Research Article
BibTex RIS Cite

Kırsal Alanlarda SYM Üretiminde Filtreleme Yöntemlerinin Performans Analizi: Hava LiDAR Uygulaması; İstanbul Örneği

Year 2018, Volume: 3 Issue: 3, 242 - 253, 01.12.2018
https://doi.org/10.29128/geomatik.414412

Abstract

Sayısal
Yükseklik Modeli (SYM) yeryüzünün fiziksel yapısını üç boyutlu olarak temsil
etmek amacıyla kullanılan matematiksel bir modeldir. SYM üretimi için
kullanılacak verilerin toplanma yöntemleri, çalışma alanını büyüklüğüne ve üretilecek
yüzey modelin kullanım amacına göre değişebilmektedir. Son yıllarda uzaktan
algılama teknikleri ile yüzey verilerinin toplanması sağladıkları zaman ve
maliyet avantajları nedeniyle tercih edilmeye başlamıştır. Özellikle ulaşılması
zor bölgeler ve yüzölçümü bakımından büyük alanlar söz konusu olduğunda 3B
konum verilerinin uzaktan algılama teknikleri ile belirlenmesi tercih
edilmektedir. Hava LiDAR (Light Detection and Ranging)  tekniği kırsal, kentsel ve ormanlık alanlarda
3B konum verisini üretmede hızlı ve güvenilir bir uzaktan algılama
teknolojisidir. Ayrıca klasik fotogrametrik yöntemlerle karşılaştırıldığında
veri toplama aşamasında hava durumuna, mevsimlere ve zamana daha az bağımlıdır.
Dahası, yoğun ormanlarla kaplı yüzeylerde bitki örtüsüne nüfuz ederek zemin
noktalarına ulaşmada ve dolayısıyla SYM oluşturmada diğer yöntemlere göre daha
iyi sonuçlar alınabilmektedir.



Bu çalışmada LiDAR verileri kullanılarak bir
sayısal yüzey modeli oluşturulmuş ve yüzey üzerinde bulunan zemin dışı
objelerin filtreleme işlemi gerçekleştirilmiştir. Farklı filtreleme
algoritmaları kullanılarak yapılan bu işlem sonucunda, elde edilen SYM’nin
düşey doğruluğu referans olarak kabul edilen bir veri seti ile kıyaslanmış ve
sonuçlar istatistik olarak değerlendirilmiştir. Elde edilen sonuçlar,
filtreleme algoritmalarının üretilen SYM doğruluğunu etkilediğini
göstermektedir. Ayrıca filtreleme yöntemlerinin ani yükseklik değişimi olan
bölgelere duyarlı olduğu ve bu bölgelerde filtreleme kaynaklı hata
büyüklüklerinin arttığı gözlemlenmiştir.



 

