Statistical Analysis of REE Contents in Felahiye (Kayseri) Fluorite Deposit
Year 2022,
Volume: 55 Issue: 1, 152 - 164, 10.06.2022
Cihan Yalçın
,
Yusuf Uras
Abstract
Geochemical data is applied to clarify many geological questions. One of the practical operations of these data is statistical approaches. As it is recognized, the geological characters of many mineral deposits are performed with the use of Rare Earth Elements (REE) they have. The formation environment and physicochemical properties, specifically in vein type fluorite deposits, are pointed out by the REE content. Hayriye (Felahiye-Kayseri) fluorites are in the form of veins and epigenetically formed within the syenites in the Central Anatolian Crystalline Complex. The Felahiye fluorite mineralization is poor in REE contents. The average F% value of fluorite mineral taken from this region and analyzed is 19.72. When the arithmetic means of REE values are examined, Y has a maximum value with 20.65 and Lu has a minimum value with 0.006. In correlation analysis, a high positive correlation is observed between Tb-Er, Tb-Sm, Tb-Eu, Gd-Yb, Tb-Tm and Tb-Yb respectively. Regression analysis shows that the% F values are directly related to REE amounts.
Thanks
This paper is restricted to the memory of the late Prof. Dr. İSMAİL ALTAY ACAR.
References
- Agterberg, F.P., 2012. Sampling and analysis of element concentration distribution in rock units and orebodies. Nonlinear Processes in Geophysics 19, 23–44.
- Altuncu, S., 2009. Türkiye Florit Yataklarının Oluşumlarının Karşılaştırmalı İncelenmesi, Doktora Tezi, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul (in Turkish).
- Atakoglu, O.O., Yalcin, M.G., 2021. Geochemical characterization of the Sutlegen bauxite deposit, SW Antalya. Mining of Mineral Deposits, 15(3), 108-121. doi:10.33271/mining15.03.108.
- Bau, M., Dulski, P., 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa, Precambrian Research, Volume 79, Issues 1–2, 37-55, ISSN 0301-9268, https://doi.org/10.1016/0301-9268(95)00087-9.
- Bredikhina, S.A., Mel’gunov, S.V., and Rikhvanov, L.P., 1992. Rare Earth Elements in Fluorites from Genetically Different Deposits, Geol. Geofiz., 9, 102–113.
- Bredikhina, S.A., Borisenko, A.S., Bobrov, V.A., and Cherepanov, A.A., 2000. Rare Earth Elements in Fluorites from the Central Aldan and Their Strontium Isotope Composition, Geol. Geofiz., vol. 41, no. 2, 181–187.
- Carranza, E.J.M., 2009. Geochemical anomaly and mineral prospectivity mapping in GIS. Handb. Explor. Environ. Geochem. 11.
- Cheng, Q., Agterberg, F.P., Ballantyne, S.B., 1994. The separation of geochemical anomalies from background by fractal methods. J. Geochem. Explor. 51, 109–130. https://doi.org/10.1016/0375-6742(94)90013-2.
- Cheng, Q., Xu, Y., Grunsky, E., 2000. Integrated spatial and spectrum method for geochemical anomaly separation. Nat. Resour. Res. 9, 43–51. https://doi.org/ 10.1023/A:1010109829861.
- Cheng, Q., 1999. Multifractal interpolation. In: Lippard, S.J., Naess, A., Sinding-Larsen, R. Trondheim (Eds.), Proc. Fifth Annual Conf. Internat. Ass. Math. Geol, pp. 245–250. Tapir Akademisk Forlag, Norway.
- Cheng, Q., 2007. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 32(1), 314–324.
- Coşanay, P., Varol, E., Çevik, N., Kızılkanat, C., Mutlu, H., Koç, Ş., 2017. Geochemical, Microthermometric and Isotopic Constraints on the Origin of Fluorite Deposits in Central Anatolia, Turkey, Turkish Journal of Earth Sciences, 26(3), 206-226.
- Grammaccioli, CM., Diella, V., Demartin, F., 1999. The role of fluoride complexes in REE geochemistry and the importance of 4f electrons: Some examples in minerals. Eur J Mineral, 11: 983–992.
- Genç, Y. 2006. Genesis of the Neogene Interstratal Karst-Type Pöhrenk Fluorite-Barite (Lead) Deposit (Kırşehir, Central Anatolia, Turkey), Ore Geology Reviews, 29, 105-117.
