Research Article
BibTex RIS Cite

ANTİMİKROBİYEL AKTİVİTEYE SAHİP PEDIOCOCCUS ACIDILACTICI VE PEDIOCOCCUS PENTOSACEUS SUŞLARININ PROBİYOTİK ÖZELLİKLERİNİN BELİRLENMESİ

Year 2022, , 434 - 446, 01.04.2022
https://doi.org/10.15237/gida.GD22025

Abstract

Bu çalışmada, starter kullanılmadan üretilen sucuklardan izole edilmiş Pediococcus acidilactici ve P. pentosaceus suşlarının safra tuzuna tolerans, düşük pH ve fenol varlığında hayatta kalma, yapay mide özsuyuna tolerans, lizozime karşı direnç, hidrofobisite ve otoagregasyon yetenekleri gibi bazı probiyotik özellikleri incelenmiştir. İzolatların tamamının pH 1’de ilk ölçümlerinde, pH 3’te ise birinci saatin sonunda inaktive olduğu saptanmıştır. pH 5’te ise tüm Pediococcus suşları 4 saat inkübasyon süresi boyunca %67.02-95.42 oranında canlılıklarını korumuşlardır. %0.4 fenol uygulamasında P. acidilactici OBS62 suşu %2.32 oranında gelişim gösterirken diğer suşların %69.94-99.89 oranında canlılıklarını koruduğu tespit edilmiştir. 100 ppm lizozim uygulamasında suşların % canlılıkları 90.90 ve 107.40 arasında bulunmuştur. %0.3 pepsin içeren yapay mide suyu denemelerinde tüm Pediococcus suşları inaktive olmuştur. %0.3 ve %0.5 safra tuzu uygulamasında suşların tamamında hücre sayısında artış olduğu belirlenmiştir. %1 safra tuzu uygulamasında ise P. acidilacticis OBS54 ve P. pentasaceus OBS56 suşları canlılığını korumuş, diğer suşlarda ise hücre sayısında artış olduğu tespit edilmiştir. Pediococcus suşlarının hidrofobisite oranları %61.42-%97.40 arasında, otoagregasyon yetenekleri ise %17.3-%64.78 arasında bulunmuştur. Sonuç olarak, izolatların mikroenkapsülasyon yolu ile midenin oluşturduğu sert çevresel koşullara dayanımlarının arttırılması sayesinde probiyotik kültür olarak kullanılabilecekleri düşünülmektedir.

Supporting Institution

Süleyman Demirel Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

4203-YL1-14

Thanks

Bu çalışmayı 4203-YL1-14 nolu proje ile maddi olarak destekleyen Süleyman Demirel Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi’ne teşekkür ederiz.