References

  • Axelsson, P. (2000). DEM generation from laser scanner data using adaptive TIN models. International Archives of Photogrammetry and Remote Sensing, 33(B4/1; PART 4), 111-118.
  • Briese, C. (2010). Extraction of digital terrain models. Airborne and terrestrial laser scanning, 135-167.
  • Chen, Z., Gao, B., & Devereux, B. (2017). State-of-the-Art: DTM Generation Using Airborne LIDAR Data. Sensors, 17(1), 150.
  • Hobi, M. L., & Ginzler, C. (2012). Accuracy Assessment of Digital Surface Models Based on WorldView-2 and ADS80 Stereo Remote Sensing Data. Sensors, 12(5), 6347-6368. doi:10.3390/s120506347
  • Hu, F., Gao, X., Li, G., & Li, M. (2016). DEM Extraction from Worldview-3 Stereo-Images and Accuracy Evaluation. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 41.
  • Hu, H., Ding, Y., Zhu, Q., Wu, B., Lin, H., Du, Z., . . . Zhang, Y. (2014). An adaptive surface filter for airborne laser scanning point clouds by means of regularization and bending energy. Isprs Journal of Photogrammetry and Remote Sensing, 92(Supplement C), 98-111. doi:https://doi.org/10.1016/j.isprsjprs.2014.02.014
  • Jones, A. F., Brewer, P. A., Johnstone, E., & Macklin, M. G. (2007). High‐resolution interpretative geomorphological mapping of river valley environments using airborne LiDAR data. Earth Surface Processes and Landforms, 32(10), 1574-1592. doi:doi:10.1002/esp.1505
  • Kilian, J., Haala, N., & Englich, M. (1996). Capture and evaluation of airborne laser scanner data. International Archives of Photogrammetry and Remote Sensing, 31, 383-388.
  • Kraus, K., & Pfeifer, N. (1998). Determination of terrain models in wooded areas with airborne laser scanner data. Isprs Journal of Photogrammetry and Remote Sensing, 53(4), 193-203. doi:https://doi.org/10.1016/S0924-2716(98)00009-4
  • Liu, X. (2008). Airborne LiDAR for DEM generation: some critical issues. Progress in Physical Geography, 32(1), 31-49.
  • Meng, X., Currit, N., & Zhao, K. (2010). Ground filtering algorithms for airborne LiDAR data: A review of critical issues. Remote Sensing, 2(3), 833-860.
  • Meng, X., Wang, L., Silván-Cárdenas, J. L., & Currit, N. (2009). A multi-directional ground filtering algorithm for airborne LIDAR. Isprs Journal of Photogrammetry and Remote Sensing, 64(1), 117-124. doi:https://doi.org/10.1016/j.isprsjprs.2008.09.001
  • Montealegre, A. L., Lamelas, M. T., & de la Riva, J. (2015). A comparison of open-source LiDAR filtering algorithms in a mediterranean forest environment. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(8), 4072-4085.
  • Oh, J., & Lee, C. (2016). Extraction of Digital Elevation Model Using Stereo Matching with Slope-Adaptive Patch Transformation. Ksce Journal of Civil Engineering, 20(7), 2902-2909. doi:10.1007/s12205-016-1735-3
  • Poli, D., Remondino, F., Angiuli, E., & Agugiaro, G. (2015). Radiometric and Geometric Evaluation of Geoeye-1, Worldview-2 And Pleiades-1a Stereo Images for 3D Information Extraction. Isprs Journal of Photogrammetry and Remote Sensing, 100, 35-47. doi:10.1016/j.isprsjprs.2014.04.007
  • Poli, D., & Soille, P. (2012). Digital Surface Model Extraction and Refinement through Image Segmentation - Application to the ISPRS Benchmark Stereo Dataset. Photogrammetrie Fernerkundung Geoinformation(4), 317-329. doi:10.1127/1432-8364/2012/0120
  • Sefercik, U. G., Alkan, M., Buyuksalih, G., & Jacobsen, K. (2013). Generation and Validation of High-Resolution DEMs from Worldview-2 Stereo Data. Photogrammetric Record, 28(144), 362-374. doi:10.1111/phor.12038
  • Serifoglu, C., Gungor, O., & Yilmaz, V. (2016). PERFORMANCE EVALUATION OF DIFFERENT GROUND FILTERING ALGORITHMS FOR UAV-BASED POINT CLOUDS. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 41.
  • Sithole, G., & Vosselman, G. (2003). Comparison of filtering algorithms. Paper presented at the Proceedings of the ISPRS working group III/3 workshop.
  • Sithole, G., & Vosselman, G. (2004). Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds. Isprs Journal of Photogrammetry and Remote Sensing, 59(1), 85-101. doi:https://doi.org/10.1016/j.isprsjprs.2004.05.004
  • Toutin, T., Schmitt, C. V., Wang, H., & Reinartz, P. (2012). 3D Photogrammetric Processing of Worldview-2 Data Without GCP. In M. Shortis & N. ElSheimy (Eds.), Xxii Isprs Congress, Technical Commission I (Vol. 39-B1, pp. 277-280). Gottingen: Copernicus Gesellschaft Mbh.
  • Vosselman, G. (2000). Slope based filtering of laser altimetry data. International Archives of Photogrammetry and Remote Sensing, 33(B3/2; PART 3), 935-942.
  • Wang, C.-K., & Tseng, Y.-H. (2010). DEM generation from airborne LiDAR data by an adaptive dual-directional slope filter: na.
  • Yan, W. Y., Shaker, A., & El-Ashmawy, N. (2015). Urban land cover classification using airborne LiDAR data: A review. Remote Sensing of Environment, 158, 295-310. doi:https://doi.org/10.1016/j.rse.2014.11.001
  • Yanalak, M. (2003). Effect of gridding method on digital terrain model profile data based on scattered data. Journal of Computing in Civil Engineering, 17(1), 58-67.
  • Zhang, K. (2007). Airborne LiDAR data processing and analysis tools. Paper presented at the AGU Fall Meeting Abstracts.
  • Zhang, K., Chen, S.-C., Whitman, D., Shyu, M.-L., Yan, J., & Zhang, C. (2003). A progressive morphological filter for removing nonground measurements from airborne LIDAR data. IEEE transactions on geoscience and remote sensing, 41(4), 872-882.
  • Zhang, K., & Whitman, D. (2005). Comparison of three algorithms for filtering airborne lidar data. Photogrammetric Engineering & Remote Sensing, 71(3), 313-324.
Year 2018, Volume: 3 Issue: 3, 242 - 253, 01.12.2018
https://doi.org/10.29128/geomatik.414412

