Review Article
BibTex RIS Cite

Mapping of the Yeşilova Ophiolitic Rocks with ASTER Multispectral Data in the Western Taurides, Southwest Türkiye

Year 2023, Volume: 58 Issue: 1, 40 - 74, 31.12.2023

Abstract

The multispectral ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) satellite data is widely used remote sensing data sources for lithological and mineralogical mapping. In this study, we aimed to identify and map the lithological units of the Yeşilova ophiolite and ophiolitic mélange (Western Taurides) with the multispectral ASTER L1T satellite data. For the identification of lithological units of the Yeşilova ophiolite, band ratioing and Principal Component Analysis (PCA) methods were applied to the spectral bands in the visible near-infrared (VNIR) and shortwave infrared (SWIR) regions of the ASTER dataset. The band ratios of VNIR-SWIR spectral bands (B1/B2, B3/B4, B4/B5, B4/B8, B5/B3, and (B6+B9)/(B7+B8)) indicate the formation of the main lithological units in the study area and were used for the mapping of the ophiolitic rocks. Similarly, the selected principal components of the PCA method and false-color composite images derived from the principal components (PC3, PC2, PC1, and PC5, PC4, PC2) yielded effective results in the identification of ophiolitic rocks. The application of mafic rock, calcite, and quartz indices to the thermal infrared (TIR) bands of ASTER has yielded successful results in the regional-scale identification of mafic-ultramafic lithologies of the Yeşilova ophiolite. The validation of the resultant images was carried out through fieldwork, and the results were highly consistent with the field data. In this context, the presented remote sensing techniques here provide evidence that they are an effective and useful approach in mapping lithological units of ophiolites and ophiolitic mélanges in the study area. As a result, it shows that the ASTER dataset is one of the effective tools for lithological mapping studies in geologically complex regions such as the Taurides.

