Review
BibTex RIS Cite

Effects of Psychosocial Stress on Bone Health

Year 2020, , 66 - 74, 31.08.2020
https://doi.org/10.47141/geriatrik.727624

Abstract

Summary: At the present time, it has been shown that physical stress stimulates the bone remodeling and affects the bone structure and function through complex mechanotransduction mechanisms. Recent research support the hypothesis that as well as physical stress, psychosocial stress (mental, behavioral, emotional) also affects the bone biology and eventually leads to osteoporosis, bone pain and increased risk of bone fracture. It has been considered that these effects originates from modulation of activity around the hypothalamic-pituitary-adrenal axis. In human and experimental animal studies, it has been reported that psychosocial stress brings about changes related to insulin-like growth factors, glucocorticoids, catecholamines, serotonin, GABA, brain-derived neurotrophic factor, receptor activator nuclear kappa ligand and release in cytokines (IL-1-6-11 -17, TNFα). This review summarises the current state of knowledge that psychosocial stress has a crucial role in structural adaptation of bone.

Keywords:
Stress, osteoporosis, bone health


References

  • 1. Alexander G. Robling and Charles H. Turner. Mechanical Signaling for Bone Modeling and Remodeling. Crit Rev Eukaryot Gene Expr. 2009;19(4): 319–338.
  • 2. Klein-Nulend J, Bacabac RG, Bakker AD. Mechanical loading and how it affects bone cells: the role of the osteocyte cytoskeleton in maintaining our skeleton. Eur Cell Mater. 2012;24:278–91. doi:10.22203/eCM.v024a20
  • 3. Tümay Sözen, Lale Özışık, Nursel Çalık Başaran. An overview and management of osteoporosis. Eur J Rheumatol. 2017; 4: 46-56.
  • 4. Tan VPS, Macdonald HM, Kim S, et al. Influence of physical activity on bone strength in children and adolescents: a systematic review and narrative synthesis. J Bone Miner Res. 2014; 29:2161–81. doi:10.1002/jbmr.2254
  • 5. Maycas M, Esbrit P, Gortázar AR. Molecular mechanisms in bone mechanotransduction. Histol Histopathol. 2017;32(8):751-760. doi: 10.14670/HH-11-858.
  • 6. Bonewald LF. The amazing osteocyte. J Bone Miner Res.2011; 26:229–38. doi:10.1002/jbmr.320
  • 7. Baum A. Stress, intrusive imagery, and chronic distress. Health Psychol. 1990; 9:653–75. doi: 10.1037/0278-6133.9.6.653.
  • 8. Dickerson SS, Kemeny ME. Acute stressors and cortisol responses: a theo-retical integration and synthesis of laboratory research. Psychol Bull. 2004; 130:355–91. doi:10.1037/0033-2909.130.3.355
  • 9. Pia-Maria Wipper, Michael Recto, Gisela Kuhn et al. Stress and Alterations in Bones: An interdisciplinary Perspective. Frontiers in Endocrinology. 2017;8. doi: 10.3389/fendo.2017.00096.
  • 10. Levi L. Stress and Distress in Response to Psychosocial Stimuli: Laboratory and Real-Life Studies on Sympatho-Adrenomedullary and Related Reactions. Amsterdam: Elsevier (2016).
  • 11. Miller GE, Murphy MLM, Cashman R, et al. Greater inflammatory activity and blunted glucocorticoid signaling in monocytes of chronically stressed caregivers. Brain Behav Immun. 2014; 41:191–9. doi: 10.1016/j.bbi.2014.05.016.
  • 12. Yang L, Zhao Y, Wang Y, et al. The effects of psychological stress on depression. Curr Neuropharmacol. 2015; 13:494–504. doi: 10.2174/1570159X1304150831150507
  • 13. Furlan PM, Ten Have T, Cary M, et al. The role of stress-induced cortisol in the relationship between depression and decreased bone mineral density. Biol Psychiatry. 2005; 57:911–7. doi:10.1016/j. biopsych.2004.12.033
  • 14. Julietta Ursula Schweiger, Ulrich Schweiger, Michael Hüppe, et al. Bone density and depressive disorder: a meta-analysis. Brain and Behavior. 2016; 6(8), e00489, doi: 10.1002/brb3.489
  • 15. Azuma K, Adachi Y, Hayashi H, et al. Chronic psychological stress as a risk factor of osteoporosis. J UOEH. 2015; 37:245–53. doi:10.7888/juoeh.37.245
  • 16. Williams LJ, Pasco JA, Jackson H, et al. Depression as a risk factor for fracture in women: a 10 year longitudinal study. J Affect Disord. 2016;192:34–40. doi:10.1016/j.jad.2015.11.048 17. Zhang ZD, Ren H, Shen GY, et al. Animal models for glucocorticoid-induced postmenopausal osteoporosis: An updated review. Biomed Pharmacother.2016; 84:438–46.
  • 18. Yirmiya R, Bab I. Major depression is a risk factor for low bone mineral density: a meta-analysis. Biol Psychiatry.2009; 66:423–32. doi:10.1016/j. biopsych.2009.03.016
  • 19. Willner P. Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology.2005; 52:90–110. doi:10.1159/000087097.
  • 20. Neporada KS, Leont’eva FS, Tarasenko LM. Chronic stress impairs structural organization of organic matrix in bone tissue of rat periodontium. Bull Exp Biol Med.2003;135:543–4. doi:10.1023/A:1025464932135.