References

  • Abbasiliasi, S., Tan, J. S., Ibrahim, T.A.T., Ramanan, R.N., Vakhshiteh, F., Mustafa, S. (2012). Isolation of Pediococcus acidilactici Kp10 with ability to secrete bacteriocin-like inhibitory substance from milk products for applications in food industry. BMC Microbiol, 12:260. doi: 10.1186/1471-2180-12-260
  • Abbasiliasi, S.,Tan, J.S., Bashokouh, F., Ibrahim, T.A.T., Mustafa, S., Vakhshiteh, F., Sivasamboo, S., Ariff, A.B. (2017). In vitro assessment of Pediococcus acidilactici Kp10 for its potential use in the food industry. BMC Microbiol, 17:121 DOI 10.1186/s12866-017-1000-z
  • Aslan B., Özden Tuncer B. (2020). Sucuktan izole edilen Pediococcus suşlarının bazı teknolojik özelliklerinin belirlenmesi. Gıda, 45 (6): 1109-1120.
  • Attri, P., Jodha, D., Gandhi, D., Chanalia, P., Dhanda, S. (2015). In Vitro evaluation of Pediococcus acidilactici NCDC 252 for its probiotic attributes. Int J Dairy Technol, 68:533–542.
  • Barbosa, J., Borges, S., Teixeira, P. (2015). Pediococcus acidilactici as a potential probiotic to be used in food industry. Int J Food Sci Technol. 50: 1151–1157. doi: 10.1111/ijfs.12768
  • Basson, A., Flemming, L.A., Chenia, H.Y. (2008). Evaluation of adherence, hydrophobicity, aggregation characteristics and biofilm development of Flavobacterium johnsoniae-like isolates from South African aquaculture systems. Microb Ecol, 55: 1-14.
  • Bhagat, D., Raina, N., Kumar, A., Katoch, M., Khajuria, Y., Slathia, P.S., Sharma,P. (2020). Probiotic properties of a phytase producing Pediococcus acidilactici strain SMVDUDB2 isolated from traditional fermented cheese product, Kalarei. Scientific Reports, 10:1926 https://doi.org/10.1038/s41598-020-58676-2.
  • Brennan,M., Wansmail, B., Johnson, B.C., Ray, B. (1986). Cellular damage in dried Lactobacillus acidophilus. J Food Protect, 49: 47-53.
  • Callejon, S., Sendra, R., Ferrer, S., Pardo, I. (2017). Recombinant laccase from Pediococcus acidilactici CECT 5930 with ability to degrade tyramine. PloS one 12, e0186019, https://doi.org/10.1371/journal.pone.0186019
  • Chen, F., Zhu, L., Qiu, H. (2017). Isolation and probiotic potential of Lactobacillus salivarius and Pediococcus pentosaceus in specific pathogen free chickens. Braz J Poult Sci, 19: 325–332. doi: 10.1590/1806-9061- 2016-0413
  • Conway, P.L., Gorbach, S.L., Goldin, B.R. (1987). Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. J Dairy Sci, 70: 1-12.
  • Digută, C.F., Nitoi, G.D., Matei, F., Lută, G., Cornea, C.P. (2020).The Biotechnological potential of Pediococcus spp. isolated from Kombucha Microbial Consortium. Foods, 9, 1780; doi:10.3390/foods9121780
  • Dobson, C.M., Deneer, H., Lee, S., Hemmingsen, S., Glaze, S., Ziola, B. (2002). Phylogenetic analysis of the genus Pediococcus, including Pediococcus claussenii sp. nov., a novel lactic acid bacterium isolated from beer. Int J Syst Evol Microbiol, 52, 2003–2010. doi: 10.1099/00207713-52-6-2003
  • Doulgeraki, A.I., Pramateftaki, P., Argyri, A.A., Nychas, G.-J.E., Tassou, C.C., Panagou, E.Z. (2013). Molecular characterization of lactic acid bacteria isolated from industrially fermented Greek table olives. LWT, 50, 353–356.
  • Fernandez, M.F., Boris, S., Barbes, C. (2003). Probiotic properties of human lactobacilli strains to be used in the gastrointestinal tract. J Appl Microbiol, 94: 449-455.
  • Food and Agriculture Organization of the United Nations and World Health Organization (FAO/WHO), 2002. Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food, pp. 1–11. London, Ontario, Canada.
  • Gad S.A., El-Baky, R.M.A., Ahmed, A.B.F., Gad, G.F.M. (2016). In vitro evaluation of probiotic potential of five lactic acid bacteria and their antimicrobial activity against some enteric and food-borne pathogens. Afr J Microbiol Res, 10:400–9.