References

  • Abrams, M. 2000. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): data products for the high spatial resolution imager on NASA's Terra platform. international Journal of Remote sensing, 21(5), 847-859.
  • Abrams, M., Yamaguchi, Y., 2019. Twenty years of ASTER contributions to lithologic mapping and mineral exploration. Remote Sensing, 11(11), 1394.
  • Adiri, Z., Lhissou, R., El Harti, A., Jellouli, A., Chakouri, M., 2020. Recent advances in the use of public domain satellite imagery for mineral exploration: A review of Landsat-8 and Sentinel-2 applications. Ore Geology Reviews, 117, 103332.
  • Ahmadi, H., Kalkan, K., 2021. Mapping of ophiolitic complex in logar and surrounding areas (SE Afghanistan) with ASTER data. Journal of the Indian Society of Remote Sensing, 49(6), 1271-1284.
  • Aldanmaz, E., Meisel, T., Çelik, Ö. F., Henjes-Kunst, F., 2012. Osmium isotope systematics and highly siderophile element fractionation in spinel-peridotites from the Tethyan ophiolites in SW Turkey: implications for multi-stage evolution of oceanic upper mantle. Chemical geology, 294, 152-164.
  • Bachri, I., Hakdaoui, M., Raji, M., Teodoro, A. C., Benbouziane, A., 2019. Machine learning algorithms for automatic lithological mapping using remote sensing data: A case study from Souk Arbaa Sahel, Sidi Ifni Inlier, Western Anti-Atlas, Morocco. ISPRS International Journal of Geo-Information, 8(6), 248.
  • Blaschke, T., Hay, G. J., Kelly, M., Lang, S., Hofmann, P., Addink, E., ... & Tiede, D., 2014. Geographic object-based image analysis–towards a new paradigm. ISPRS journal of photogrammetry and remote sensing, 87, 180-191.
  • Canbaz, O., 2023a. Application of Spectral Analysis and Image Processing Methods to Discriminate Hydrothermal Alteration Minerals Around the Tutakdağı (Şebinkarahisar-Giresun) Lead–Zinc Deposits, Northeastern Turkey. Journal of the Indian Society of Remote Sensing, 1-21.
  • Canbaz, O., 2023b. The Performance of Hyperspectral Measurements Integrated into Multispectral Data on the Detection of the Alpine Chromite Deposits in the Ophiolite Complexes. Geology of Ore Deposits, 65(4), 381-394.
  • Canbaz, O., Çakır, E.Ü., 2022. Şaphane (Çorum) Damar Tipi Altın Cevherleşmesinde Multispektral Uydu Görüntüleri Kullanılarak Hidrotermal Alterasyon Mineral Haritalaması ve Çizgisellik Analizi. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 25(3), 313-328.
  • Cloutis, E.A., 1996. Review article hyperspectral geological remote sensing: evaluation of analytical techniques. International Journal of Remote Sensing, 17(12), 2215-2242.
  • Collins, A.S., Robertson, A.H., 1999. Evolution of the Lycian Allochthon, western Turkey, as a north‐facing Late Palaeozoic to Mesozoic rift and passive continental margin. Geological Journal, 34(1‐2), 107-138.
  • Cooley, T., Anderson, G. P., Felde, G. W., Hoke, M. L., Ratkowski, A. J., Chetwynd, J. H., ... & Lewis, P., 2002. FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation. In IEEE international geoscience and remote sensing symposium (Vol. 3, pp. 1414-1418). IEEE.
  • Crosta, A.P., De Souza Filho, C.R., Azevedo, F., Brodie, C., 2003. Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. International journal of Remote sensing, 24(21), 4233-4240.
  • Çelik, Ö.F., Delaloye, M.F., 2003. Origin of metamorphic soles and their post‐kinematic mafic dyke swarms in the Antalya and Lycian ophiolites, SW Turkey. Geological Journal, 38(3‐4), 235-256.
  • Çelik, Ö.F., Chiaradia, M., 2008. Geochemical and petrological aspects of dike intrusions in the Lycian ophiolites (SW Turkey): a case study for the dike emplacement along the Tauride Belt Ophiolites. International Journal of Earth Sciences, 97, 1151-1164.
  • Çelik, Ö.F., Delaloye, M., Feraud, G., 2006. Precise 40Ar–39Ar ages from the metamorphic sole rocks of the Tauride Belt Ophiolites, southern Turkey: implications for the rapid cooling history. Geological Magazine, 143(2), 213-227.
  • Çiftçi, Y., Dönmez, C., Parlak, O., Günay, K., 2019. Chromitite deposits of Turkey in Tethyan ophiolites. Mineral Resources of Turkey, 73-157.
  • Çörtük, R.M., Çelik, Ö.F., Alkan, A., Özkan, M., Özyavaş, A., 2020. Distribution of rocks in Pınarbaşı Ophiolite from central Anatolia (Turkey) based on analysis of ASTER and Landsat‐8 data. Geological Journal, 55(10), 6810-6822.
  • Çörtük, R.M., Çelik, Ö.F., Özkan, M., Marzoli, A., Alkan, A., 2023. The origin and PT conditions of the metamorphic sole rocks beneath the Late Cretaceous Pınarbaşı Ophiolite, Eastern-Central Anatolia. International Geology Review, 65(2), 296-316.
  • Ding, C., Liu, X., Liu, W., Liu, M., Li, Y., 2014. Mafic–ultramafic and quartz-rich rock indices deduced from ASTER thermal infrared data using a linear approximation to the Planck function. Ore Geology Reviews, 60, 161-173.
  • Ding, C., Li, X., Liu, X., Zhao, L., 2015. Quartzose–mafic spectral feature space model: a methodology for extracting felsic rocks with ASTER thermal infrared radiance data. Ore Geology Reviews, 66, 283-292.
  • Döyen, A., 1995. Yeşilova (Burdur) civarı kromit yataklarının mineralojik, petrografik ve jeokimyasal incelemesi. Doktora Tezi, SU Institute of Science, (in Turkish, unpublished)
  • Döyen, A., Çömlekçiler F., Koçak K., 2014. Stratigraphic Features of the Yesilova Ophiolite, Burdur, South-Western Turkey. In: Rocha R, Pais J, Kullberg J.C. and Finney S. (Eds.), Strati 2013, Springer, 493-498.
  • Emam, A., Zoheir, B., Johnson, P., 2016. ASTER-based mapping of ophiolitic rocks: examples from the Allaqi–Heiani suture, SE Egypt. International Geology Review, 58(5), 525-539.
  • Eslami, A., Ghaderi, M., Rajendran, S., Pour, A.B., Hashim, M., 2015. Integration of ASTER and landsat TM remote sensing data for chromite prospecting and lithological mapping in Neyriz ophiolite zone, south Iran. Resource Geology, 65(4), 375-388.
  • Ekici, T., 2023. Lithological mapping of ophiolitic rocks from southern part of the Sivas Basin (Turkey) using ASTER imagery. Turkish Journal of Earth Sciences, 32(2), 200-213.
  • Fu, B., Zheng, G., Ninomiya, Y., Wang, C., Sun, G., 2007. Mapping hydrocarbon‐induced mineralogical alteration in the northern Tian Shan using ASTER multispectral data. Terra Nova, 19(4), 225-231.
  • Fujisada, H., 1995. Design and performance of ASTER instrument, in Breckinridge, J.B., ed., Proceedings of international society of optical engineering: Bellingham, WA, SPIE publication (AIP Online Journal Publishing Service and American Institute of Physics), v. 2583, p. 16–25.
  • Gad, S., Kusky, T., 2007. ASTER spectral ratioing for lithological mapping in the Arabian–Nubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt. Gondwana research, 11(3), 326-335.
  • Gillespie, A., Rokugawa, S., Matsunaga, T., Cothern, J. S., Hook, S., Kahle, A.B., 1998. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE transactions on geoscience and remote sensing, 36(4), 1113-1126.
  • Green, A.A., Berman, M., Switzer, P., Craig, M.D., 1988. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on geoscience and remote sensing, 26(1), 65-74.
  • Guha, A., Kumar, V., 2016. New ASTER derived thermal indices to delineate mineralogy of different granitoids of an Archaean Craton and analysis of their potentials with reference to Ninomiya's indices for delineating quartz and mafic minerals of granitoids—An analysis in Dharwar Craton, India. Ore Geology Reviews, 74, 76-87.
  • Gürbüz, E., 2019. Multispectral mapping of evaporite minerals using ASTER data: A methodological comparison from central Turkey. Remote Sensing Applications: Society and Environment, 15, 100240.
  • Gürbüz, A., Gürbüz, E., 2022. Remote sensing approaches for mapping Quaternary deposits: A synthesis. Physics and Chemistry of the Earth, Parts A/B/C, 126, 103128.
  • Gürsoy, Ö., 2019. Hybrid band combination for discriminating lithology of dunite in ultramafic rocks. Journal of the Indian Society of Remote Sensing, 47(6), 1041-1049.
  • Gürsoy, Ö., Kaya, Ş., 2017. Detecting of lithological units by using terrestrial spectral data and remote sensing image. Journal of the Indian Society of Remote Sensing, 45, 259-269.
  • Hewson, R.D., Cudahy, T.J., Mizuhiko, S., Ueda, K., Mauger, A.J., 2005. Seamless geological map generation using ASTER in the Broken Hill-Curnamona province of Australia. Remote Sensing of Environment, 99(1-2), 159-172.
  • Juteau, T., 1980. Ophiolites of Turkey. In: Rocci, G. (Ed.), Ofioliti, Special Issue Tethyan Ophiolites: 2. Eastern Area, pp. 199 – 237. Khalifa, A., Bashir, B., Çakir, Z., Kaya, Ş., Alsalman, A., Henaish, A., 2021. Paradigm of geological mapping of the adıyaman fault zone of eastern turkey using landsat 8 remotely sensed data coupled with pca, ica, and mnfa techniques. ISPRS International Journal of Geo-Information, 10(6), 368.
  • Kavak, K.S., 2005. Determination of palaeotectonic and neotectonic features around the Menderes Massif and the Gediz Graben (western Turkey) using Landsat TM image. International Journal of Remote Sensing, 26(1), 59-78.
  • Kavak, K.S., Tatar, O., Piper, J., Kocbulut, F., Levent Mesci, B., 2009. Determination of neotectonic features of the Karasu Basin (SE Turkey) and their relationship with Quaternary volcanic activity using Landsat ETM+ imagery. International Journal of Remote Sensing, 30(17), 4507-4524.
  • Khan, S.D., Mahmood, K., Casey, J.F. 2007. Mapping of Muslim Bagh ophiolite complex (Pakistan) using new remote sensing, and field data. Journal of Asian Earth Sciences, 30(2), 333-343.
  • Koralay, T., 2000. Niyazlar köyü (Yeşilova-Burdur) ile tefenni yaylası (Tefenni-Burdur) ofiyolitlerinin jeolojik, petrografik ve petrokimyasal incelemesi (Doktora Tezi, Pamukkale Üniversitesi).
