Research Article
BibTex RIS Cite

Non-Alkolik Yağlı Karaciğer Hastalarında Kardiyovasküler Riski Kolayca Tahmin Etmek Mümkün mü?

Year 2024, Volume: 34 Issue: 5, 629 - 636, 31.10.2024
https://doi.org/10.54005/geneltip.1415989

Abstract

Amaç: Enflamasyon, alkolsüz yağlı karaciğer hastalığının (NAYKH) patogenezinde önemli bir rol oynar. Epikardiyal yağ dokusu (EYD), enflamatuar hücrelerle yakından ilişkilidir. Monosit sayısının HDL-kolesterol'e (MHR) oranı, kardiyovasküler hastalık (KVH) için yeni bir prognostik belirteçtir. NAYKH hastalarında EYD ile inflamatuvar göstergeler arasındaki ilişkiyi ve bunun basit testlerle tahmin edilip edilemeyeceğini araştırmak istedik.
Gereç-Yöntem: Bu retrospektif çalışmaya 2014-2021 yılları arasında toraks bilgisayarlı tomografi anjiyografisi yapılan 218 hasta dahil edildi. Hastalar karaciğer atenüasyon oranına göre NAYKH grubu (HU<48 IU) ve NAYKH olmayan grup (HU>48 IU) olarak ayrıldı. NAYKH grubunda 136 hasta ve NAYKH olmayan grupta 82 hasta.
Bulgular: NAYKH grubunun vücut kitle indeksi (VKİ), trigliserit, EYD hacmi ve MHR değerleri diğer grutan yüksekti. NAYKH grubunda EYD hacmi, yaş, MHR, c-reaktif protein (CRP), VKI, üre, glikoz ve alanin aminotransferaz (ALT) ile pozitif korelasyon gösterdi. Lineer regresyon analizinde MHR, NAFLD hastalarında EYD hacminin tek bağımsız belirleyicisiydi.
Sonuç: KVH için bir risk belirteci olan EYD hacmi, NAYKH hastalarında radyolojik yöntemler olmaksızın MHR ile tahmin edilebilir. Böylece KVH açısından yüksek risk grubunda yer alan NAYKH hastalarının daha kolay ve erken saptanması mümkün olacaktır.