  • 21. Furuzawa M, Chen HY, Fujiwara S, et al. Chewing ameliorates chronic mild stress-induced bone loss in senescence-accelerated mouse (SAMP8), a murine model of senile osteoporosis. Exp Gerontol. 2014;55:12–8. doi:10.1016/j.exger.2014.03.003.
  • 22. Seferos N, Kotsiou A, Petsaros S, et al. Mandibular bone density and calcium content affected by different kind of stress in mice. J Musculoskelet Neuronal Interact (2010) 10:231–6.
  • 23. Toepfer P, Heim C, Entringer S, et al. Oxytocin path-ways in the intergenerational transmission of maternal early life stress. Neurosci Biobehav Rev. 2016; 73:293–308. doi:10.1016/j.neubiorev. 2016.12.026.
  • 24. Bowers ME, Yehuda R. Intergenerational transmission of stress in humans. Neuropsychopharmacology. 2016;41:232–44. doi:10.1038/npp.2015.247.
  • 25. Kelly RR, McDonald LT, Jensen NR, et al. Impacts of psychological stress on osteoporosis: clinical implications and treatment interactions. Front Psychiatr. 2019; 10:1-21. doi: 10.3389/fpsyt.2019.00200.
  • 26. Monolagas SC. Birth and death of bone cells. basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr. Rev. 2000;21, 115–117. 27. Cohen S, Janicki-Deverts D, Doyle WJ, et al. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proc Natl Acad Sci USA. (2012) 109:5995–9. doi: 10.1073/pnas.1118355109
  • 28. El-Gabalawy R, Blaney C, Tsai J, et al. Physical health conditions associated with full and subthreshold PTSD in U.S. military veterans: results from the National Health and Resilience in Veterans Study. J Affect Disord. 2018;227:849–53. doi: 10.1016/j.jad.2017.11.058
  • 29. Paratz ED, Katz B. Ageing Holocaust survivors in Australia. Med J Aust.2011;194:194–7. doi: 10.5694/j.1326-5377.2011.tb03771.x
  • 30. Foertsch S, Haffner-Luntzer M, Kroner J, et al. Chronic psychosocial stress disturbs long-bone growth in adolescent mice Dis Model Mech. 2017; 10:1399–409. doi: 10.1242/dmm.030916
  • 31. Bottaccioli AG, Bottaccioli F, Minelli A. Stress and the psyche-brain-immune network in psychiatric diseases based on psychoneuroendocrineimmunology: a concise review. Ann N Y Acad Sci. 2018; 1437:31–42. doi: 10.1111/nyas.13728
  • 32. Chrousos GP. Stress, chronic inflammation, and emotional and physical well-being: concurrent effects and chronic sequelae. J Allergy Clin Immunol. 2000;106 (5 Suppl): S275–91. doi: 10.1067/mai.2000.110163
  • 33. Eastell R, O’Neill TW, Hofbauer LC, et al. Postmenopausal osteoporosis. Nat Rev Dis Primer. 2016; 2:16069. doi: 10.1038/nrdp.2016.69
  • 34. Pietschmann P, Mechtcheriakova D, Meshcheryakova A, et al. Immunology of osteoporosis: a mini-review. Gerontology. 2016; 62:128–37. doi: 10.1159/000431091
  • 35. Canalis E. Growth factor control of bone mass. J Cell Biochem. 2009;108:769–77. doi: 10.1002/jcb.22322
  • 36. Crane JL, Zhao L, Frye JS, et al. IGF-1 Signaling is essential for differentiation of mesenchymal stem cells for peak bone mass. Bone Res. 2013;1:186–94. doi: 10.4248/BR201302007
  • 37. Zegarra-Valdivia JA. Insulin-like growth factor type 1 and its relation with neuropsychiatric disorders. Medwave. 2017; 17:e(7031) doi: 10.5867/medwave.2017.07.7031
  • 38. Rosen CJ, Donahue LR, Hunter SJ. Insulin-like growth factors and bone: The osteoporosis connection. Proc Soc Exp Biol Med. 1994; 206(2): 83-102. doi: 10.3181/00379727-206-43726.
  • 39. Reijnders CM, Bravenboer N, Tromp AM, et al. Effect of mechanical loading on insulin-like growth factor-I gene expression in rat tibia. J Endocrinol. 2007;192:131–40. doi:10.1677/joe.1.06880.
  • 40. Wasserman E, Webster D, Kuhn G, et al. Differential load-regulated global gene expression in mouse trabecular osteo-cytes. Bone. 2013;53:14–23. doi:10.1016/j.bone.2012.11.017.
  • 41. Meakin LB, Todd H, Delisser PJ, et al. Parathyroid hormone’s enhancement of bones’ osteogenic response to loading is affected by ageing in a dose- and time-dependent manner. Bone. 2017; 98:59–67. doi:10.1016/j.bone.2017.02.009.
  • 42. Kulkarni RN, Bakker AD, Everts V, et al. Mechanical loading prevents the stimulating effect of IL-1beta on osteocyte-modulated osteo-clastogenesis. Biochem Biophys Res Commun. 2012; 420:11–6. doi:10.1016/j. bbrc.2012.02.099.
  • 43. Bot M, Milaneschi Y, Penninx BW, et al. Plasma insulin-like growth factor I levels are higher in depressive and anxiety disorders, but lower in antidepressant medication users. Psychoneuroendocrinology. 2016; 68:148– 55. doi: 10.1016/j.psyneuen.2016.02.028
  • 44. Deuschle M, Blum WF, Strasburger CJ, et al. Insulin-like growth factor-I (IGF-I) plasma concentrations are increased in depressed patients. Psychoneuroendocrinology.1997; 22:493–503.
  • 45. Santi A, Bot M, Aleman A, et al. Circulating insulin-like growth factor I modulates mood and is a biomarker of vulnerability to stress: from mouse to man. Transl Psychiatry. 2018; 8:142. doi: 10.1038/s41398-058-0196-5
  • 46. Yasuhiro Tamura, Hiroko Okinaga, Hiroshi Takami. Glucocorticoid-induced osteoporosis; Biomedecine & Pharmacotherapy. 2004;58(9): 500-504.