Abstract

References

  • Axelsson, P. (2000). DEM generation from laser scanner data using adaptive TIN models. International Archives of Photogrammetry and Remote Sensing, 33(B4/1; PART 4), 111-118.
  • Briese, C. (2010). Extraction of digital terrain models. Airborne and terrestrial laser scanning, 135-167.
  • Chen, Z., Gao, B., & Devereux, B. (2017). State-of-the-Art: DTM Generation Using Airborne LIDAR Data. Sensors, 17(1), 150.
  • Hobi, M. L., & Ginzler, C. (2012). Accuracy Assessment of Digital Surface Models Based on WorldView-2 and ADS80 Stereo Remote Sensing Data. Sensors, 12(5), 6347-6368. doi:10.3390/s120506347
  • Hu, F., Gao, X., Li, G., & Li, M. (2016). DEM Extraction from Worldview-3 Stereo-Images and Accuracy Evaluation. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 41.
  • Hu, H., Ding, Y., Zhu, Q., Wu, B., Lin, H., Du, Z., . . . Zhang, Y. (2014). An adaptive surface filter for airborne laser scanning point clouds by means of regularization and bending energy. Isprs Journal of Photogrammetry and Remote Sensing, 92(Supplement C), 98-111. doi:https://doi.org/10.1016/j.isprsjprs.2014.02.014
  • Jones, A. F., Brewer, P. A., Johnstone, E., & Macklin, M. G. (2007). High‐resolution interpretative geomorphological mapping of river valley environments using airborne LiDAR data. Earth Surface Processes and Landforms, 32(10), 1574-1592. doi:doi:10.1002/esp.1505
  • Kilian, J., Haala, N., & Englich, M. (1996). Capture and evaluation of airborne laser scanner data. International Archives of Photogrammetry and Remote Sensing, 31, 383-388.
  • Kraus, K., & Pfeifer, N. (1998). Determination of terrain models in wooded areas with airborne laser scanner data. Isprs Journal of Photogrammetry and Remote Sensing, 53(4), 193-203. doi:https://doi.org/10.1016/S0924-2716(98)00009-4
  • Liu, X. (2008). Airborne LiDAR for DEM generation: some critical issues. Progress in Physical Geography, 32(1), 31-49.
  • Meng, X., Currit, N., & Zhao, K. (2010). Ground filtering algorithms for airborne LiDAR data: A review of critical issues. Remote Sensing, 2(3), 833-860.
  • Meng, X., Wang, L., Silván-Cárdenas, J. L., & Currit, N. (2009). A multi-directional ground filtering algorithm for airborne LIDAR. Isprs Journal of Photogrammetry and Remote Sensing, 64(1), 117-124. doi:https://doi.org/10.1016/j.isprsjprs.2008.09.001
  • Montealegre, A. L., Lamelas, M. T., & de la Riva, J. (2015). A comparison of open-source LiDAR filtering algorithms in a mediterranean forest environment. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(8), 4072-4085.
  • Oh, J., & Lee, C. (2016). Extraction of Digital Elevation Model Using Stereo Matching with Slope-Adaptive Patch Transformation. Ksce Journal of Civil Engineering, 20(7), 2902-2909. doi:10.1007/s12205-016-1735-3
  • Poli, D., Remondino, F., Angiuli, E., & Agugiaro, G. (2015). Radiometric and Geometric Evaluation of Geoeye-1, Worldview-2 And Pleiades-1a Stereo Images for 3D Information Extraction. Isprs Journal of Photogrammetry and Remote Sensing, 100, 35-47. doi:10.1016/j.isprsjprs.2014.04.007
  • Poli, D., & Soille, P. (2012). Digital Surface Model Extraction and Refinement through Image Segmentation - Application to the ISPRS Benchmark Stereo Dataset. Photogrammetrie Fernerkundung Geoinformation(4), 317-329. doi:10.1127/1432-8364/2012/0120
  • Sefercik, U. G., Alkan, M., Buyuksalih, G., & Jacobsen, K. (2013). Generation and Validation of High-Resolution DEMs from Worldview-2 Stereo Data. Photogrammetric Record, 28(144), 362-374. doi:10.1111/phor.12038
  • Serifoglu, C., Gungor, O., & Yilmaz, V. (2016). PERFORMANCE EVALUATION OF DIFFERENT GROUND FILTERING ALGORITHMS FOR UAV-BASED POINT CLOUDS. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 41.
  • Sithole, G., & Vosselman, G. (2003). Comparison of filtering algorithms. Paper presented at the Proceedings of the ISPRS working group III/3 workshop.
  • Sithole, G., & Vosselman, G. (2004). Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds. Isprs Journal of Photogrammetry and Remote Sensing, 59(1), 85-101. doi:https://doi.org/10.1016/j.isprsjprs.2004.05.004
  • Toutin, T., Schmitt, C. V., Wang, H., & Reinartz, P. (2012). 3D Photogrammetric Processing of Worldview-2 Data Without GCP. In M. Shortis & N. ElSheimy (Eds.), Xxii Isprs Congress, Technical Commission I (Vol. 39-B1, pp. 277-280). Gottingen: Copernicus Gesellschaft Mbh.
  • Vosselman, G. (2000). Slope based filtering of laser altimetry data. International Archives of Photogrammetry and Remote Sensing, 33(B3/2; PART 3), 935-942.
  • Wang, C.-K., & Tseng, Y.-H. (2010). DEM generation from airborne LiDAR data by an adaptive dual-directional slope filter: na.
  • Yan, W. Y., Shaker, A., & El-Ashmawy, N. (2015). Urban land cover classification using airborne LiDAR data: A review. Remote Sensing of Environment, 158, 295-310. doi:https://doi.org/10.1016/j.rse.2014.11.001
  • Yanalak, M. (2003). Effect of gridding method on digital terrain model profile data based on scattered data. Journal of Computing in Civil Engineering, 17(1), 58-67.
  • Zhang, K. (2007). Airborne LiDAR data processing and analysis tools. Paper presented at the AGU Fall Meeting Abstracts.
  • Zhang, K., Chen, S.-C., Whitman, D., Shyu, M.-L., Yan, J., & Zhang, C. (2003). A progressive morphological filter for removing nonground measurements from airborne LIDAR data. IEEE transactions on geoscience and remote sensing, 41(4), 872-882.
  • Zhang, K., & Whitman, D. (2005). Comparison of three algorithms for filtering airborne lidar data. Photogrammetric Engineering & Remote Sensing, 71(3), 313-324.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Mehmet Doğruluk 0000-0001-6698-651X