  • Konak, N., 2002. 1:500,000 Scale Geological Map of Turkey İzmir Quadrangle. 1:500,000 Scale Geological Maps of Turkey, M. Şenel (Ed.), Serial Number: 7, General Directorate of Mineral Research and Exploration, Ankara-Turkey.
  • Langford, R.L., 2015. Temporal merging of remote sensing data to enhance spectral regolith, lithological and alteration patterns for regional mineral exploration. Ore Geology Reviews, 68, 14-29.
  • Manap, H.S., San, B.T., 2022. Data Integration for Lithological Mapping Using Machine Learning Algorithms. Earth Science Informatics, 15(3), 1841-1859.
  • Mars, J.C., Rowan, L.C., 2010. Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals. Remote Sensing of Environment, 114(9), 2011-2025.
  • Mars, J.C., Rowan, L.C., 2011. ASTER spectral analysis and lithologic mapping of the Khanneshin carbonatite volcano, Afghanistan. Geosphere, 7(1), 276-289.
  • Monod, O., 1977. Re´cherches ge´ologique dans les Taurus occidental au sud de Beys¸ehir (Turquie). PhD thesis, Universite´ de Paris-Sud, Orsay
  • Nair, A., Mathew, G., 2012. Lithological discrimination of the phenaimata felsic–mafic complex, Gujarat, India, using the advanced spaceborne thermal emission and reflection radiometer (ASTER). International Journal of Remote Sensing, 33(1), 198-219.
  • Ninomiya, Y., 2002. Mapping quartz, carbonate minerals, and mafic-ultramafic rocks using remotely sensed multispectral thermal infrared ASTER data. In Thermosense XXIV (Vol. 4710, pp. 191-202). SPIE.
  • Ninomiya, Y., Fu, B., Cudahy, T.J., 2005. Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral thermal infrared “radiance-at-sensor” data. Remote Sensing of Environment, 99(1-2), 127-139.
  • Ninomiya, Y., Fu, B., 2010. Regional scale lithologic mapping in western Tibet using ASTER thermal infrared multispectral data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, 38, 454-458.
  • Ninomiya, Y., Fu, B., 2016. Regional lithological mapping using ASTER-TIR data: Case study for the Tibetan Plateau and the surrounding area. Geosciences, 6(3), 39.
  • Ninomiya, Y., Fu, B., 2019. Thermal infrared multispectral remote sensing of lithology and mineralogy based on spectral properties of materials. Ore Geology Reviews, 108, 54-72.
  • Özgül, N., 1976. Toroslar'm bazı temel jeoloji özellikleri. Bulletin of the Geological Society of Turkey, 19, 65-78.
  • Özkan, M., Çelik, Ö.F., Özyavaş, A., 2018. Lithological discrimination of accretionary complex (Sivas, northern Turkey) using novel hybrid color composites and field data. Journal of African Earth Sciences, 138, 75-85.
  • Öztan, S.N., Lütfi Süzen, M., 2011. Mapping evaporate minerals by ASTER. International Journal of Remote Sensing, 32(6), 1651-1673.
  • Özyavaş, A., 2016. Assessment of image processing techniques and ASTER SWIR data for the delineation of evaporates and carbonate outcrops along the Salt Lake Fault, Turkey. International Journal of Remote sensing, 37(4), 770-781.
  • Özyavaş, A., 2020. Susuzdağ ve Tekkedağ (Kapadokya-Türkiye) Çevresindeki Volkanik Kayaçların ASTER Görüntüsü Kullanılarak Haritalanması. Türkiye Jeoloji Bülteni, 63(2), 225-240.
  • Pour, A.B., Hashim, M., 2011. Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran. Journal of Asian Earth Sciences, 42(6), 1309-1323.
  • Pour, A.B., Hashim, M., 2012. The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore geology reviews, 44, 1-9.
  • Qasim, M., Khan, S.D., Haider, R., Rasheed, M.U., 2022. Integration of multispectral and hyperspectral remote sensing data for lithological mapping in Zhob Ophiolite, Western Pakistan. Arabian Journal of Geosciences, 15(7), 599.
  • Rajendran, S., Nasir, S., 2014. ASTER spectral sensitivity of carbonate rocks–Study in Sultanate of Oman. Advances in Space Research, 53(4), 656-673.
  • Rajendran, S., Nasir, S., 2015. Mapping of Moho and Moho Transition Zone (MTZ) in Samail ophiolites of Sultanate of Oman using remote sensing technique. Tectonophysics, 657, 63-80.
  • Rajendran, S., Nasir, S., 2019. ASTER capability in mapping of mineral resources of arid region: A review on mapping of mineral resources of the Sultanate of Oman. Ore Geology Reviews, 108, 33-53.
  • Rani, K., Guha, A., Pal, S. K., Vinod Kumar, K., 2018. Comparative analysis of potentials of ASTER thermal infrared band derived emissivity composite, radiance composite and emissivity–temperature composite in geological mapping of proterozoic rocks in parts of Banswara, Rajasthan. Journal of the Indian Society of Remote Sensing, 46, 771-782.
  • Rockwell, B.W., Hofstra, A.H., 2008. Identification of quartz and carbonate minerals across northern Nevada using ASTER thermal infrared emissivity data—Implications for geologic mapping and mineral resource investigations in well-studied and frontier areas. Geosphere, 4(1), 218-246.
  • Rowan, L.C., Mars, J.C., 2003. Lithologic mapping in the Mountain Pass, California area using advanced spaceborne thermal emission and reflection radiometer (ASTER) data. Remote sensing of Environment, 84(3), 350-366.
  • Rowan, L.C., Mars, J.C., Simpson, C.J., 2005. Lithologic mapping of the Mordor, NT, Australia ultramafic complex by using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Remote sensing of Environment, 99(1-2), 105-126.
  • Sabins, F.F., 1999. Remote sensing for mineral exploration. Ore geology reviews, 14(3-4), 157-183. Sarp H., 1976. Etude geologique et petrographique du cortege ophiolitique de la region situee au nord-quest de Yeşilova (Burdur-Turquie). These, Univ Geneve, 377p
  • Sevimli, U.İ., Traore, M., Topak, Y., Tekin, S., 2021. Mineral Prοpecting and Lithοlοgical Mapping Using Remοte Sensing Apprοaches in Between Yazihan-Heki̇mhan (Malatya) Turkey.
  • Singh, A., Harrison, A., 1985. Standardized principal components. International journal of remote sensing, 6(6), 883-896.
  • Şenel, M., 1997. 1:250.0000 Ölçekli Türkiye Jeoloji Haritaları No: 3 Antalya Paftası. (in Turkish with English abstract) Şenel, M., 2004 Stratigraphic and structural features of Yeşilyaprak Nappe in Western Taurus Range and its comparision with the similar units in SE Anatolia and Northern Cyprus. Bull Min Res Explor 128:1–26
  • Uysal, İ., Ersoy, E. Y., Karslı, O., Dilek, Y., Sadıklar, M. B., Ottley, C. J., ... & Meisel, T., 2012. Coexistence of abyssal and ultra-depleted SSZ type mantle peridotites in a Neo-Tethyan Ophiolite in SW Turkey: Constraints from mineral composition, whole-rock geochemistry (major–trace–REE–PGE), and Re–Os isotope systematics. Lithos, 132, 50-69.
  • Topak, Y., Traore, M., Sevimli, U.İ., Tekin, S., 2022. Mineral Exploration and Lithοlοgical Mapping Using Remοte Sensing Apprοaches In Between Yazıhan-Hekimhan (Malatya) Turkey. Bilge International Journal of Science and Technology Research, 6(1), 52-61.
  • Tözün, K.A., Özyavaş, A., 2020. New logical operator algorithms for mapping of hydrothermally altered rocks using ASTER data: A case study from central Turkey. Ore Geology Reviews, 122, 103533.
  • Traore, M., Wambo, J.D.T., Ndepete, C.P., Tekin, S., Pour, A.B., Muslim, A.M., 2020a. Lithological and alteration mineral mapping for alluvial gold exploration in the south east of Birao area, Central African Republic using Landsat-8 Operational Land Imager (OLI) data. Journal of African Earth Sciences, 170, 103933.
  • Traore, M., Çan, T., Tekin, S., 2020b. Discrimination of iron deposits using feature oriented principal component selection and band ratio methods: Eastern Taurus/TURKEY. International Journal of Environment and Geoinformatics, 7(2), 147-156.
  • Traore, M., Çan, T., Tekin, S., 2022. Mapping carbonate-hosted Pb-Zn mineralization zones in Yahyali Province (Eastern Taurus-Turkey) using ASTER data. Advances in Space Research, 69(1), 266-281.
  • Turan, T.İ., Diker, C., 2022. Remote sensing of Listvenite rock for Kaymaz Gold Deposit, Eskişehir-Türkiye. Journal of Geochemical Exploration, 243, 107110.
  • Xiong, Y., Khan, S. D., Mahmood, K., Sisson, V.B., 2011. Lithological mapping of Bela ophiolite with remote-sensing data. International journal of remote sensing, 32(16), 4641-4658.
  • Van der Meer, F.D., Van der Werff, H. M., Van Ruitenbeek, F. J., Hecker, C.A., Bakker, W. H., Noomen, M.F., van der Meijde, M., Carranza, E.J.M., de Smeth, J.B., Woldai, T., 2012. Multi-and hyperspectral geologic remote sensing: A review. International Journal of Applied Earth Observation and Geoinformation, 14(1), 112-128.
  • van der Meer, F., Kopačková, V., Koucká, L., van der Werff, H. M., van Ruitenbeek, F. J., Bakker, W.H., 2018. Wavelength feature mapping as a proxy to mineral chemistry for investigating geologic systems: An example from the Rodalquilar epithermal system. International journal of applied earth observation and geoinformation, 64, 237-248.
  • Yajima, T., Yamaguchi, Y., 2013. Geological mapping of the Francistown area in northeastern Botswana by surface temperature and spectral emissivity information derived from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared data. Ore Geology Reviews, 53, 134-144.
  • Yamaguchi, Y., Naito, C., 2003. Spectral indices for lithologic discrimination and mapping by using the ASTER SWIR bands. International Journal of Remote Sensing, 24(22), 4311-4323.
  • Yang, W., Zheng, Y., Chen, S., Duan, X., Zhou, Y., Xu, X., 2023. Chromite-Bearing Peridotite Identification, Based on Spectral Analysis and Machine Learning: A Case Study of the Luobusa Area, Tibet, China. Applied Sciences, 13(16), 9325.
  • Zhang, R., Zeng, M., 2018. Mapping lithologic components of ophiolitic mélanges based on ASTER spectral analysis: A case study from the Bangong-Nujiang Suture Zone (Tibet, China). ISPRS International Journal of Geo-Information, 7(1), 34.