  • 47. Miller GE, Murphy MLM, Cashman R, et al. Greater inflammatory activity and blunted glucocorticoid signaling in monocytes of chronically stressed caregivers. Brain Behav Immun. 2014; 41:191–9. doi: 10.1016/j.bbi.2014.05.016
  • 48. Vega D, Maalouf NM, Sakhaee K. The role of receptor activator of nuclear factor-kappa B (RANK)/RANK ligand/osteoprotegerin: clinical implications. J Clin Endocrinol Metab.2007; 92:4514–21 doi: 10.1210/jc.2007-0646
  • 49. Briot K, Roux C. Glucocorticoid-induced osteoporosis. RMD Open. 2015; 1:e00(0014) doi: 10.1136/rmdopen-2014-000014
  • 50. Lopez-Alarcona C, Denicola A. Evaluating the antioxidant capacity of natural products: a review on chemical and cellular- based assays. Anal. Chim. Acta. 2013; 763: 1e10.
  • 51. Suzuki H, Hayakawa M, Kobayashi K, et al. H2O2-derived free radicals treated fibrinectin substratum reduces the bone nodule formation of rat calvarial osteoblast. Mech. Ageing Dev. 1997; 98: 113–125.
  • 52. Michel TM, Pülschen D, Thome J. The role of oxidative stress in depressive disorders. Curr Pharm Des. 2012; 18:5890–9. doi: 10.2174/138161212803523554
  • 53. Mao W, Zhu Z. Parthenolide inhibits hydrogen peroxide-induced osteoblast apoptosis. Mol Med Rep. 2018; 17:8369–76. doi: 10.3892/mmr.2018.8908
  • 54. Nazrun AS, Khairunnur A, Norliza M, et al. Effects of palm tocotrienols on oxidative stress and bone strength in ovariectomised rats. Med Health. 2008; 3:247–55.
  • 55. Sangkuhl K, Klein T, Altman R. Selective serotonin reuptake inhibitors pathway. Pharmacogenet Genomics. 2009; 19:907–9. doi: 10.1097/FPC.0b013e32833132cb.
  • 56. Wadhwa R, Kumar M, Talegaonkar S, et al. Serotonin reuptake inhibitors and bone health: A review of clinical studies and plausible mechanisms. Osteoporos Sarcopenia. 2017; 3:75–81. doi: 10.1016/j.afos.2017.05.002
  • 57. Dai SQ, Yu LP, Shi X, et al. Serotonin regulates osteoblast proliferation and function in vitro. Braz J Med Biol Res Rev Bras Pesqui Medicas E Biol. 2014; 47:759–65. doi: 10.1590/1414-431X20143565
  • 58. Hirai T, Kaneshige K, Kurosaki T, et al. Functional expression of 5-HT2A receptor in osteoblastic MC3T3-E1 cells. Biochem Biophys Res Commun. 2010; 396:278–82. doi: 10.1016/j.bbrc.2010.04.078
  • 59. Hodge JM, Wang Y, Berk M, et al. Selective serotonin reuptake inhibitors inhibit human osteoclast and osteoblast formation and function. Biol Psychiatry. 2013; 74:32–9. doi: 10.1016/j.biopsych.2012.11.003
  • 60. Dimitri P, Rosen C. The central nervous system and bone metabolism: an evolving story. Calcif Tissue Int. 2017; 100:476–85. doi: 10.1007/s00223-016-0179-6
  • 61. Ducy P, Karsenty G. The two faces of serotonin in bone biology. J Cell Biol. 2010; 191:7–13. doi: 10.1083/jcb.201006123
  • 62. Schildkraut JJ. The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry. 1965; 122:509–22. doi: 10.1176/ajp.122.5.509
  • 63. Vaessen T, Hernaus D, Myin-Germeys I, et al. T. The dopaminergic response to acute stress in health and psychopathology: a systematic review. Neurosci Biobehav Rev. 2015; 56:241–51. doi: 10.1016/j.neubiorev.2015.07.008
  • 64. Rodrigues W, Madeira M, da Silva T, et al. Low dose of propranolol down-modulates bone resorption by inhibiting inflammation and osteoclast differentiation. Br J Pharmacol. 2012; 165:2140–51. doi: 10.1111/j.1476-5381.2011.01686.x
  • 65. Kondo H, Togari A. Continuous treatment with a low-dose β- agonist reduces bone mass by increasing bone resorption without suppressing bone formation. Calcif Tissue Int.2011; 88:23–32. doi: 10.1007/s00223-010-9421-9
  • 66. Sani Ismaila Muhammad, Ismail Maznah, Rozi Mahmud, et al. Upregulation of genes related to bone formation by γ-amino butyric acid and γ-oryzanol in germinated brown rice is via the activation of GABAB-receptors and reduction of serum IL-6 in rats. Clinical Interventions in Aging. 2013:8; 1259–1271 67. Zheng SX, Vrindts Y, Lopez M et al. Increase in cytokine production (IL-1 β, IL-6, TNF-α but not IFN-γ, GM-CSF or LIF) by stimulated whole blood cells in postmenopausal osteoporosis. Maturitas. 1997; 26: 63–71.
  • 68. Sia YT, Parker TG, Liu P, et al. Improved postmyocardial infarction srvival with pobucol in rats: effects on left ventricular function, morphology, cardiac oxidative stress and cytokine expression. J. Am. Coll. Cardiol. 2002;39(1): 148–156.
  • 69. Afshari M, Larijani B, Abdollahi M et al. Ineffectiveness of allopurinol in reduction of oxidative stress in diabetic patients; A randomized, double-blind placebocontrolled clinical trial. Biomed. Pharmacother. 2004; 58: 546–550.
  • 70. Astaneie F, Larijani B, Abdollahi M et al. Alterations in anti-oxidant power and levels of epidermal growth factor and nitric oxide in blood and saliva of diabetic Type 1 patients. Arch. Med. Res.2005; 36: 376–381.