  • Gilliland, S.E., Walker, D.K. (1990). Factors to consider when selecting a culture of Lactobacillus acidophilus as a dietary adjunct to produce a hypocholesterolemic effect in humans. J Dairy Sci, 73: 905-911.
  • Grandy, G. Medina, M., Soria, R., Terán, C.G., Araya, M. (2010). Probiotics in the treatment of acute rotavirus diarrhoea. A randomized, double-blind, controlled trial using two different probiotic preparations in Bolivian children. BMC Infec Dis, 10 (253): pp. 1-7
  • Gupta, A., Sharma, N. (2017). Characterization of potential probiotic lactic acid bacteria- Pediococcus acidilactici Ch-2 isolated from Chuli- a traditional apricot product of Himalayan region for the production of novel bioactive compounds with special therapeutic properties. J Food Microbiol Saf Hyg, 2: 119. doi:10.4172/2476-2059.1000119
  • Hickson, M., D'Souza, A.L., Muthu, N., Rogers, T.R., Want, S., Rajkumar, C., Bulpitt, C.J. (2007). Use of probiotic Lactobacillus preparation to prevent diarrhoea associated with antibiotics: randomised double blind placebo controlled trial. BMJ, 335 (7610):80. doi: 10.1136/bmj.39231.599815.55.
  • Holzapfel, W.H., Franz, C.M.A.P., Ludwig, W., Back, W., Dicks, L.M.T. (2006). “The genera Pediococcus and Tetragenococcus,” in The Prokaryotes, eds M.F.S. Dworkin, E. Rosenberg, K. H. Schleifer and E. Stackebrandt, E. (New York, NY: Springer-Verlag), 229–266. doi: 10.1007/0-387-30744-3_8
  • Holzapfel, W.H., Wood, B.J.B. (2014). Lactic Acid Bacteria: Biodiversity and Taxonomy, 1st Edn. Somerset Wiley. ISBN: 978-1-444-33383-1. p.632
  • Ilavenil, S., Vijayakumar, M., Kim, D.H., Valan Arasu, M., Park, H.S., Ravikumar, S., Choi, K.C. (2016). Assessment of probiotic, antifungal and cholesterol lowering properties of Pediococcus pentosaceus KCC-23 isolated from Italian ryegrass. J Sci Food Agric, 96(2):593-601. doi: 10.1002/jsfa.7128.
  • Mokoena, M.P., (2017). Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: a mini-review. Molecules, 22: 1255.
  • Ng, S.Y., Koon, S.S., Padam, B.S., Chye, F.Y. (2015). Evaluation of probiotic potential of lactic acid bacteria isolated from traditional Malaysian fermented Bambangan (Mangifera pajang). CyTA - J Food, 13 (4): 563–572.
  • Oelschlaeger, T.A. (2010). Mechanisms of probiotic actions—A review. Int J Med Microbiol, 300, 57–62
  • Olajugbagbe, T.E., Elugbadebo, O.E., Omafuvbe, B.O. (2020). Probiotic potentials of Pediococuss acidilactici isolated from wara; A Nigerian unripened soft cheese. Heliyon 6:9 e04889
  • Pan, X., Chen, F., Wu, T., Tang, H., Zhao, Z. (2008). The acid, bile tolerance and antimicrobial property of Lactobacillus acidophilus NIT. Food Control, 10: 135- 140
  • Papagianni, M., Anastasiadou, S. (2009). Encapsulation of Pediococcus acidilactici cells in corn and olive oil microcapsules emulsified by peptides and stabilized with xanthan in oil-in-water emulsions: studies on cell viability under gastro-intestinal simulating conditions. Enzyme Microb Tech, 45: 514-522.
  • Park S.C., Hwang, M.H., Kim, Y.H., Kim, J.C., Song, J.C., Lee, K.W. (2006). Comparison of pH and bile resistance of Lactobacillus acidophilus strains isolated from rat, pig, chicken, and human sources. World J Microb Biot, 22: 35-37.
  • Reuben, R.C., Roy, P.C., Sarkar, S.L., Alam, R., Jahid, I.K. (2019). Isolation, characterization, and assessment of lactic acid bacteria toward their selection as poultry probiotics. BMC Microbiol 19, 253. https://doi.org/10.1186/s12866-019-1626-0
  • Ribeiro M.C.O., Vandenberghe L. P.S., Spier M.R., Paludo K.S., Soccol C.R., Soccol V. T. (2014). Evaluation of probiotic properties of Pediococcus acidilactici B14 in association with Lactobacillus acidophilus ATCC 4356 for application in a soy based aerated symbiotic dessert. Arch. Biol. Technol. 57 (5) :755-765.
  • Rosenberg, M., Gutnick, D., Rosenberg, E. (1980). Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett, 9: 29-33.