Yeşilova Ofiyolitik Kayaçlarının (Batı Toroslar, Güneybatı Türkiye) ASTER multispektral verileriyle Haritalanması

Year 2023, Volume: 58 Issue: 1, 40 - 74, 31.12.2023

Abstract

Multispektral ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) uydu verileri, litolojik ve mineralojik haritaların oluşturulmasında yaygın olarak kullanılan uzaktan algılama veri kaynaklarındandır. Bu çalışmada, multispektral ASTER L1T uydu verileriyle Yeşilova ofiyoliti ve ofiyolitik melanjına (Batı Toroslar) ait litolojik birimlerinin tanımlanması ve haritalanması hedeflenmiştir. Yeşilova ofiyolitine ait litolojik birimlerin belirlenmesi için ASTER veri setinin yakın kızılötesi (VNIR) ve kısa dalga kızılötesi (SWIR) bölümlerindeki spektral bantlarına, bant oranlama ve Temel Bileşen Analizi (PCA) yöntemleri uygulanmıştır. VNIR-SWIR spektral bantlarında uygulanan bant oranları (B1/B2, B3/B4, B4/B5, B4/B8, B5/B3 ve (B6+B9)/(B7+B8)), çalışma alanındaki ana litolojik birimlerin oluşumunu göstermiş ve ofiyolitik kayaçların haritasını üretmek için kullanılmıştır. Benzer şekilde, PCA yönteminin seçili temel bileşenleri ve bu temel bileşenlerinin (PC3, PC2, PC1, ve PC5, PC4, PC2) aldatıcı renkli kompozit görüntüleri ofiyolitik kayaçların tanımlanmasında etkili sonuçlar sağlamıştır. ASTER’in kızılötesi termal (TIR) bantlarına uygulanan mafik kayaç indeksi, kalsit indeksi ve kuvars indeksi gibi indekslerinin, Yeşilova ofiyolitine ait mafik-ultramafik litolojilerinin bölgesel ölçekte belirlenmesinde başarılı sonuçlar sunduğu görülmüştür. Sonuç görüntülerinin doğrulanması saha çalışmalarıyla gerçekleştirilmiş olup sonuçlar saha verileriyle tutarlı olduğu tespit edilmiştir. Bu bağlamda, burada sunulan uzaktan algılama tekniklerin çalışma alanındaki ofiyolit ve ofiyolitik melanjlara ait litolojik birimlerin haritalanmasında etkili ve yararlı bir yaklaşım olduğuna dair kanıtlar sunmaktadır. Sonuç olarak ASTER veri setinin, Toroslar gibi karmaşık bir jeolojik yapıya sahip bölgelerde, litolojik haritalama çalışmaları için etkili araçlardan biri olduğu değerlendirilmiştir.