Psikososyal Stresin Kemik Sağlığına Etkileri

Year 2020, , 66 - 74, 31.08.2020
https://doi.org/10.47141/geriatrik.727624

Abstract

Özet: Günümüzde, fiziksel stresin kemiğin yeniden şekillenmesini uyardığını ve karmaşık mekanotransdüksiyon mekanizmalarıyla kemik yapısını ve işlevini etkilediği gösterilmiştir. Son yapılan araştırmalar, fiziksel stresin yanı sıra psikososyal stresinde (zihinsel, davranışsal, duygusal) kemik biyolojisini etkilediği ve sonunda osteoporoza, kemik ağrılarına ve kemik kırık riskinin artmasına neden olduğu hipotezine zemin hazırlamıştır. Bu etkiler, muhtemelen hipotalamik-hipofiz-adrenal eksenindeki aktivitenin modülasyonu ile gerçekleştirildiği düşünülmektedir. İnsan ve deneysel hayvan çalışmalarında, psikososyal stresin insülin benzeri büyüme faktörleri, glukokortikoidler, katekolaminler, serotonin, GABA, beyin kaynaklı nörotrofik faktör, reseptör aktivatör nükleer kappa ligandı ve sitokinlerin (IL-1-6-11-17, TNFα) salınımında değişikliklere neden olduğu bildirilmiştir. Bu derlemede, psikososyal stresin kemiğin yapısal adaptasyonunda önemli bir oyuncu olduğuna dair mevcut bilgi durumu özetlenmiştir.