References

  • Ciardullo S, Perseghin G. Prevalence of NAFLD, MAFLD and associated advanced fibrosis in the contemporary United States population. Liver Int. 2021; 41(6):1290–3. https://pubmed.ncbi.nlm.nih.gov/33590934/
  • Tilg H, Moschen AR. Insulin resistance, inflammation, and non-alcoholic fatty liver disease. Trends Endocrinol Metab. 2008;19(10):371–9. https://pubmed.ncbi.nlm.nih.gov/18929493/
  • van der Heide D, Weiskirchen R, Bansal R. Therapeutic Targeting of Hepatic Macrophages for the Treatment of Liver Diseases. Front Immunology 2019;10. https://pubmed.ncbi.nlm.nih.gov/31849997/
  • De Feyter PJ. Epicardial adipose tissue: An emerging role for the development of coronary atherosclerosis. Vol. 34, Clinical Cardiology. John Wiley & Sons, Ltd; 2011 p. 143–4. https://onlinelibrary.wiley.com/doi/full/10.1002/clc.20893
  • Le Jemtel TH, Samson R, Milligan G, Jaiswal A, Oparil S. Visceral Adipose Tissue Accumulation and Residual Cardiovascular Risk. Vol. 20, Current Hypertension Reports. Current Medicine Group LLC 1; 2018. p. 1–14. https://doi.org/10.1007/s11906-018-0880-0
  • Chen JW, Li C, Liu ZH, Shen Y, Ding FH, et al. The role of monocyte to high-density lipoprotein cholesterol ratio in prediction of carotid intima-media thickness in patients with type 2 diabetes. Front Endocrinology (Lausanne). 2019;10(APR):191.
  • Kundi H, Kiziltunc E, Cetin M, Cicekcioglu H, Cetin ZG et al. Association of monocyte/HDL-C ratio with SYNTAX scores in patients with stable coronary artery disease. Herz. 2016;41(6):523–9. https://pubmed.ncbi.nlm.nih.gov/26753671/
  • Ganjali S, Gotto AM, Ruscica M, Atkin SL, Butler AE et al. Monocyte-to-HDL-cholesterol ratio as a prognostic marker in cardiovascular diseases. J Cell Physiol. 2018; 233(12):9237–46. https://pubmed.ncbi.nlm.nih.gov/30076716/
  • Sarin S, Wenger C, Marwaha A, Qureshi A, Go BDM et al. Clinical Significance of Epicardial Fat Measured Using Cardiac Multislice Computed Tomography. Am J Cardiol. 2008;102(6):767–71. https://pubmed.ncbi.nlm.nih.gov/18774004/
  • Piekarski J, Goldberg HI, Royal SA, Axel L, Moss AA. Difference between liver and spleen CT numbers in the normal adult: its usefulness in predicting the presence of diffuse liver disease. Radiology 1980;137(3):727–9. https://pubmed.ncbi.nlm.nih.gov/6934563/
  • Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat Rev Immunol. 2011;11(11):762–74. https://pubmed.ncbi.nlm.nih.gov/21984070/
  • Huang H, Wang Q, Shi X, Chen Y, Shen C et al. Association between Monocyte to High-Density Lipoprotein Cholesterol Ratio and Nonalcoholic Fatty Liver Disease: A Cross-Sectional Study. Mediators Inflamm. 2021;2021. https://pubmed.ncbi.nlm.nih.gov/34916874/
  • Wang L, Dong J, Xu M, Li L, Yang N, Qian G. Association Between Monocyte to High-Density Lipoprotein Cholesterol Ratio and Risk of Non-alcoholic Fatty Liver Disease: A Cross-Sectional Study. Front Med. 2022;9:898931. /pmc/articles/PMC9161020/
  • Yvan-Charvet L, Pagler T, Gautier EL, Avagyan S, Siry RL et al. ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science. 2010 Jun 25;328(5986):1689–93. https://pubmed.ncbi.nlm.nih.gov/20488992/
  • Cheng KH, Chu CS, Lee KT, Lin TH, Hsieh CC et al. Adipocytokines and proinflammatory mediators from abdominal and epicardial adipose tissue in patients with coronary artery disease. Int J Obes. 2008 Feb;32(2):268–74.
  • Apostolopoulou M, Gordillo R. CK-D, 2018 undefined. Specific Hepatic Sphingolipids Relate to Insulin Resistance, Oxidative Stress, and Inflammation in Nonalcoholic Steatohepatitis. Am Diabetes Assoc 2018. https://doi.org/10.2337/dc17-1318
  • Akbas EM, Hamur H, Demirtas L, Bakirci EM, Ozcicek A et al. Predictors of epicardial adipose tissue in patients with type 2 diabetes mellitus. Diabetol Metab Syndr. 2014;6(1):55.