References

  • Abrams, M. 2000. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): data products for the high spatial resolution imager on NASA's Terra platform. international Journal of Remote sensing, 21(5), 847-859.
  • Abrams, M., Yamaguchi, Y., 2019. Twenty years of ASTER contributions to lithologic mapping and mineral exploration. Remote Sensing, 11(11), 1394.
  • Adiri, Z., Lhissou, R., El Harti, A., Jellouli, A., Chakouri, M., 2020. Recent advances in the use of public domain satellite imagery for mineral exploration: A review of Landsat-8 and Sentinel-2 applications. Ore Geology Reviews, 117, 103332.
  • Ahmadi, H., Kalkan, K., 2021. Mapping of ophiolitic complex in logar and surrounding areas (SE Afghanistan) with ASTER data. Journal of the Indian Society of Remote Sensing, 49(6), 1271-1284.
  • Aldanmaz, E., Meisel, T., Çelik, Ö. F., Henjes-Kunst, F., 2012. Osmium isotope systematics and highly siderophile element fractionation in spinel-peridotites from the Tethyan ophiolites in SW Turkey: implications for multi-stage evolution of oceanic upper mantle. Chemical geology, 294, 152-164.
  • Bachri, I., Hakdaoui, M., Raji, M., Teodoro, A. C., Benbouziane, A., 2019. Machine learning algorithms for automatic lithological mapping using remote sensing data: A case study from Souk Arbaa Sahel, Sidi Ifni Inlier, Western Anti-Atlas, Morocco. ISPRS International Journal of Geo-Information, 8(6), 248.
  • Blaschke, T., Hay, G. J., Kelly, M., Lang, S., Hofmann, P., Addink, E., ... & Tiede, D., 2014. Geographic object-based image analysis–towards a new paradigm. ISPRS journal of photogrammetry and remote sensing, 87, 180-191.
  • Canbaz, O., 2023a. Application of Spectral Analysis and Image Processing Methods to Discriminate Hydrothermal Alteration Minerals Around the Tutakdağı (Şebinkarahisar-Giresun) Lead–Zinc Deposits, Northeastern Turkey. Journal of the Indian Society of Remote Sensing, 1-21.
  • Canbaz, O., 2023b. The Performance of Hyperspectral Measurements Integrated into Multispectral Data on the Detection of the Alpine Chromite Deposits in the Ophiolite Complexes. Geology of Ore Deposits, 65(4), 381-394.
  • Canbaz, O., Çakır, E.Ü., 2022. Şaphane (Çorum) Damar Tipi Altın Cevherleşmesinde Multispektral Uydu Görüntüleri Kullanılarak Hidrotermal Alterasyon Mineral Haritalaması ve Çizgisellik Analizi. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 25(3), 313-328.
  • Cloutis, E.A., 1996. Review article hyperspectral geological remote sensing: evaluation of analytical techniques. International Journal of Remote Sensing, 17(12), 2215-2242.
  • Collins, A.S., Robertson, A.H., 1999. Evolution of the Lycian Allochthon, western Turkey, as a north‐facing Late Palaeozoic to Mesozoic rift and passive continental margin. Geological Journal, 34(1‐2), 107-138.
  • Cooley, T., Anderson, G. P., Felde, G. W., Hoke, M. L., Ratkowski, A. J., Chetwynd, J. H., ... & Lewis, P., 2002. FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation. In IEEE international geoscience and remote sensing symposium (Vol. 3, pp. 1414-1418). IEEE.
  • Crosta, A.P., De Souza Filho, C.R., Azevedo, F., Brodie, C., 2003. Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. International journal of Remote sensing, 24(21), 4233-4240.
  • Çelik, Ö.F., Delaloye, M.F., 2003. Origin of metamorphic soles and their post‐kinematic mafic dyke swarms in the Antalya and Lycian ophiolites, SW Turkey. Geological Journal, 38(3‐4), 235-256.
  • Çelik, Ö.F., Chiaradia, M., 2008. Geochemical and petrological aspects of dike intrusions in the Lycian ophiolites (SW Turkey): a case study for the dike emplacement along the Tauride Belt Ophiolites. International Journal of Earth Sciences, 97, 1151-1164.
  • Çelik, Ö.F., Delaloye, M., Feraud, G., 2006. Precise 40Ar–39Ar ages from the metamorphic sole rocks of the Tauride Belt Ophiolites, southern Turkey: implications for the rapid cooling history. Geological Magazine, 143(2), 213-227.
  • Çiftçi, Y., Dönmez, C., Parlak, O., Günay, K., 2019. Chromitite deposits of Turkey in Tethyan ophiolites. Mineral Resources of Turkey, 73-157.
  • Çörtük, R.M., Çelik, Ö.F., Alkan, A., Özkan, M., Özyavaş, A., 2020. Distribution of rocks in Pınarbaşı Ophiolite from central Anatolia (Turkey) based on analysis of ASTER and Landsat‐8 data. Geological Journal, 55(10), 6810-6822.
  • Çörtük, R.M., Çelik, Ö.F., Özkan, M., Marzoli, A., Alkan, A., 2023. The origin and PT conditions of the metamorphic sole rocks beneath the Late Cretaceous Pınarbaşı Ophiolite, Eastern-Central Anatolia. International Geology Review, 65(2), 296-316.
  • Ding, C., Liu, X., Liu, W., Liu, M., Li, Y., 2014. Mafic–ultramafic and quartz-rich rock indices deduced from ASTER thermal infrared data using a linear approximation to the Planck function. Ore Geology Reviews, 60, 161-173.
  • Ding, C., Li, X., Liu, X., Zhao, L., 2015. Quartzose–mafic spectral feature space model: a methodology for extracting felsic rocks with ASTER thermal infrared radiance data. Ore Geology Reviews, 66, 283-292.
  • Döyen, A., 1995. Yeşilova (Burdur) civarı kromit yataklarının mineralojik, petrografik ve jeokimyasal incelemesi. Doktora Tezi, SU Institute of Science, (in Turkish, unpublished)
  • Döyen, A., Çömlekçiler F., Koçak K., 2014. Stratigraphic Features of the Yesilova Ophiolite, Burdur, South-Western Turkey. In: Rocha R, Pais J, Kullberg J.C. and Finney S. (Eds.), Strati 2013, Springer, 493-498.
  • Emam, A., Zoheir, B., Johnson, P., 2016. ASTER-based mapping of ophiolitic rocks: examples from the Allaqi–Heiani suture, SE Egypt. International Geology Review, 58(5), 525-539.
  • Eslami, A., Ghaderi, M., Rajendran, S., Pour, A.B., Hashim, M., 2015. Integration of ASTER and landsat TM remote sensing data for chromite prospecting and lithological mapping in Neyriz ophiolite zone, south Iran. Resource Geology, 65(4), 375-388.
  • Ekici, T., 2023. Lithological mapping of ophiolitic rocks from southern part of the Sivas Basin (Turkey) using ASTER imagery. Turkish Journal of Earth Sciences, 32(2), 200-213.
  • Fu, B., Zheng, G., Ninomiya, Y., Wang, C., Sun, G., 2007. Mapping hydrocarbon‐induced mineralogical alteration in the northern Tian Shan using ASTER multispectral data. Terra Nova, 19(4), 225-231.
  • Fujisada, H., 1995. Design and performance of ASTER instrument, in Breckinridge, J.B., ed., Proceedings of international society of optical engineering: Bellingham, WA, SPIE publication (AIP Online Journal Publishing Service and American Institute of Physics), v. 2583, p. 16–25.