Anahtar kelimeler: Stres, osteoporoz, kemik sağlığı

References

  • 1. Alexander G. Robling and Charles H. Turner. Mechanical Signaling for Bone Modeling and Remodeling. Crit Rev Eukaryot Gene Expr. 2009;19(4): 319–338.
  • 2. Klein-Nulend J, Bacabac RG, Bakker AD. Mechanical loading and how it affects bone cells: the role of the osteocyte cytoskeleton in maintaining our skeleton. Eur Cell Mater. 2012;24:278–91. doi:10.22203/eCM.v024a20
  • 3. Tümay Sözen, Lale Özışık, Nursel Çalık Başaran. An overview and management of osteoporosis. Eur J Rheumatol. 2017; 4: 46-56.
  • 4. Tan VPS, Macdonald HM, Kim S, et al. Influence of physical activity on bone strength in children and adolescents: a systematic review and narrative synthesis. J Bone Miner Res. 2014; 29:2161–81. doi:10.1002/jbmr.2254
  • 5. Maycas M, Esbrit P, Gortázar AR. Molecular mechanisms in bone mechanotransduction. Histol Histopathol. 2017;32(8):751-760. doi: 10.14670/HH-11-858.
  • 6. Bonewald LF. The amazing osteocyte. J Bone Miner Res.2011; 26:229–38. doi:10.1002/jbmr.320
  • 7. Baum A. Stress, intrusive imagery, and chronic distress. Health Psychol. 1990; 9:653–75. doi: 10.1037/0278-6133.9.6.653.
  • 8. Dickerson SS, Kemeny ME. Acute stressors and cortisol responses: a theo-retical integration and synthesis of laboratory research. Psychol Bull. 2004; 130:355–91. doi:10.1037/0033-2909.130.3.355
  • 9. Pia-Maria Wipper, Michael Recto, Gisela Kuhn et al. Stress and Alterations in Bones: An interdisciplinary Perspective. Frontiers in Endocrinology. 2017;8. doi: 10.3389/fendo.2017.00096.
  • 10. Levi L. Stress and Distress in Response to Psychosocial Stimuli: Laboratory and Real-Life Studies on Sympatho-Adrenomedullary and Related Reactions. Amsterdam: Elsevier (2016).
  • 11. Miller GE, Murphy MLM, Cashman R, et al. Greater inflammatory activity and blunted glucocorticoid signaling in monocytes of chronically stressed caregivers. Brain Behav Immun. 2014; 41:191–9. doi: 10.1016/j.bbi.2014.05.016.
  • 12. Yang L, Zhao Y, Wang Y, et al. The effects of psychological stress on depression. Curr Neuropharmacol. 2015; 13:494–504. doi: 10.2174/1570159X1304150831150507
  • 13. Furlan PM, Ten Have T, Cary M, et al. The role of stress-induced cortisol in the relationship between depression and decreased bone mineral density. Biol Psychiatry. 2005; 57:911–7. doi:10.1016/j. biopsych.2004.12.033
  • 14. Julietta Ursula Schweiger, Ulrich Schweiger, Michael Hüppe, et al. Bone density and depressive disorder: a meta-analysis. Brain and Behavior. 2016; 6(8), e00489, doi: 10.1002/brb3.489
  • 15. Azuma K, Adachi Y, Hayashi H, et al. Chronic psychological stress as a risk factor of osteoporosis. J UOEH. 2015; 37:245–53. doi:10.7888/juoeh.37.245
  • 16. Williams LJ, Pasco JA, Jackson H, et al. Depression as a risk factor for fracture in women: a 10 year longitudinal study. J Affect Disord. 2016;192:34–40. doi:10.1016/j.jad.2015.11.048 17. Zhang ZD, Ren H, Shen GY, et al. Animal models for glucocorticoid-induced postmenopausal osteoporosis: An updated review. Biomed Pharmacother.2016; 84:438–46.
  • 18. Yirmiya R, Bab I. Major depression is a risk factor for low bone mineral density: a meta-analysis. Biol Psychiatry.2009; 66:423–32. doi:10.1016/j. biopsych.2009.03.016
  • 19. Willner P. Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology.2005; 52:90–110. doi:10.1159/000087097.
  • 20. Neporada KS, Leont’eva FS, Tarasenko LM. Chronic stress impairs structural organization of organic matrix in bone tissue of rat periodontium. Bull Exp Biol Med.2003;135:543–4. doi:10.1023/A:1025464932135.
  • 21. Furuzawa M, Chen HY, Fujiwara S, et al. Chewing ameliorates chronic mild stress-induced bone loss in senescence-accelerated mouse (SAMP8), a murine model of senile osteoporosis. Exp Gerontol. 2014;55:12–8. doi:10.1016/j.exger.2014.03.003.
  • 22. Seferos N, Kotsiou A, Petsaros S, et al. Mandibular bone density and calcium content affected by different kind of stress in mice. J Musculoskelet Neuronal Interact (2010) 10:231–6.
  • 23. Toepfer P, Heim C, Entringer S, et al. Oxytocin path-ways in the intergenerational transmission of maternal early life stress. Neurosci Biobehav Rev. 2016; 73:293–308. doi:10.1016/j.neubiorev. 2016.12.026.
  • 24. Bowers ME, Yehuda R. Intergenerational transmission of stress in humans. Neuropsychopharmacology. 2016;41:232–44. doi:10.1038/npp.2015.247.