  • Lai YH, Yun CH, Yang FS, Liu CC, Wu YJ et al. Epicardial adipose tissue relating to anthropometrics, metabolic derangements and fatty liver disease independently contributes to serum high-sensitivity C-reactive protein beyond body fat composition: A study validated with computed tomography. J Am Soc Echocardiography 2012;25(2):234–41. https://pubmed.ncbi.nlm.nih.gov/22014839/
  • Iacobellis G, Barbarini G, Letizia C, Barbaro G. Epicardial fat thickness and nonalcoholic fatty liver disease in obese subjects. Obesity 2014;22(2):332–6. https://pubmed.ncbi.nlm.nih.gov/24115757/
  • Turan Y. The Nonalcoholic Fatty Liver Disease Fibrosis Score Is Related to Epicardial Fat Thickness and Complexity of Coronary Artery Disease. Angiology. 2020;71(1):77–82. https://pubmed.ncbi.nlm.nih.gov/31018673/
  • Liu B, Li Y, Li Y, Liu Y, Yan Y, et al. Association of epicardial adipose tissue with non-alcoholic fatty liver disease: a meta-analysis. Hepatol Int 2019;13(6):757–65. https://doi.org/10.1007/s12072-019-09972-1
  • Wang TD, Lee WJ, Shih FY, Huang CH, Chang YC et al. Relations of epicardial adipose tissue measured by multidetector computed tomography to components of the metabolic syndrome are region-specific and independent of anthropometric indexes and intraabdominal visceral fat. J Clin Endocrinol Metabolism 2009;94(2):662–9. https://pubmed.ncbi.nlm.nih.gov/19050055/
  • Lin A, Wong ND, Razipour A, McElhinney PA, Commandeur F et al. Metabolic syndrome, fatty liver, and artificial intelligence-based epicardial adipose tissue measures predict long-term risk of cardiac events: a prospective study. Cardiovasc Diabetol. 2021;20(1).
  • Chen YC, Lee WH, Lee MK, Hsu PC, Tsai WC et al. Epicardial adipose tissue thickness is not associated with adverse cardiovascular events in patients undergoing haemodialysis. Sci Rep. 2020;10(1). https://pubmed.ncbi.nlm.nih.gov/32286459/
  • Iacobellis G, Willens HJ. Echocardiographic Epicardial Fat: A Review of Research and Clinical Applications. Vol. 22, Journal of the American Society of Echocardiography. Mosby; 2009. p. 1311–9.
  • Mazurek T, Zhang LF, Zalewski A, Mannion JD, Diehl JT et al. Human Epicardial Adipose Tissue Is a Source of Inflammatory Mediators. Circulation. 2003;108(20):2460–6. https://pubmed.ncbi.nlm.nih.gov/14581396/
  • Iacobellis G, Assael F, Ribaudo MC, Zappaterreno A, Alessi G, Di Mario U, et al. Epicardial fat from echocardiography: A new method for visceral adipose tissue prediction. Obes Research. 2003;11(2):304–10. https://pubmed.ncbi.nlm.nih.gov/12582228/
  • Song DK, Hong YS, Lee H, Oh JY, Sung YA, Kim Y. Increased epicardial adipose tissue thickness in type 2 diabetes mellitus and Obesity. Diabetes Metab J. 2015;39(5):405–13.
  • Iacobellis G, Barbaro G. The double role of epicardial adipose tissue as pro- and anti-inflammatory organ. Horm Metab Res. 2008 Jul;40(7):442–5.
  • Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY, et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation. 2007 Jul;116(1):39–48. https://pubmed.ncbi.nlm.nih.gov/17576866/
  • Iacobellis G, Pellicelli AM, Grisorio B, Barbarini G, Leonetti F, Sharma AM, et al. Relation of Epicardial Fat and Alanine Aminotransferase in Subjects With Increased Visceral Fat. Obesity. 2008 Jan;16(1):179–83. www.obesityjournal.org
  • Alanli R, Kucukay MB, Yalcin KS. Relationship Between Nonalcoholic Fatty Liver and Non High Density Lipoprotein to High Density Lipoprotein Ratio. Selcuk Med J 2021;37(3): 251-256
  • Mills SR, Doppman JL, Nienhuis AW. Computed tomography in the diagnosis of disorders of excessive iron storage of the liver. J Comput Assist Tomogr. 1977;1(1):101–4. https://europepmc.org/article/med/615885
  • Eryılmaz MA - Bakdık S, Ay S, Karahano O, Tolu I, Okuş A, Yilmaz H et al. Incidence of Pathologies Detected by Abdominal Ultrasonography Screening. Selcuk Med J - 2013/05/25 SP.