- Göncüoğlu,M. C., Toprak, V., Kuşcu, İ., Erler, A., Olgun, E., 1991. Geology of the Western Part of the Central Anatolian Massif, Part 1: Southern Section, Unpubl. Report No. 2909. Ankara, Turkey: Turkish Petroleum Company (in Turkish).C. D. Smith and E. F. Jones, “Load-cycling in cubic press,” in Shock Compression of Condensed Matter-2001, AIP Conference Proceedings 620, edited by M. D. Furnish et al. (American Institute of Physics, Melville, NY, 2002), pp. 651–654.
- Grappin, C., Treuil, M., Yaman, S., and Touray, J.C., 1979. Le spectre des Terres rares dela fluorine en tant que marqueur des proprietes du milieu de depot et des interac tions enter solutions mineralisantes et roches sources. Exemple pris dans le district de la Marche Occidentale (France), Miner. Deposita, 14, 297–309.
- Hawkes, H.E., Webb, J.S., 1962. Geochemistry in mineral exploration. New York: Harper and Row
- Irber, W., Bau, M., Moller, P., 1996. Experimental leaching with cation exchange resin: a method to estimate element availabilites in geological samples. J. Conf. Abstr. 1, 280.
- Kadıoğlu, Y.K., Dilek, Y., Foland, K.A., 2006. Slab Break-off and Syncollisional Origin of the Late Cretaceous Magmatism in the Central Anatolian Crystalline Complex, Geological Society of America, Special Paper No.409, 381-415.
- Koç, Ş., Özşahin, A., Özmen, Ö. 2007. A Comparison Between Fluorite Mineralizations in the Central Anatolian Massif in Regard to Trace Element Contents, Geochemistry International, 45(5), 509-517.
- Kolonin, G.R., Shironosova, G.P., 2007. REE distribution betweenfluorite and ore-formingfluid based on results of thermodynamic modeling. Doklady Earth Sciences 414, 661–665.
- Li, Ch, Ma, T., Shi, J., 2003. Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background. J. Geochem. Explor. 77, 167–175. https://doi.org/10.1016/S0375-6742(02)00276-5.
- Lindagato, P., Li, Y., Yang, G., Duan, F., Wang, Z., 2018. Application of geostatistical analyst methods in discovering concealed gold and pathfinder elements as geochemical anomalies related to ore mineralization. Geologos 24, 95–109. https:// doi.org/10.2478/logos-2018-0010.
- Madani, N., Sadeghi, B., 2019. Capturing Hidden Geochemical Anomalies in Scarce Data by Fractal Analysis and Stochastic Modeling. Nat Resour Res 28, 833–847. https://doi.org/10.1007/s11053-018-9421-4
- Marchand, L., Joseph, D., Touray, J.C., and Treuil, M., 1976. Creteres d’analyse geochimique des gisements de fluorine basee sur l’etude des distributions des lanthanides, application aux gites de Mine (Cordesse France), Miner. Deposita, 11, 357–379.
- Möller, P., Parekh, P.P. and Schneider, H.J., 1976. The Application of Tb/Ca, Tb/la Abundance Ratios to Problems of Fluorspar Genesis. Min. Deposits, (11), 111-116.
- Möller, P., Morteani, G., 1983. On the Geoehemical Fractination of Rare Earth Elements During the Formation of Ca Minerals and its Application to Problems of the Genesis of Ore Deposits in Augustiths”, In: S.S. (Ed)., The Significance of Trace Elements in Solving Petragenetic Problems and Controversies. Theophrastus Pub, p. 747- 791, Athens.
- Möller, P., Giese, U., Dulski, P., 1994. Behaviors of REE in alteration processes of granites. In: Seltmann, R., Kämpf, H., Möller, P. (Eds.), Metallogeny of Collision Orogens. Czech Geological Survey, Prague, pp. 368–375.
- Öztürk, H., Altuncu, S., Hanilçi, N., Kasapçı, C., Goodenough, K.M., 2019. Rare Earth Element-Bearing Fuorite Deposits of Turkey; An Overview, Ore Geology Reviews, 105, 426-444.
- Pekov, I.V., Chukanov, N.V., Kononkova, N.N. et al. 2009. Tveitite-(Y) and REE-enriched fluorite from amazonite pegmatites of the Western Keivy, Kola Peninsula, Russia: Genetic crystal chemistry of natural Ca,REE-fluorides. Geol. Ore Deposits 51, 595–607. https://doi.org/10.1134/S107570150907008.