  • 25. Kelly RR, McDonald LT, Jensen NR, et al. Impacts of psychological stress on osteoporosis: clinical implications and treatment interactions. Front Psychiatr. 2019; 10:1-21. doi: 10.3389/fpsyt.2019.00200.
  • 26. Monolagas SC. Birth and death of bone cells. basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr. Rev. 2000;21, 115–117. 27. Cohen S, Janicki-Deverts D, Doyle WJ, et al. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proc Natl Acad Sci USA. (2012) 109:5995–9. doi: 10.1073/pnas.1118355109
  • 28. El-Gabalawy R, Blaney C, Tsai J, et al. Physical health conditions associated with full and subthreshold PTSD in U.S. military veterans: results from the National Health and Resilience in Veterans Study. J Affect Disord. 2018;227:849–53. doi: 10.1016/j.jad.2017.11.058
  • 29. Paratz ED, Katz B. Ageing Holocaust survivors in Australia. Med J Aust.2011;194:194–7. doi: 10.5694/j.1326-5377.2011.tb03771.x
  • 30. Foertsch S, Haffner-Luntzer M, Kroner J, et al. Chronic psychosocial stress disturbs long-bone growth in adolescent mice Dis Model Mech. 2017; 10:1399–409. doi: 10.1242/dmm.030916
  • 31. Bottaccioli AG, Bottaccioli F, Minelli A. Stress and the psyche-brain-immune network in psychiatric diseases based on psychoneuroendocrineimmunology: a concise review. Ann N Y Acad Sci. 2018; 1437:31–42. doi: 10.1111/nyas.13728
  • 32. Chrousos GP. Stress, chronic inflammation, and emotional and physical well-being: concurrent effects and chronic sequelae. J Allergy Clin Immunol. 2000;106 (5 Suppl): S275–91. doi: 10.1067/mai.2000.110163
  • 33. Eastell R, O’Neill TW, Hofbauer LC, et al. Postmenopausal osteoporosis. Nat Rev Dis Primer. 2016; 2:16069. doi: 10.1038/nrdp.2016.69
  • 34. Pietschmann P, Mechtcheriakova D, Meshcheryakova A, et al. Immunology of osteoporosis: a mini-review. Gerontology. 2016; 62:128–37. doi: 10.1159/000431091
  • 35. Canalis E. Growth factor control of bone mass. J Cell Biochem. 2009;108:769–77. doi: 10.1002/jcb.22322
  • 36. Crane JL, Zhao L, Frye JS, et al. IGF-1 Signaling is essential for differentiation of mesenchymal stem cells for peak bone mass. Bone Res. 2013;1:186–94. doi: 10.4248/BR201302007
  • 37. Zegarra-Valdivia JA. Insulin-like growth factor type 1 and its relation with neuropsychiatric disorders. Medwave. 2017; 17:e(7031) doi: 10.5867/medwave.2017.07.7031
  • 38. Rosen CJ, Donahue LR, Hunter SJ. Insulin-like growth factors and bone: The osteoporosis connection. Proc Soc Exp Biol Med. 1994; 206(2): 83-102. doi: 10.3181/00379727-206-43726.
  • 39. Reijnders CM, Bravenboer N, Tromp AM, et al. Effect of mechanical loading on insulin-like growth factor-I gene expression in rat tibia. J Endocrinol. 2007;192:131–40. doi:10.1677/joe.1.06880.
  • 40. Wasserman E, Webster D, Kuhn G, et al. Differential load-regulated global gene expression in mouse trabecular osteo-cytes. Bone. 2013;53:14–23. doi:10.1016/j.bone.2012.11.017.
  • 41. Meakin LB, Todd H, Delisser PJ, et al. Parathyroid hormone’s enhancement of bones’ osteogenic response to loading is affected by ageing in a dose- and time-dependent manner. Bone. 2017; 98:59–67. doi:10.1016/j.bone.2017.02.009.
  • 42. Kulkarni RN, Bakker AD, Everts V, et al. Mechanical loading prevents the stimulating effect of IL-1beta on osteocyte-modulated osteo-clastogenesis. Biochem Biophys Res Commun. 2012; 420:11–6. doi:10.1016/j. bbrc.2012.02.099.
  • 43. Bot M, Milaneschi Y, Penninx BW, et al. Plasma insulin-like growth factor I levels are higher in depressive and anxiety disorders, but lower in antidepressant medication users. Psychoneuroendocrinology. 2016; 68:148– 55. doi: 10.1016/j.psyneuen.2016.02.028
  • 44. Deuschle M, Blum WF, Strasburger CJ, et al. Insulin-like growth factor-I (IGF-I) plasma concentrations are increased in depressed patients. Psychoneuroendocrinology.1997; 22:493–503.
  • 45. Santi A, Bot M, Aleman A, et al. Circulating insulin-like growth factor I modulates mood and is a biomarker of vulnerability to stress: from mouse to man. Transl Psychiatry. 2018; 8:142. doi: 10.1038/s41398-058-0196-5
  • 46. Yasuhiro Tamura, Hiroko Okinaga, Hiroshi Takami. Glucocorticoid-induced osteoporosis; Biomedecine & Pharmacotherapy. 2004;58(9): 500-504.
  • 47. Miller GE, Murphy MLM, Cashman R, et al. Greater inflammatory activity and blunted glucocorticoid signaling in monocytes of chronically stressed caregivers. Brain Behav Immun. 2014; 41:191–9. doi: 10.1016/j.bbi.2014.05.016
  • 48. Vega D, Maalouf NM, Sakhaee K. The role of receptor activator of nuclear factor-kappa B (RANK)/RANK ligand/osteoprotegerin: clinical implications. J Clin Endocrinol Metab.2007; 92:4514–21 doi: 10.1210/jc.2007-0646