Can Cardiovascular Risk Be Simply Estimated in Nonalcoholic Fatty Liver Disease Patients?

Year 2024, Volume: 34 Issue: 5, 629 - 636, 31.10.2024
https://doi.org/10.54005/geneltip.1415989

Abstract

Backgrounds and Aims: In the pathogenesis of nonalcoholic fatty liver disease (NAFLD), inflammation plays a pivotal role. The presence of inflammatory cells is closely linked with epicardial adipose tissue (EAT). A recently identified prognostic indicator for cardiovascular disease (CVD) is the ratio of monocyte count to HDL-cholesterol (MHR). Our primary aim was to investigate the relationship between EAT and markers of inflammation in individuals with NAFLD, and to evaluate its predictability using straightforward diagnostic measures.
Material-Method: This retrospective study included two hundred eighteen patients who underwent thoracic computed tomography angiography between 2014 and 2021. The patients were divided into the NAFLD group (HU<48 IU) and the non-NAFLD group (HU>48 IU) according to the liver attenuation ratio. 136 patients in the NAFLD group and 82 in the non-NAFLD group.
Results: The body mass index (BMI), triglyceride levels, notably the EAT volume and MHR in the NAFLD group, exhibited higher values than non-NAFLD group. Among participants in the NAFLD group, a positive correlation was observed between EAT volume and factors such as age, MHR, c-reactive protein, BMI, urea, glucose, and alanine aminotransferase. Through linear regression analysis, it was determined that MHR stood as the sole independent predictor of EAT volume in patients with NAFLD.
Conclusion: EAT volume, a risk marker for CVD, can be predicted in NAFLD patients by MHR without radiological methods. Thus, easier and earlier detection of NAFLD patients in the high-risk group for CVD will be possible.