Cevdet Coşkun Aydın 0000-0003-2064-6936

Mustafa Yanalak This is me 0000-0001-6805-8768

Publication Date December 1, 2018
Published in Issue Year 2018 Volume: 3 Issue: 3

Cite

APA Doğruluk, M., Aydın, C. C., & Yanalak, M. (2018). Kırsal Alanlarda SYM Üretiminde Filtreleme Yöntemlerinin Performans Analizi: Hava LiDAR Uygulaması; İstanbul Örneği. Geomatik, 3(3), 242-253. https://doi.org/10.29128/geomatik.414412
AMA Doğruluk M, Aydın CC, Yanalak M. Kırsal Alanlarda SYM Üretiminde Filtreleme Yöntemlerinin Performans Analizi: Hava LiDAR Uygulaması; İstanbul Örneği. Geomatik. December 2018;3(3):242-253. doi:10.29128/geomatik.414412
Chicago Doğruluk, Mehmet, Cevdet Coşkun Aydın, and Mustafa Yanalak. “Kırsal Alanlarda SYM Üretiminde Filtreleme Yöntemlerinin Performans Analizi: Hava LiDAR Uygulaması; İstanbul Örneği”. Geomatik 3, no. 3 (December 2018): 242-53. https://doi.org/10.29128/geomatik.414412.
EndNote Doğruluk M, Aydın CC, Yanalak M (December 1, 2018) Kırsal Alanlarda SYM Üretiminde Filtreleme Yöntemlerinin Performans Analizi: Hava LiDAR Uygulaması; İstanbul Örneği. Geomatik 3 3 242–253.
IEEE M. Doğruluk, C. C. Aydın, and M. Yanalak, “Kırsal Alanlarda SYM Üretiminde Filtreleme Yöntemlerinin Performans Analizi: Hava LiDAR Uygulaması; İstanbul Örneği”, Geomatik, vol. 3, no. 3, pp. 242–253, 2018, doi: 10.29128/geomatik.414412.
ISNAD Doğruluk, Mehmet et al. “Kırsal Alanlarda SYM Üretiminde Filtreleme Yöntemlerinin Performans Analizi: Hava LiDAR Uygulaması; İstanbul Örneği”. Geomatik 3/3 (December 2018), 242-253. https://doi.org/10.29128/geomatik.414412.
JAMA Doğruluk M, Aydın CC, Yanalak M. Kırsal Alanlarda SYM Üretiminde Filtreleme Yöntemlerinin Performans Analizi: Hava LiDAR Uygulaması; İstanbul Örneği. Geomatik. 2018;3:242–253.
MLA Doğruluk, Mehmet et al. “Kırsal Alanlarda SYM Üretiminde Filtreleme Yöntemlerinin Performans Analizi: Hava LiDAR Uygulaması; İstanbul Örneği”. Geomatik, vol. 3, no. 3, 2018, pp. 242-53, doi:10.29128/geomatik.414412.
Vancouver Doğruluk M, Aydın CC, Yanalak M. Kırsal Alanlarda SYM Üretiminde Filtreleme Yöntemlerinin Performans Analizi: Hava LiDAR Uygulaması; İstanbul Örneği. Geomatik. 2018;3(3):242-53.