  • Gad, S., Kusky, T., 2007. ASTER spectral ratioing for lithological mapping in the Arabian–Nubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt. Gondwana research, 11(3), 326-335.
  • Gillespie, A., Rokugawa, S., Matsunaga, T., Cothern, J. S., Hook, S., Kahle, A.B., 1998. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE transactions on geoscience and remote sensing, 36(4), 1113-1126.
  • Green, A.A., Berman, M., Switzer, P., Craig, M.D., 1988. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on geoscience and remote sensing, 26(1), 65-74.
  • Guha, A., Kumar, V., 2016. New ASTER derived thermal indices to delineate mineralogy of different granitoids of an Archaean Craton and analysis of their potentials with reference to Ninomiya's indices for delineating quartz and mafic minerals of granitoids—An analysis in Dharwar Craton, India. Ore Geology Reviews, 74, 76-87.
  • Gürbüz, E., 2019. Multispectral mapping of evaporite minerals using ASTER data: A methodological comparison from central Turkey. Remote Sensing Applications: Society and Environment, 15, 100240.
  • Gürbüz, A., Gürbüz, E., 2022. Remote sensing approaches for mapping Quaternary deposits: A synthesis. Physics and Chemistry of the Earth, Parts A/B/C, 126, 103128.
  • Gürsoy, Ö., 2019. Hybrid band combination for discriminating lithology of dunite in ultramafic rocks. Journal of the Indian Society of Remote Sensing, 47(6), 1041-1049.
  • Gürsoy, Ö., Kaya, Ş., 2017. Detecting of lithological units by using terrestrial spectral data and remote sensing image. Journal of the Indian Society of Remote Sensing, 45, 259-269.
  • Hewson, R.D., Cudahy, T.J., Mizuhiko, S., Ueda, K., Mauger, A.J., 2005. Seamless geological map generation using ASTER in the Broken Hill-Curnamona province of Australia. Remote Sensing of Environment, 99(1-2), 159-172.
  • Juteau, T., 1980. Ophiolites of Turkey. In: Rocci, G. (Ed.), Ofioliti, Special Issue Tethyan Ophiolites: 2. Eastern Area, pp. 199 – 237. Khalifa, A., Bashir, B., Çakir, Z., Kaya, Ş., Alsalman, A., Henaish, A., 2021. Paradigm of geological mapping of the adıyaman fault zone of eastern turkey using landsat 8 remotely sensed data coupled with pca, ica, and mnfa techniques. ISPRS International Journal of Geo-Information, 10(6), 368.
  • Kavak, K.S., 2005. Determination of palaeotectonic and neotectonic features around the Menderes Massif and the Gediz Graben (western Turkey) using Landsat TM image. International Journal of Remote Sensing, 26(1), 59-78.
  • Kavak, K.S., Tatar, O., Piper, J., Kocbulut, F., Levent Mesci, B., 2009. Determination of neotectonic features of the Karasu Basin (SE Turkey) and their relationship with Quaternary volcanic activity using Landsat ETM+ imagery. International Journal of Remote Sensing, 30(17), 4507-4524.
  • Khan, S.D., Mahmood, K., Casey, J.F. 2007. Mapping of Muslim Bagh ophiolite complex (Pakistan) using new remote sensing, and field data. Journal of Asian Earth Sciences, 30(2), 333-343.
  • Koralay, T., 2000. Niyazlar köyü (Yeşilova-Burdur) ile tefenni yaylası (Tefenni-Burdur) ofiyolitlerinin jeolojik, petrografik ve petrokimyasal incelemesi (Doktora Tezi, Pamukkale Üniversitesi).
  • Konak, N., 2002. 1:500,000 Scale Geological Map of Turkey İzmir Quadrangle. 1:500,000 Scale Geological Maps of Turkey, M. Şenel (Ed.), Serial Number: 7, General Directorate of Mineral Research and Exploration, Ankara-Turkey.
  • Langford, R.L., 2015. Temporal merging of remote sensing data to enhance spectral regolith, lithological and alteration patterns for regional mineral exploration. Ore Geology Reviews, 68, 14-29.
  • Manap, H.S., San, B.T., 2022. Data Integration for Lithological Mapping Using Machine Learning Algorithms. Earth Science Informatics, 15(3), 1841-1859.
  • Mars, J.C., Rowan, L.C., 2010. Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals. Remote Sensing of Environment, 114(9), 2011-2025.
  • Mars, J.C., Rowan, L.C., 2011. ASTER spectral analysis and lithologic mapping of the Khanneshin carbonatite volcano, Afghanistan. Geosphere, 7(1), 276-289.
  • Monod, O., 1977. Re´cherches ge´ologique dans les Taurus occidental au sud de Beys¸ehir (Turquie). PhD thesis, Universite´ de Paris-Sud, Orsay
  • Nair, A., Mathew, G., 2012. Lithological discrimination of the phenaimata felsic–mafic complex, Gujarat, India, using the advanced spaceborne thermal emission and reflection radiometer (ASTER). International Journal of Remote Sensing, 33(1), 198-219.
  • Ninomiya, Y., 2002. Mapping quartz, carbonate minerals, and mafic-ultramafic rocks using remotely sensed multispectral thermal infrared ASTER data. In Thermosense XXIV (Vol. 4710, pp. 191-202). SPIE.
  • Ninomiya, Y., Fu, B., Cudahy, T.J., 2005. Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral thermal infrared “radiance-at-sensor” data. Remote Sensing of Environment, 99(1-2), 127-139.
  • Ninomiya, Y., Fu, B., 2010. Regional scale lithologic mapping in western Tibet using ASTER thermal infrared multispectral data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, 38, 454-458.
  • Ninomiya, Y., Fu, B., 2016. Regional lithological mapping using ASTER-TIR data: Case study for the Tibetan Plateau and the surrounding area. Geosciences, 6(3), 39.
  • Ninomiya, Y., Fu, B., 2019. Thermal infrared multispectral remote sensing of lithology and mineralogy based on spectral properties of materials. Ore Geology Reviews, 108, 54-72.
  • Özgül, N., 1976. Toroslar'm bazı temel jeoloji özellikleri. Bulletin of the Geological Society of Turkey, 19, 65-78.
  • Özkan, M., Çelik, Ö.F., Özyavaş, A., 2018. Lithological discrimination of accretionary complex (Sivas, northern Turkey) using novel hybrid color composites and field data. Journal of African Earth Sciences, 138, 75-85.
  • Öztan, S.N., Lütfi Süzen, M., 2011. Mapping evaporate minerals by ASTER. International Journal of Remote Sensing, 32(6), 1651-1673.
  • Özyavaş, A., 2016. Assessment of image processing techniques and ASTER SWIR data for the delineation of evaporates and carbonate outcrops along the Salt Lake Fault, Turkey. International Journal of Remote sensing, 37(4), 770-781.
  • Özyavaş, A., 2020. Susuzdağ ve Tekkedağ (Kapadokya-Türkiye) Çevresindeki Volkanik Kayaçların ASTER Görüntüsü Kullanılarak Haritalanması. Türkiye Jeoloji Bülteni, 63(2), 225-240.
  • Pour, A.B., Hashim, M., 2011. Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran. Journal of Asian Earth Sciences, 42(6), 1309-1323.