  • 49. Briot K, Roux C. Glucocorticoid-induced osteoporosis. RMD Open. 2015; 1:e00(0014) doi: 10.1136/rmdopen-2014-000014
  • 50. Lopez-Alarcona C, Denicola A. Evaluating the antioxidant capacity of natural products: a review on chemical and cellular- based assays. Anal. Chim. Acta. 2013; 763: 1e10.
  • 51. Suzuki H, Hayakawa M, Kobayashi K, et al. H2O2-derived free radicals treated fibrinectin substratum reduces the bone nodule formation of rat calvarial osteoblast. Mech. Ageing Dev. 1997; 98: 113–125.
  • 52. Michel TM, Pülschen D, Thome J. The role of oxidative stress in depressive disorders. Curr Pharm Des. 2012; 18:5890–9. doi: 10.2174/138161212803523554
  • 53. Mao W, Zhu Z. Parthenolide inhibits hydrogen peroxide-induced osteoblast apoptosis. Mol Med Rep. 2018; 17:8369–76. doi: 10.3892/mmr.2018.8908
  • 54. Nazrun AS, Khairunnur A, Norliza M, et al. Effects of palm tocotrienols on oxidative stress and bone strength in ovariectomised rats. Med Health. 2008; 3:247–55.
  • 55. Sangkuhl K, Klein T, Altman R. Selective serotonin reuptake inhibitors pathway. Pharmacogenet Genomics. 2009; 19:907–9. doi: 10.1097/FPC.0b013e32833132cb.
  • 56. Wadhwa R, Kumar M, Talegaonkar S, et al. Serotonin reuptake inhibitors and bone health: A review of clinical studies and plausible mechanisms. Osteoporos Sarcopenia. 2017; 3:75–81. doi: 10.1016/j.afos.2017.05.002
  • 57. Dai SQ, Yu LP, Shi X, et al. Serotonin regulates osteoblast proliferation and function in vitro. Braz J Med Biol Res Rev Bras Pesqui Medicas E Biol. 2014; 47:759–65. doi: 10.1590/1414-431X20143565
  • 58. Hirai T, Kaneshige K, Kurosaki T, et al. Functional expression of 5-HT2A receptor in osteoblastic MC3T3-E1 cells. Biochem Biophys Res Commun. 2010; 396:278–82. doi: 10.1016/j.bbrc.2010.04.078
  • 59. Hodge JM, Wang Y, Berk M, et al. Selective serotonin reuptake inhibitors inhibit human osteoclast and osteoblast formation and function. Biol Psychiatry. 2013; 74:32–9. doi: 10.1016/j.biopsych.2012.11.003
  • 60. Dimitri P, Rosen C. The central nervous system and bone metabolism: an evolving story. Calcif Tissue Int. 2017; 100:476–85. doi: 10.1007/s00223-016-0179-6
  • 61. Ducy P, Karsenty G. The two faces of serotonin in bone biology. J Cell Biol. 2010; 191:7–13. doi: 10.1083/jcb.201006123
  • 62. Schildkraut JJ. The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry. 1965; 122:509–22. doi: 10.1176/ajp.122.5.509
  • 63. Vaessen T, Hernaus D, Myin-Germeys I, et al. T. The dopaminergic response to acute stress in health and psychopathology: a systematic review. Neurosci Biobehav Rev. 2015; 56:241–51. doi: 10.1016/j.neubiorev.2015.07.008
  • 64. Rodrigues W, Madeira M, da Silva T, et al. Low dose of propranolol down-modulates bone resorption by inhibiting inflammation and osteoclast differentiation. Br J Pharmacol. 2012; 165:2140–51. doi: 10.1111/j.1476-5381.2011.01686.x
  • 65. Kondo H, Togari A. Continuous treatment with a low-dose β- agonist reduces bone mass by increasing bone resorption without suppressing bone formation. Calcif Tissue Int.2011; 88:23–32. doi: 10.1007/s00223-010-9421-9
  • 66. Sani Ismaila Muhammad, Ismail Maznah, Rozi Mahmud, et al. Upregulation of genes related to bone formation by γ-amino butyric acid and γ-oryzanol in germinated brown rice is via the activation of GABAB-receptors and reduction of serum IL-6 in rats. Clinical Interventions in Aging. 2013:8; 1259–1271 67. Zheng SX, Vrindts Y, Lopez M et al. Increase in cytokine production (IL-1 β, IL-6, TNF-α but not IFN-γ, GM-CSF or LIF) by stimulated whole blood cells in postmenopausal osteoporosis. Maturitas. 1997; 26: 63–71.
  • 68. Sia YT, Parker TG, Liu P, et al. Improved postmyocardial infarction srvival with pobucol in rats: effects on left ventricular function, morphology, cardiac oxidative stress and cytokine expression. J. Am. Coll. Cardiol. 2002;39(1): 148–156.
  • 69. Afshari M, Larijani B, Abdollahi M et al. Ineffectiveness of allopurinol in reduction of oxidative stress in diabetic patients; A randomized, double-blind placebocontrolled clinical trial. Biomed. Pharmacother. 2004; 58: 546–550.
  • 70. Astaneie F, Larijani B, Abdollahi M et al. Alterations in anti-oxidant power and levels of epidermal growth factor and nitric oxide in blood and saliva of diabetic Type 1 patients. Arch. Med. Res.2005; 36: 376–381.
There are 67 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Review
Authors