  • Saad, N., Delattre, C., Urdaci, M., Schmitter, J.M., Bressollier, P. (2013). An overview of the last advances in probiotic and prebiotic field. Food Sci Technol, 50:1–16
  • Shani, N., Oberhaensli, S., Arias-Roth, E. (2021). Antibiotic susceptibility profiles of Pediococcus pentosaceus from various origins and their implications for the safety assessment of strains with food-technology applications. J Food Prot, 84(7):1160-1168.
  • Shukla, R., Goyal, A. (2014). Probiotic Potential of Pediococcus pentosaceus CRAG3: A New Isolate from Fermented Cucumber. Probiotics and Antimicro Prot, 6:11–21
  • Shyamala, G.R., Meenambigai, P., Prabhavathi, P., Raja, R., Yesudoss, L. (2016). Probiotics and its effects on human health- A review. Int J Curr Microbiol Appl, Sci. 5 (4): 384-392.
  • Suscovic, J., Brkic, B., Matosic, S., Maric, V. (1997). Lactobacillus acidophilus M92 as potential probiotic strain. Milchwissenschaft, 52: 430-435.
  • Teply, M. (1984). Ciste mlekarske kultury. Phara. SNTL Nakladatelstvi. Technicke Litertury. In: Starters for Fermented Milks, Kurmann JA (chief ed), IDF Bulletin 227; pp. 41-55.
  • Thakur, N., Rokana, N., Panwar, H. (2016). Probiotics: selection criteria, safety and role in health and disease. J Innov Biol, 3 (1), 259–270.
  • Todorov, S.D., Dicks, L.M. (2009). Bacteriocin production by Pediococcus pentosaceus isolated from marula (Scerocarya birrea). Int J Food Microbiol, 132, 117–126.
  • Tokatlı M., Gülgör G., Elmacı S.B., Egleyen N.A., Özçelik F. (2015). In vitro properties of potential probiotic indigenous lactic acid bacteria originating from traditional pickles. Hindawi Publishing Corporation BioMed Research International, Article ID 315819, 8p.
  • Vieira, K.C.D.O., Ferreira, C.D.S., Bueno, E.B.T., de Moraes, Y.A., Toledo, A.C.C.G., Nakagaki, W.R., Pereira, V.C., Winkelstroter, L.K. (2020). Development and viability of probiotic orange juice supplemented by Pediococcus acidilactici CE51. LWT, 130, 109637.
  • Villena, J., Kitazawa, H. (2017). Probiotic microorganisms; A closer look. Microorganisms 5: 17–28.
  • Vinderola C.G., Reinheimer, J.A. (2003). Lactic acid starter and probiotic bacteria: a comparative ‘‘in vitro’’study of probiotic characteristics and biological barrier resistance. Food Res Int, 36: 895-904.
  • Wang, L.Q., Meng, X.C., Zhang, B.R., Wang, Y., Shang, Y.L. (2010). Influence of cell surface properties on adhesion ability of Bifidobacteria. World J Microbiol Biotechnol, 26: 1999–2007.
  • Yin, H., Ye, P., Lei, Q., Cheng,Y., Yu, H., Du, J., Pan, H., Cao, Z. (2020). In vitro probiotic properties of Pediococcus pentosaceus L1 and its effects on enterotoxigenic Escherichia coli-induced inflammatory responses in porcine intestinal epithelial cells. Microbial Pathogenesis 144,104163
  • Yuksekdag, Z.N., Aslim, B. (2010). Assessment of potential probiotic and starter properties of Pediococcus spp. isolated from Turkish-type fermented sausages (Sucuk). J Microbiol Biotechnol, 20:161–168.
  • Yüceer, Ö., Özden Tuncer, B. (2015). Determination of antibiotic resistance and biogenic amine production of lactic acid bacteria isolated from fermented Turkish sausage (sucuk). J. Food Safe, 35: 276-285.
  • Zommiti, M., Bouffartigues, E., Maillot, O., Barreau, M., Szunerits, S., Sebei, K., Feuilloley, M., Connil, N., Ferchichi, M. (2018). In vitro assessment of the probiotic properties and bacteriocinogenic potential of pediococcus pentosaceus MZF16 isolated from artisanal Tunisian meat “Dried Ossban”. Front Microbiol, 9:2607. doi: 10.3389/fmicb.2018.02607.
  • Xu H., Jeong H. S., Lee H. Y., Ahn J. (2009). Assessment of cell surface properties and adhesion potential of selected probiotic strains. Letters in applied microbiology 49, 434–442, https://doi.org/10.1111/j.1472-765X.2009.02684.x