  • Pour, A.B., Hashim, M., 2012. The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore geology reviews, 44, 1-9.
  • Qasim, M., Khan, S.D., Haider, R., Rasheed, M.U., 2022. Integration of multispectral and hyperspectral remote sensing data for lithological mapping in Zhob Ophiolite, Western Pakistan. Arabian Journal of Geosciences, 15(7), 599.
  • Rajendran, S., Nasir, S., 2014. ASTER spectral sensitivity of carbonate rocks–Study in Sultanate of Oman. Advances in Space Research, 53(4), 656-673.
  • Rajendran, S., Nasir, S., 2015. Mapping of Moho and Moho Transition Zone (MTZ) in Samail ophiolites of Sultanate of Oman using remote sensing technique. Tectonophysics, 657, 63-80.
  • Rajendran, S., Nasir, S., 2019. ASTER capability in mapping of mineral resources of arid region: A review on mapping of mineral resources of the Sultanate of Oman. Ore Geology Reviews, 108, 33-53.
  • Rani, K., Guha, A., Pal, S. K., Vinod Kumar, K., 2018. Comparative analysis of potentials of ASTER thermal infrared band derived emissivity composite, radiance composite and emissivity–temperature composite in geological mapping of proterozoic rocks in parts of Banswara, Rajasthan. Journal of the Indian Society of Remote Sensing, 46, 771-782.
  • Rockwell, B.W., Hofstra, A.H., 2008. Identification of quartz and carbonate minerals across northern Nevada using ASTER thermal infrared emissivity data—Implications for geologic mapping and mineral resource investigations in well-studied and frontier areas. Geosphere, 4(1), 218-246.
  • Rowan, L.C., Mars, J.C., 2003. Lithologic mapping in the Mountain Pass, California area using advanced spaceborne thermal emission and reflection radiometer (ASTER) data. Remote sensing of Environment, 84(3), 350-366.
  • Rowan, L.C., Mars, J.C., Simpson, C.J., 2005. Lithologic mapping of the Mordor, NT, Australia ultramafic complex by using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Remote sensing of Environment, 99(1-2), 105-126.
  • Sabins, F.F., 1999. Remote sensing for mineral exploration. Ore geology reviews, 14(3-4), 157-183. Sarp H., 1976. Etude geologique et petrographique du cortege ophiolitique de la region situee au nord-quest de Yeşilova (Burdur-Turquie). These, Univ Geneve, 377p
  • Sevimli, U.İ., Traore, M., Topak, Y., Tekin, S., 2021. Mineral Prοpecting and Lithοlοgical Mapping Using Remοte Sensing Apprοaches in Between Yazihan-Heki̇mhan (Malatya) Turkey.
  • Singh, A., Harrison, A., 1985. Standardized principal components. International journal of remote sensing, 6(6), 883-896.
  • Şenel, M., 1997. 1:250.0000 Ölçekli Türkiye Jeoloji Haritaları No: 3 Antalya Paftası. (in Turkish with English abstract) Şenel, M., 2004 Stratigraphic and structural features of Yeşilyaprak Nappe in Western Taurus Range and its comparision with the similar units in SE Anatolia and Northern Cyprus. Bull Min Res Explor 128:1–26
  • Uysal, İ., Ersoy, E. Y., Karslı, O., Dilek, Y., Sadıklar, M. B., Ottley, C. J., ... & Meisel, T., 2012. Coexistence of abyssal and ultra-depleted SSZ type mantle peridotites in a Neo-Tethyan Ophiolite in SW Turkey: Constraints from mineral composition, whole-rock geochemistry (major–trace–REE–PGE), and Re–Os isotope systematics. Lithos, 132, 50-69.
  • Topak, Y., Traore, M., Sevimli, U.İ., Tekin, S., 2022. Mineral Exploration and Lithοlοgical Mapping Using Remοte Sensing Apprοaches In Between Yazıhan-Hekimhan (Malatya) Turkey. Bilge International Journal of Science and Technology Research, 6(1), 52-61.
  • Tözün, K.A., Özyavaş, A., 2020. New logical operator algorithms for mapping of hydrothermally altered rocks using ASTER data: A case study from central Turkey. Ore Geology Reviews, 122, 103533.
  • Traore, M., Wambo, J.D.T., Ndepete, C.P., Tekin, S., Pour, A.B., Muslim, A.M., 2020a. Lithological and alteration mineral mapping for alluvial gold exploration in the south east of Birao area, Central African Republic using Landsat-8 Operational Land Imager (OLI) data. Journal of African Earth Sciences, 170, 103933.
  • Traore, M., Çan, T., Tekin, S., 2020b. Discrimination of iron deposits using feature oriented principal component selection and band ratio methods: Eastern Taurus/TURKEY. International Journal of Environment and Geoinformatics, 7(2), 147-156.
  • Traore, M., Çan, T., Tekin, S., 2022. Mapping carbonate-hosted Pb-Zn mineralization zones in Yahyali Province (Eastern Taurus-Turkey) using ASTER data. Advances in Space Research, 69(1), 266-281.
  • Turan, T.İ., Diker, C., 2022. Remote sensing of Listvenite rock for Kaymaz Gold Deposit, Eskişehir-Türkiye. Journal of Geochemical Exploration, 243, 107110.
  • Xiong, Y., Khan, S. D., Mahmood, K., Sisson, V.B., 2011. Lithological mapping of Bela ophiolite with remote-sensing data. International journal of remote sensing, 32(16), 4641-4658.
  • Van der Meer, F.D., Van der Werff, H. M., Van Ruitenbeek, F. J., Hecker, C.A., Bakker, W. H., Noomen, M.F., van der Meijde, M., Carranza, E.J.M., de Smeth, J.B., Woldai, T., 2012. Multi-and hyperspectral geologic remote sensing: A review. International Journal of Applied Earth Observation and Geoinformation, 14(1), 112-128.
  • van der Meer, F., Kopačková, V., Koucká, L., van der Werff, H. M., van Ruitenbeek, F. J., Bakker, W.H., 2018. Wavelength feature mapping as a proxy to mineral chemistry for investigating geologic systems: An example from the Rodalquilar epithermal system. International journal of applied earth observation and geoinformation, 64, 237-248.
  • Yajima, T., Yamaguchi, Y., 2013. Geological mapping of the Francistown area in northeastern Botswana by surface temperature and spectral emissivity information derived from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared data. Ore Geology Reviews, 53, 134-144.
  • Yamaguchi, Y., Naito, C., 2003. Spectral indices for lithologic discrimination and mapping by using the ASTER SWIR bands. International Journal of Remote Sensing, 24(22), 4311-4323.
  • Yang, W., Zheng, Y., Chen, S., Duan, X., Zhou, Y., Xu, X., 2023. Chromite-Bearing Peridotite Identification, Based on Spectral Analysis and Machine Learning: A Case Study of the Luobusa Area, Tibet, China. Applied Sciences, 13(16), 9325.
  • Zhang, R., Zeng, M., 2018. Mapping lithologic components of ophiolitic mélanges based on ASTER spectral analysis: A case study from the Bangong-Nujiang Suture Zone (Tibet, China). ISPRS International Journal of Geo-Information, 7(1), 34.
There are 88 citations in total.

