA and MO planning techniques were compared via dose volume histogram (DVH).
Results: There was no significant difference between HR-CTV and CI values for MO and IPSA techniques. There was a significant difference between IPSA and MO techniques for the 2cm3 volume of the rectum (p= 0.002). It was observed that the bladder was better protected by the IPSA technique. There was a 6.26% dose difference between IPSA and MO for the bladder. A significant difference was found between IPSA and MO techniques for the 2cm3 volume of the sigmoid (p= 0.002). The IPSA technique was superior to the MO technique in terms of time.
Conclusions: The IPSA technique was superior to the MO technique in terms of protecting organs at risk (OARs). IPSA provides a faster and higher quality plan in cervical brachytherapy.
Supporting Institution
This study was supported by the Scientific Research Projects (BAP) Grants Unit, Selcuk University, Konya, TURKEY
References
- Viswanathan AN, Erickson BA. Three-Dimensional Imaging in Gynecologic Brachytherapy: A Survey of the American Brachytherapy Society. International Journal of Radiation Oncology*Biology*Physics. 2010;76(1):104-9.
- Mahantshetty U, Poetter R, Beriwal S, Grover S, Lavanya G, Rai B, et al. IBS-GEC ESTRO-ABS recommendations for CT based contouring in image guided adaptive brachytherapy for cervical cancer. Radiotherapy and Oncology. 2021;160:273-84.
- Viswanathan AN, Erickson B, Gaffney DK, Beriwal S, Bhatia SK, Lee Burnett O, et al. Comparison and Consensus Guidelines for Delineation of Clinical Target Volume for CT- and MR-Based Brachytherapy in Locally Advanced Cervical Cancer. International Journal of Radiation Oncology*Biology*Physics. 2014;90(2):320-8.
- Kim YJ, Kang H-C, Kim YS. Impact of intracavitary brachytherapy technique (2D versus 3D) on outcomes of cervical cancer: a systematic review and meta-analysis. Strahlentherapie und Onkologie. 2020;196(11):973-82.
- Gao M, Albuquerque K, Chi A, Rusu I. 3D CT-based volumetric dose assessment of 2D plans using GEC-ESTRO guidelines for cervical cancer brachytherapy. Brachytherapy. 2010;9(1):55-60.
- Kirisits C, Pötter R, Lang S, Dimopoulos J, Wachter-Gerstner N, Georg D. Dose and volume parameters for MRI-based treatment planning in intracavitary brachytherapy for cervical cancer. International Journal of Radiation Oncology*Biology*Physics. 2005;62(3):901-11.
- Jamema SV, Sharma S, Mahantshetty U, Engineer R, Shrivastava SK, Deshpande DD. Comparison of IPSA with dose-point optimization and manual optimization for interstitial template brachytherapy for gynecologic cancers. Brachytherapy. 2011;10(4):306-12.
- Morén B, Larsson T, Tedgren ÅC. Optimization in treatment planning of high dose‐rate brachytherapy — Review and analysis of mathematical models. Medical Physics. 2021;48(5):2057-82.
- Kannan RA, Gururajachar JM, Ponni A, Koushik K, Kumar M, Alva RC, et al. Comparison of manual and inverse optimisation techniques in high dose rate intracavitary brachytherapy of cervical cancer: A dosimetric study. Reports of Practical Oncology & Radiotherapy. 2015;20(5):365-9.
- Deist TM, Gorissen BL. High-dose-rate prostate brachytherapy inverse planning on dose-volume criteria by simulated annealing. Physics in Medicine and Biology. 2016;61(3):1155-70.
- Liu Z, Liang H, Wang X, Yang H, Deng Y, Luo T, et al. Comparison of graphical optimization or IPSA for improving brachytheraphy plans associated with inadequate target coverage for cervical cancer. Scientific Reports. 2017;7(1).
- Jamema SV, Kirisits C, Mahantshetty U, Trnkova P, Deshpande DD, Shrivastava SK, et al. Comparison of DVH parameters and loading patterns of standard loading, manual and inverse optimization for intracavitary brachytherapy on a subset of tandem/ovoid cases. Radiotherapy and Oncology. 2010;97(3):501-6.
- Trnková P, Pötter R, Baltas D, Karabis A, Fidarova E, Dimopoulos J, et al. New inverse planning technology for image-guided cervical cancer brachytherapy: Description and evaluation within a clinical frame. Radiotherapy and Oncology. 2009;93(2):331-40.
- Anderson J, Huang Y, Kim Y. Physics Contributions Dosimetric impact of point A definition on high-dose-rate brachytherapy for cervical cancer: evaluations on conventional point A and MRI-guided, conformal plans. Journal of Contemporary Brachytherapy. 2012;4:241-6.
- Choi CH, Park S-Y, Kim J-i, Kim JH, Kim K, Carlson J, et al. Quality of tri-Co-60 MR-IGRT treatment plans in comparison with VMAT treatment plans for spine SABR. The British Journal of Radiology. 2017;90(1070).
- Palmqvist T, Dybdahl Wanderås A, Langeland Marthinsen AB, Sundset M, Langdal I, Danielsen S, et al. Dosimetric evaluation of manually and inversely optimized treatment planning for high dose rate brachytherapy of cervical cancer. Acta Oncologica. 2014;53(8):1012-8.
- Tinkle CL, Weinberg V, Chen L-M, Littell R, Cunha JAM, Sethi RA, et al. Inverse Planned High-Dose-Rate Brachytherapy for Locoregionally Advanced Cervical Cancer: 4-Year Outcomes. International Journal of Radiation Oncology*Biology*Physics. 2015;92(5):1093-100.
- Trnková P, Baltas D, Karabis A, Stock M, Dimopoulos J, Georg D, et al. Physics Contributions Original article A detailed dosimetric comparison between manual and inverse plans in HDR intracavitary/interstitial cervical cancer brachytherapy. Journal of Contemporary Brachytherapy. 2010;4:163-70.
- Fu Q, Xu Y, Zuo J, An J, Huang M, Yang X, et al. Comparison of two inverse planning algorithms for cervical cancer brachytherapy. Journal of Applied Clinical Medical Physics. 2021;22(3):157-65.
- Roy S, Subramani V, Singh K, Rathi A. Dosimetric impact of dwell time deviation constraint on inverse brachytherapy treatment planning and comparison with conventional optimization method for interstitial brachytherapy implants. Journal of Cancer Research and Therapeutics. 2021;17(2).
- Wang X, Wang P, Tang B, Kang S, Hou Q, Wu Z, et al. An Inverse Dose Optimization Algorithm for Three-Dimensional Brachytherapy. Frontiers in Oncology. 2020;10.
- Tang B, Liu X, Wang X, Kang S, Wang P, Li J, et al. Dosimetric comparison of graphical optimization and inverse planning simulated annealing for brachytherapy of cervical cancer. J Contemp Brachytherapy. 2019;11(4):379-83.