References

  • Ciardullo S, Perseghin G. Prevalence of NAFLD, MAFLD and associated advanced fibrosis in the contemporary United States population. Liver Int. 2021; 41(6):1290–3. https://pubmed.ncbi.nlm.nih.gov/33590934/
  • Tilg H, Moschen AR. Insulin resistance, inflammation, and non-alcoholic fatty liver disease. Trends Endocrinol Metab. 2008;19(10):371–9. https://pubmed.ncbi.nlm.nih.gov/18929493/
  • van der Heide D, Weiskirchen R, Bansal R. Therapeutic Targeting of Hepatic Macrophages for the Treatment of Liver Diseases. Front Immunology 2019;10. https://pubmed.ncbi.nlm.nih.gov/31849997/
  • De Feyter PJ. Epicardial adipose tissue: An emerging role for the development of coronary atherosclerosis. Vol. 34, Clinical Cardiology. John Wiley & Sons, Ltd; 2011 p. 143–4. https://onlinelibrary.wiley.com/doi/full/10.1002/clc.20893
  • Le Jemtel TH, Samson R, Milligan G, Jaiswal A, Oparil S. Visceral Adipose Tissue Accumulation and Residual Cardiovascular Risk. Vol. 20, Current Hypertension Reports. Current Medicine Group LLC 1; 2018. p. 1–14. https://doi.org/10.1007/s11906-018-0880-0
  • Chen JW, Li C, Liu ZH, Shen Y, Ding FH, et al. The role of monocyte to high-density lipoprotein cholesterol ratio in prediction of carotid intima-media thickness in patients with type 2 diabetes. Front Endocrinology (Lausanne). 2019;10(APR):191.
  • Kundi H, Kiziltunc E, Cetin M, Cicekcioglu H, Cetin ZG et al. Association of monocyte/HDL-C ratio with SYNTAX scores in patients with stable coronary artery disease. Herz. 2016;41(6):523–9. https://pubmed.ncbi.nlm.nih.gov/26753671/
  • Ganjali S, Gotto AM, Ruscica M, Atkin SL, Butler AE et al. Monocyte-to-HDL-cholesterol ratio as a prognostic marker in cardiovascular diseases. J Cell Physiol. 2018; 233(12):9237–46. https://pubmed.ncbi.nlm.nih.gov/30076716/
  • Sarin S, Wenger C, Marwaha A, Qureshi A, Go BDM et al. Clinical Significance of Epicardial Fat Measured Using Cardiac Multislice Computed Tomography. Am J Cardiol. 2008;102(6):767–71. https://pubmed.ncbi.nlm.nih.gov/18774004/
  • Piekarski J, Goldberg HI, Royal SA, Axel L, Moss AA. Difference between liver and spleen CT numbers in the normal adult: its usefulness in predicting the presence of diffuse liver disease. Radiology 1980;137(3):727–9. https://pubmed.ncbi.nlm.nih.gov/6934563/
  • Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat Rev Immunol. 2011;11(11):762–74. https://pubmed.ncbi.nlm.nih.gov/21984070/
  • Huang H, Wang Q, Shi X, Chen Y, Shen C et al. Association between Monocyte to High-Density Lipoprotein Cholesterol Ratio and Nonalcoholic Fatty Liver Disease: A Cross-Sectional Study. Mediators Inflamm. 2021;2021. https://pubmed.ncbi.nlm.nih.gov/34916874/
  • Wang L, Dong J, Xu M, Li L, Yang N, Qian G. Association Between Monocyte to High-Density Lipoprotein Cholesterol Ratio and Risk of Non-alcoholic Fatty Liver Disease: A Cross-Sectional Study. Front Med. 2022;9:898931. /pmc/articles/PMC9161020/
  • Yvan-Charvet L, Pagler T, Gautier EL, Avagyan S, Siry RL et al. ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science. 2010 Jun 25;328(5986):1689–93. https://pubmed.ncbi.nlm.nih.gov/20488992/
  • Cheng KH, Chu CS, Lee KT, Lin TH, Hsieh CC et al. Adipocytokines and proinflammatory mediators from abdominal and epicardial adipose tissue in patients with coronary artery disease. Int J Obes. 2008 Feb;32(2):268–74.
  • Apostolopoulou M, Gordillo R. CK-D, 2018 undefined. Specific Hepatic Sphingolipids Relate to Insulin Resistance, Oxidative Stress, and Inflammation in Nonalcoholic Steatohepatitis. Am Diabetes Assoc 2018. https://doi.org/10.2337/dc17-1318
  • Akbas EM, Hamur H, Demirtas L, Bakirci EM, Ozcicek A et al. Predictors of epicardial adipose tissue in patients with type 2 diabetes mellitus. Diabetol Metab Syndr. 2014;6(1):55.
  • Lai YH, Yun CH, Yang FS, Liu CC, Wu YJ et al. Epicardial adipose tissue relating to anthropometrics, metabolic derangements and fatty liver disease independently contributes to serum high-sensitivity C-reactive protein beyond body fat composition: A study validated with computed tomography. J Am Soc Echocardiography 2012;25(2):234–41. https://pubmed.ncbi.nlm.nih.gov/22014839/