Details

Primary Language Turkish
Subjects General Geology, Geological Sciences and Engineering (Other)
Journal Section Research Articles
Authors

Alper Şen 0000-0002-8047-0330

Mutlu Özkan 0000-0002-9948-488X

Ömer Faruk Çelik 0000-0003-2369-4810

Rahmi Melih Çörtük 0000-0001-8709-5943

Early Pub Date January 5, 2024
Publication Date December 31, 2023
Submission Date November 7, 2023
Acceptance Date November 24, 2023
Published in Issue Year 2023 Volume: 58 Issue: 1

Cite

APA Şen, A., Özkan, M., Çelik, Ö. F., Çörtük, R. M. (2023). Yeşilova Ofiyolitik Kayaçlarının (Batı Toroslar, Güneybatı Türkiye) ASTER multispektral verileriyle Haritalanması. Geosound, 58(1), 40-74.
AMA Şen A, Özkan M, Çelik ÖF, Çörtük RM. Yeşilova Ofiyolitik Kayaçlarının (Batı Toroslar, Güneybatı Türkiye) ASTER multispektral verileriyle Haritalanması. Geosound. December 2023;58(1):40-74.
Chicago Şen, Alper, Mutlu Özkan, Ömer Faruk Çelik, and Rahmi Melih Çörtük. “Yeşilova Ofiyolitik Kayaçlarının (Batı Toroslar, Güneybatı Türkiye) ASTER Multispektral Verileriyle Haritalanması”. Geosound 58, no. 1 (December 2023): 40-74.
EndNote Şen A, Özkan M, Çelik ÖF, Çörtük RM (December 1, 2023) Yeşilova Ofiyolitik Kayaçlarının (Batı Toroslar, Güneybatı Türkiye) ASTER multispektral verileriyle Haritalanması. Geosound 58 1 40–74.
IEEE A. Şen, M. Özkan, Ö. F. Çelik, and R. M. Çörtük, “Yeşilova Ofiyolitik Kayaçlarının (Batı Toroslar, Güneybatı Türkiye) ASTER multispektral verileriyle Haritalanması”, Geosound, vol. 58, no. 1, pp. 40–74, 2023.
ISNAD Şen, Alper et al. “Yeşilova Ofiyolitik Kayaçlarının (Batı Toroslar, Güneybatı Türkiye) ASTER Multispektral Verileriyle Haritalanması”. Geosound 58/1 (December 2023), 40-74.
JAMA Şen A, Özkan M, Çelik ÖF, Çörtük RM. Yeşilova Ofiyolitik Kayaçlarının (Batı Toroslar, Güneybatı Türkiye) ASTER multispektral verileriyle Haritalanması. Geosound. 2023;58:40–74.
MLA Şen, Alper et al. “Yeşilova Ofiyolitik Kayaçlarının (Batı Toroslar, Güneybatı Türkiye) ASTER Multispektral Verileriyle Haritalanması”. Geosound, vol. 58, no. 1, 2023, pp. 40-74.
Vancouver Şen A, Özkan M, Çelik ÖF, Çörtük RM. Yeşilova Ofiyolitik Kayaçlarının (Batı Toroslar, Güneybatı Türkiye) ASTER multispektral verileriyle Haritalanması. Geosound. 2023;58(1):40-74.