- Rub, M.G., Rub, A.K., and Akimov, V.M., 1986. Rare MetalBearing Granites in the Central Sikhote-Alin Range, Izv. Akad. Nauk SSSR, Ser. Geol., 7, 33–46.
- Rub, M.G., Rub, A.K., and Zayats, A.P., 1987. Rare Earth Elements as Indicators of the Granitoid Genesis and OreBearing Potential, Geokhimiya, 295, 5, 1224–1228.
- Saein, L.D., Afzal, P., 2017. Correlation between Mo mineralization and faults using geostatistical and fractal modeling in porphyry deposits of Kerman Magmatic Belt, SE Iran. J. Geochem. Explor. 181, 333–343. https://doi.org/10.1016/j. gexplo.2017.06.014.
- Samson, I.M., Wood, S.A., Finucane, K., 2004. Fluid inclusion characteristics and genesis of the fluorite–parisite mineralization in the snowbird deposit, Montana. Economic Geology 99, 1727–1744.
- Schneider, H.J., Möller, P. and Parekh, P.P., 1975. Rare Earth Elements Distribution in Fluorites and Carbonate Sediments of the East-Alpine Mid Triassic Sequences in the Nordliche Kalkalpen. Mineralium Deposita, vol. 10pp.330-344.
- Scheider, H.J., Moller, P., Parekh, P.P., and Zimmer, E., 1977. Fluorine Contents in Carbonate Sequences and Rare Earths Distribution in Fluorites of Pb–Zn Deposits in East-Alpine Mid-Triassic, Miner. Deposita, 12, 22–36.
- Schwinn, G., Markl, G., 2005. REE systematics in hydrothermal fluorite. Chemical Geology 216, 235–248.
- Shaltami, O.R., Fares, F.F., Errishi, H., El Oshebi, F.M., Souza, R., 2021. Geostatistics – A Review. Virtual Conference on Natural Gas. Yekaterinburg, Russia. Shaw, D.M., 1961.
- Şaşmaz, A., Yavuz, F., 2007. REE Geochemistry and Fluid-Inclusion Studies of Fluorite Deposits from the Yaylagözü Area (Yıldızeli-Sivas) in Central Turkey, Neues Jahrbuch für Mineralogie Abhandlungen, 183(2), 215-226.
- Tennant, C.B., White, M.L., 1959. Study of the distribution of some geochemical data. Economic Geology, 54(7), 1281– 1290.
Tukey, J.W., 1977. Exploratory data analysis. Reading: AddisonWesley.
- Uras, Y. (2007). Pöhrenk (Kırşehir) florit yataklarının kökensel incelemesi, Doktora Tezi, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, 119 s, Adana (in Turkish).
- Uras, Y., Yalçın, C., İlbeyli, N., Tapınç, B.G., 2020. Hayriye (Felahiye-Kayseri) Floritlerinin Nadir Toprak Element (NTE) Jeokimyası, Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(1): 461–471, doi: 10.28948/ngumuh.604350 (in Turkish).
- Yaman, S., 1985. Akçakent (Çiçekdağı-Kırşehir) yöresi Florit Yataklarının Jeolojisi ve Sıvı Kapanım Çalışmaları, Türkiye Jeoloji Kurumu Bülteni, 22, 73-78 (in Turkish).
- Yazıcı, I., Yalçın, M. G., Atakoglu, O. O., Yalçın, F., 2021. Multivariate Statistical Evaluation of Geochemical Properties of “Alanya Emperador Dark” Marbles. Gazi University Journal of Science Part A: Engineering and Innovation, 8(3), 361-372.
Zuo, R., Wang, J., 2016. Fractal/multifractal modeling of geochemical data: a review. J. Geochem. Explor. 164, 33–41. https://doi.org/10.1016/j.gexplo.2015.04.010.
- Zuo, R., Xiong, Y., Wang, J., Carranza, E.J.M., 2019. Deep learning and its application in geochemical mapping. Earth Sci. Rev. 192, 1–14. https://doi.org/10.1016/j. earscirev.2019.02.023.