  • Iacobellis G, Barbarini G, Letizia C, Barbaro G. Epicardial fat thickness and nonalcoholic fatty liver disease in obese subjects. Obesity 2014;22(2):332–6. https://pubmed.ncbi.nlm.nih.gov/24115757/
  • Turan Y. The Nonalcoholic Fatty Liver Disease Fibrosis Score Is Related to Epicardial Fat Thickness and Complexity of Coronary Artery Disease. Angiology. 2020;71(1):77–82. https://pubmed.ncbi.nlm.nih.gov/31018673/
  • Liu B, Li Y, Li Y, Liu Y, Yan Y, et al. Association of epicardial adipose tissue with non-alcoholic fatty liver disease: a meta-analysis. Hepatol Int 2019;13(6):757–65. https://doi.org/10.1007/s12072-019-09972-1
  • Wang TD, Lee WJ, Shih FY, Huang CH, Chang YC et al. Relations of epicardial adipose tissue measured by multidetector computed tomography to components of the metabolic syndrome are region-specific and independent of anthropometric indexes and intraabdominal visceral fat. J Clin Endocrinol Metabolism 2009;94(2):662–9. https://pubmed.ncbi.nlm.nih.gov/19050055/
  • Lin A, Wong ND, Razipour A, McElhinney PA, Commandeur F et al. Metabolic syndrome, fatty liver, and artificial intelligence-based epicardial adipose tissue measures predict long-term risk of cardiac events: a prospective study. Cardiovasc Diabetol. 2021;20(1).
  • Chen YC, Lee WH, Lee MK, Hsu PC, Tsai WC et al. Epicardial adipose tissue thickness is not associated with adverse cardiovascular events in patients undergoing haemodialysis. Sci Rep. 2020;10(1). https://pubmed.ncbi.nlm.nih.gov/32286459/
  • Iacobellis G, Willens HJ. Echocardiographic Epicardial Fat: A Review of Research and Clinical Applications. Vol. 22, Journal of the American Society of Echocardiography. Mosby; 2009. p. 1311–9.
  • Mazurek T, Zhang LF, Zalewski A, Mannion JD, Diehl JT et al. Human Epicardial Adipose Tissue Is a Source of Inflammatory Mediators. Circulation. 2003;108(20):2460–6. https://pubmed.ncbi.nlm.nih.gov/14581396/
  • Iacobellis G, Assael F, Ribaudo MC, Zappaterreno A, Alessi G, Di Mario U, et al. Epicardial fat from echocardiography: A new method for visceral adipose tissue prediction. Obes Research. 2003;11(2):304–10. https://pubmed.ncbi.nlm.nih.gov/12582228/
  • Song DK, Hong YS, Lee H, Oh JY, Sung YA, Kim Y. Increased epicardial adipose tissue thickness in type 2 diabetes mellitus and Obesity. Diabetes Metab J. 2015;39(5):405–13.
  • Iacobellis G, Barbaro G. The double role of epicardial adipose tissue as pro- and anti-inflammatory organ. Horm Metab Res. 2008 Jul;40(7):442–5.
  • Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY, et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation. 2007 Jul;116(1):39–48. https://pubmed.ncbi.nlm.nih.gov/17576866/
  • Iacobellis G, Pellicelli AM, Grisorio B, Barbarini G, Leonetti F, Sharma AM, et al. Relation of Epicardial Fat and Alanine Aminotransferase in Subjects With Increased Visceral Fat. Obesity. 2008 Jan;16(1):179–83. www.obesityjournal.org
  • Alanli R, Kucukay MB, Yalcin KS. Relationship Between Nonalcoholic Fatty Liver and Non High Density Lipoprotein to High Density Lipoprotein Ratio. Selcuk Med J 2021;37(3): 251-256
  • Mills SR, Doppman JL, Nienhuis AW. Computed tomography in the diagnosis of disorders of excessive iron storage of the liver. J Comput Assist Tomogr. 1977;1(1):101–4. https://europepmc.org/article/med/615885
  • Eryılmaz MA - Bakdık S, Ay S, Karahano O, Tolu I, Okuş A, Yilmaz H et al. Incidence of Pathologies Detected by Abdominal Ultrasonography Screening. Selcuk Med J - 2013/05/25 SP.
There are 34 citations in total.

Details

Primary Language English
Subjects ​Internal Diseases
Journal Section Original Article
Authors

Hakan Ozer 0000-0001-9174-0351

İsmail Baloğlu 0000-0002-8751-5490

Yasin Öztürk 0000-0003-2634-2677

Necdet Poyraz 0000-0001-9299-189X

Kültigin Türkmen 0000-0002-1667-7716

Early Pub Date October 27, 2024
Publication Date October 31, 2024
Submission Date January 8, 2024
Acceptance Date September 6, 2024
Published in Issue Year 2024 Volume: 34 Issue: 5

Cite

Vancouver Ozer H, Baloğlu İ, Öztürk Y, Poyraz N, Türkmen K. Can Cardiovascular Risk Be Simply Estimated in Nonalcoholic Fatty Liver Disease Patients?. Genel Tıp Derg. 2024;34(5):629-36.

The Journal of General Medicine is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).