Mustafa Emre

Publication Date August 31, 2020
Submission Date May 7, 2020
Acceptance Date August 24, 2020
Published in Issue Year 2020

Cite

APA Emre, M. (2020). Psikososyal Stresin Kemik Sağlığına Etkileri. Geriatrik Bilimler Dergisi, 3(2), 66-74. https://doi.org/10.47141/geriatrik.727624
AMA Emre M. Psikososyal Stresin Kemik Sağlığına Etkileri. GBD. August 2020;3(2):66-74. doi:10.47141/geriatrik.727624
Chicago Emre, Mustafa. “Psikososyal Stresin Kemik Sağlığına Etkileri”. Geriatrik Bilimler Dergisi 3, no. 2 (August 2020): 66-74. https://doi.org/10.47141/geriatrik.727624.
EndNote Emre M (August 1, 2020) Psikososyal Stresin Kemik Sağlığına Etkileri. Geriatrik Bilimler Dergisi 3 2 66–74.
IEEE M. Emre, “Psikososyal Stresin Kemik Sağlığına Etkileri”, GBD, vol. 3, no. 2, pp. 66–74, 2020, doi: 10.47141/geriatrik.727624.
ISNAD Emre, Mustafa. “Psikososyal Stresin Kemik Sağlığına Etkileri”. Geriatrik Bilimler Dergisi 3/2 (August 2020), 66-74. https://doi.org/10.47141/geriatrik.727624.
JAMA Emre M. Psikososyal Stresin Kemik Sağlığına Etkileri. GBD. 2020;3:66–74.
MLA Emre, Mustafa. “Psikososyal Stresin Kemik Sağlığına Etkileri”. Geriatrik Bilimler Dergisi, vol. 3, no. 2, 2020, pp. 66-74, doi:10.47141/geriatrik.727624.
Vancouver Emre M. Psikososyal Stresin Kemik Sağlığına Etkileri. GBD. 2020;3(2):66-74.

Creative Commons Lisansı

Bu dergide yayınlanan makaleler Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.


Geriatrik Bilimler Dergisi, Türkiye Atıf Dizini, Türk MEDLINE, Asos İndeks, Scilit, EuroPub ve Eylül 2022 tarihinden itibaren Index Copernicus International - Journals Master List ve 2023 sayıları itibariyle ULAKBİM TR-DİZİN'de indekslenmektedir.

download     |  download   | 24435    |        |   24370   

  24026     |    17423    |    scholar_logo_64dp.png     |     24050