Felahiye (Kayseri) Florit Yatağındaki NTE İçeriklerinin İstatistiksel Analizi
Year 2022,
Volume: 55 Issue: 1, 152 - 164, 10.06.2022
Cihan Yalçın
,
Yusuf Uras
Abstract
Jeokimyasal veriler birçok jeolojik problemin çözümünde kullanılır. Bu verilerin etkili kullanım alanlarından biri ise istatistiksel yaklaşımlardır. Bilindiği üzere birçok maden yatağının jeolojik özellikleri ihtiva ettikleri Nadir Toprak Elementleri (NTE) yardımıyla yapılır. Özellikle damar tipi florit yataklarında oluşum ortamı ve fizikokimyasal özellikler REE içeriği ile açıklanır. Hayriye (Felahiye-Kayseri) floritleri Orta Anadolu Kristalen Kompleksinde siyenitler içerisinde damar tipi şeklinde ve epijenetik oluşumludur. Felahiye florit zenginleşmesi, Nadir Toprak Elementleri (REE) içeriği bakımından fakirdir. Bu bölgeden alınan ve analiz edilen florit mineralinin ortalama % F değeri 19.72'dir. REE değerlerinin aritmetik ortalamaları incelendiğinde, Y 20.65 ile maksimum, Lu ise 0.006 ile minimum değere sahiptir. Korelasyon analizinde sırasıyla Tb-Er, Tb-Sm, Tb-Eu, Gd-Yb, Tb-Tm ve Tb-Yb arasında yüksek pozitif korelasyon gözlenmektedir. Regresyon analizi, % F değerlerinin doğrudan REE miktarları ile ilişkili olduğunu göstermektedir.
References
- Agterberg, F.P., 2012. Sampling and analysis of element concentration distribution in rock units and orebodies. Nonlinear Processes in Geophysics 19, 23–44.
- Altuncu, S., 2009. Türkiye Florit Yataklarının Oluşumlarının Karşılaştırmalı İncelenmesi, Doktora Tezi, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul (in Turkish).
- Atakoglu, O.O., Yalcin, M.G., 2021. Geochemical characterization of the Sutlegen bauxite deposit, SW Antalya. Mining of Mineral Deposits, 15(3), 108-121. doi:10.33271/mining15.03.108.
- Bau, M., Dulski, P., 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa, Precambrian Research, Volume 79, Issues 1–2, 37-55, ISSN 0301-9268, https://doi.org/10.1016/0301-9268(95)00087-9.
- Bredikhina, S.A., Mel’gunov, S.V., and Rikhvanov, L.P., 1992. Rare Earth Elements in Fluorites from Genetically Different Deposits, Geol. Geofiz., 9, 102–113.
- Bredikhina, S.A., Borisenko, A.S., Bobrov, V.A., and Cherepanov, A.A., 2000. Rare Earth Elements in Fluorites from the Central Aldan and Their Strontium Isotope Composition, Geol. Geofiz., vol. 41, no. 2, 181–187.
- Carranza, E.J.M., 2009. Geochemical anomaly and mineral prospectivity mapping in GIS. Handb. Explor. Environ. Geochem. 11.
- Cheng, Q., Agterberg, F.P., Ballantyne, S.B., 1994. The separation of geochemical anomalies from background by fractal methods. J. Geochem. Explor. 51, 109–130. https://doi.org/10.1016/0375-6742(94)90013-2.
- Cheng, Q., Xu, Y., Grunsky, E., 2000. Integrated spatial and spectrum method for geochemical anomaly separation. Nat. Resour. Res. 9, 43–51. https://doi.org/ 10.1023/A:1010109829861.
- Cheng, Q., 1999. Multifractal interpolation. In: Lippard, S.J., Naess, A., Sinding-Larsen, R. Trondheim (Eds.), Proc. Fifth Annual Conf. Internat. Ass. Math. Geol, pp. 245–250. Tapir Akademisk Forlag, Norway.
- Cheng, Q., 2007. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 32(1), 314–324.
- Coşanay, P., Varol, E., Çevik, N., Kızılkanat, C., Mutlu, H., Koç, Ş., 2017. Geochemical, Microthermometric and Isotopic Constraints on the Origin of Fluorite Deposits in Central Anatolia, Turkey, Turkish Journal of Earth Sciences, 26(3), 206-226.
- Grammaccioli, CM., Diella, V., Demartin, F., 1999. The role of fluoride complexes in REE geochemistry and the importance of 4f electrons: Some examples in minerals. Eur J Mineral, 11: 983–992.
- Genç, Y. 2006. Genesis of the Neogene Interstratal Karst-Type Pöhrenk Fluorite-Barite (Lead) Deposit (Kırşehir, Central Anatolia, Turkey), Ore Geology Reviews, 29, 105-117.
- Göncüoğlu,M. C., Toprak, V., Kuşcu, İ., Erler, A., Olgun, E., 1991. Geology of the Western Part of the Central Anatolian Massif, Part 1: Southern Section, Unpubl. Report No. 2909. Ankara, Turkey: Turkish Petroleum Company (in Turkish).C. D. Smith and E. F. Jones, “Load-cycling in cubic press,” in Shock Compression of Condensed Matter-2001, AIP Conference Proceedings 620, edited by M. D. Furnish et al. (American Institute of Physics, Melville, NY, 2002), pp. 651–654.
- Grappin, C., Treuil, M., Yaman, S., and Touray, J.C., 1979. Le spectre des Terres rares dela fluorine en tant que marqueur des proprietes du milieu de depot et des interac tions enter solutions mineralisantes et roches sources. Exemple pris dans le district de la Marche Occidentale (France), Miner. Deposita, 14, 297–309.
- Hawkes, H.E., Webb, J.S., 1962. Geochemistry in mineral exploration. New York: Harper and Row
- Irber, W., Bau, M., Moller, P., 1996. Experimental leaching with cation exchange resin: a method to estimate element availabilites in geological samples. J. Conf. Abstr. 1, 280.
- Kadıoğlu, Y.K., Dilek, Y., Foland, K.A., 2006. Slab Break-off and Syncollisional Origin of the Late Cretaceous Magmatism in the Central Anatolian Crystalline Complex, Geological Society of America, Special Paper No.409, 381-415.
- Koç, Ş., Özşahin, A., Özmen, Ö. 2007. A Comparison Between Fluorite Mineralizations in the Central Anatolian Massif in Regard to Trace Element Contents, Geochemistry International, 45(5), 509-517.
- Kolonin, G.R., Shironosova, G.P., 2007. REE distribution betweenfluorite and ore-formingfluid based on results of thermodynamic modeling. Doklady Earth Sciences 414, 661–665.
- Li, Ch, Ma, T., Shi, J., 2003. Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background. J. Geochem. Explor. 77, 167–175. https://doi.org/10.1016/S0375-6742(02)00276-5.
- Lindagato, P., Li, Y., Yang, G., Duan, F., Wang, Z., 2018. Application of geostatistical analyst methods in discovering concealed gold and pathfinder elements as geochemical anomalies related to ore mineralization. Geologos 24, 95–109. https:// doi.org/10.2478/logos-2018-0010.
- Madani, N., Sadeghi, B., 2019. Capturing Hidden Geochemical Anomalies in Scarce Data by Fractal Analysis and Stochastic Modeling. Nat Resour Res 28, 833–847. https://doi.org/10.1007/s11053-018-9421-4
- Marchand, L., Joseph, D., Touray, J.C., and Treuil, M., 1976. Creteres d’analyse geochimique des gisements de fluorine basee sur l’etude des distributions des lanthanides, application aux gites de Mine (Cordesse France), Miner. Deposita, 11, 357–379.
- Möller, P., Parekh, P.P. and Schneider, H.J., 1976. The Application of Tb/Ca, Tb/la Abundance Ratios to Problems of Fluorspar Genesis. Min. Deposits, (11), 111-116.
- Möller, P., Morteani, G., 1983. On the Geoehemical Fractination of Rare Earth Elements During the Formation of Ca Minerals and its Application to Problems of the Genesis of Ore Deposits in Augustiths”, In: S.S. (Ed)., The Significance of Trace Elements in Solving Petragenetic Problems and Controversies. Theophrastus Pub, p. 747- 791, Athens.
- Möller, P., Giese, U., Dulski, P., 1994. Behaviors of REE in alteration processes of granites. In: Seltmann, R., Kämpf, H., Möller, P. (Eds.), Metallogeny of Collision Orogens. Czech Geological Survey, Prague, pp. 368–375.
- Öztürk, H., Altuncu, S., Hanilçi, N., Kasapçı, C., Goodenough, K.M., 2019. Rare Earth Element-Bearing Fuorite Deposits of Turkey; An Overview, Ore Geology Reviews, 105, 426-444.
- Pekov, I.V., Chukanov, N.V., Kononkova, N.N. et al. 2009. Tveitite-(Y) and REE-enriched fluorite from amazonite pegmatites of the Western Keivy, Kola Peninsula, Russia: Genetic crystal chemistry of natural Ca,REE-fluorides. Geol. Ore Deposits 51, 595–607. https://doi.org/10.1134/S107570150907008.
- Rub, M.G., Rub, A.K., and Akimov, V.M., 1986. Rare MetalBearing Granites in the Central Sikhote-Alin Range, Izv. Akad. Nauk SSSR, Ser. Geol., 7, 33–46.
- Rub, M.G., Rub, A.K., and Zayats, A.P., 1987. Rare Earth Elements as Indicators of the Granitoid Genesis and OreBearing Potential, Geokhimiya, 295, 5, 1224–1228.
- Saein, L.D., Afzal, P., 2017. Correlation between Mo mineralization and faults using geostatistical and fractal modeling in porphyry deposits of Kerman Magmatic Belt, SE Iran. J. Geochem. Explor. 181, 333–343. https://doi.org/10.1016/j. gexplo.2017.06.014.
- Samson, I.M., Wood, S.A., Finucane, K., 2004. Fluid inclusion characteristics and genesis of the fluorite–parisite mineralization in the snowbird deposit, Montana. Economic Geology 99, 1727–1744.
- Schneider, H.J., Möller, P. and Parekh, P.P., 1975. Rare Earth Elements Distribution in Fluorites and Carbonate Sediments of the East-Alpine Mid Triassic Sequences in the Nordliche Kalkalpen. Mineralium Deposita, vol. 10pp.330-344.
- Scheider, H.J., Moller, P., Parekh, P.P., and Zimmer, E., 1977. Fluorine Contents in Carbonate Sequences and Rare Earths Distribution in Fluorites of Pb–Zn Deposits in East-Alpine Mid-Triassic, Miner. Deposita, 12, 22–36.
- Schwinn, G., Markl, G., 2005. REE systematics in hydrothermal fluorite. Chemical Geology 216, 235–248.
- Shaltami, O.R., Fares, F.F., Errishi, H., El Oshebi, F.M., Souza, R., 2021. Geostatistics – A Review. Virtual Conference on Natural Gas. Yekaterinburg, Russia. Shaw, D.M., 1961.
- Şaşmaz, A., Yavuz, F., 2007. REE Geochemistry and Fluid-Inclusion Studies of Fluorite Deposits from the Yaylagözü Area (Yıldızeli-Sivas) in Central Turkey, Neues Jahrbuch für Mineralogie Abhandlungen, 183(2), 215-226.
- Tennant, C.B., White, M.L., 1959. Study of the distribution of some geochemical data. Economic Geology, 54(7), 1281– 1290.
Tukey, J.W., 1977. Exploratory data analysis. Reading: AddisonWesley.
- Uras, Y. (2007). Pöhrenk (Kırşehir) florit yataklarının kökensel incelemesi, Doktora Tezi, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, 119 s, Adana (in Turkish).
- Uras, Y., Yalçın, C., İlbeyli, N., Tapınç, B.G., 2020. Hayriye (Felahiye-Kayseri) Floritlerinin Nadir Toprak Element (NTE) Jeokimyası, Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(1): 461–471, doi: 10.28948/ngumuh.604350 (in Turkish).
- Yaman, S., 1985. Akçakent (Çiçekdağı-Kırşehir) yöresi Florit Yataklarının Jeolojisi ve Sıvı Kapanım Çalışmaları, Türkiye Jeoloji Kurumu Bülteni, 22, 73-78 (in Turkish).
- Yazıcı, I., Yalçın, M. G., Atakoglu, O. O., Yalçın, F., 2021. Multivariate Statistical Evaluation of Geochemical Properties of “Alanya Emperador Dark” Marbles. Gazi University Journal of Science Part A: Engineering and Innovation, 8(3), 361-372.
Zuo, R., Wang, J., 2016. Fractal/multifractal modeling of geochemical data: a review. J. Geochem. Explor. 164, 33–41. https://doi.org/10.1016/j.gexplo.2015.04.010.
- Zuo, R., Xiong, Y., Wang, J., Carranza, E.J.M., 2019. Deep learning and its application in geochemical mapping. Earth Sci. Rev. 192, 1–14. https://doi.org/10.1016/j. earscirev.2019.02.023.