DETERMINATION OF PROBIOTIC PROPERTIES OF PEDIOCOCCUS ACIDILACTICI AND PEDIOCOCCUS PENTOSACEUS STRAINS WITH ANTIMICROBIAL ACTIVITY

Year 2022, , 434 - 446, 01.04.2022
https://doi.org/10.15237/gida.GD22025

Abstract

In this study, some probiotic properties such as bile salt tolerance, survival in low pH and in presence of phenol, tolerance to simulated gastric juice, resistance to lysozyme, hydrophobicity and autoaggregation abilities of Pediococcus acidilactici and P. pentasaceus strains isolated from sausages produced without starter were investigated. It was determined that all of the isolates were inactivated at the first measurement at pH 1 and at the end of the first hour at pH 3. At pH 5, all Pediococcus strains preserved their viability at a rate of 67.02-95.42% during the four-hour incubation period. P. acidilactici OBS62 strain grew at a rate of 2.32% in 0.4% phenol, while other strains maintained viability at a rate of 69.94-99.89%. In 100 ppm lysozyme application, the % viability of the strains was found between 90.90 and 107.40. All Pediococcus strains were inactivated in the trials of artificial gastric juice containing 0.3% pepsin. It was determined that there was an increase in the number of cells in all of the strains with the application of 0.3% and 0.5% bile salt. In 1% bile salt application, P. acidilactici OBS54 and P. pentasaceus OBS56 strains preserved their viability, while an increase in the number of cells was detected in other strains. The hydrophobicity rates of Pediococcus strains were found to be between 61.42% and 97.40%, and their autoaggregation abilities were found to be between 17.3% and 64.78%. As a result, it is thought that the isolates can be used as probiotic cultures by increasing their resistance to harsh environmental conditions created by the stomach by microencapsulation.

Project Number

4203-YL1-14

References

  • Abbasiliasi, S., Tan, J. S., Ibrahim, T.A.T., Ramanan, R.N., Vakhshiteh, F., Mustafa, S. (2012). Isolation of Pediococcus acidilactici Kp10 with ability to secrete bacteriocin-like inhibitory substance from milk products for applications in food industry. BMC Microbiol, 12:260. doi: 10.1186/1471-2180-12-260
  • Abbasiliasi, S.,Tan, J.S., Bashokouh, F., Ibrahim, T.A.T., Mustafa, S., Vakhshiteh, F., Sivasamboo, S., Ariff, A.B. (2017). In vitro assessment of Pediococcus acidilactici Kp10 for its potential use in the food industry. BMC Microbiol, 17:121 DOI 10.1186/s12866-017-1000-z
  • Aslan B., Özden Tuncer B. (2020). Sucuktan izole edilen Pediococcus suşlarının bazı teknolojik özelliklerinin belirlenmesi. Gıda, 45 (6): 1109-1120.
  • Attri, P., Jodha, D., Gandhi, D., Chanalia, P., Dhanda, S. (2015). In Vitro evaluation of Pediococcus acidilactici NCDC 252 for its probiotic attributes. Int J Dairy Technol, 68:533–542.
  • Barbosa, J., Borges, S., Teixeira, P. (2015). Pediococcus acidilactici as a potential probiotic to be used in food industry. Int J Food Sci Technol. 50: 1151–1157. doi: 10.1111/ijfs.12768
  • Basson, A., Flemming, L.A., Chenia, H.Y. (2008). Evaluation of adherence, hydrophobicity, aggregation characteristics and biofilm development of Flavobacterium johnsoniae-like isolates from South African aquaculture systems. Microb Ecol, 55: 1-14.
  • Bhagat, D., Raina, N., Kumar, A., Katoch, M., Khajuria, Y., Slathia, P.S., Sharma,P. (2020). Probiotic properties of a phytase producing Pediococcus acidilactici strain SMVDUDB2 isolated from traditional fermented cheese product, Kalarei. Scientific Reports, 10:1926 https://doi.org/10.1038/s41598-020-58676-2.
  • Brennan,M., Wansmail, B., Johnson, B.C., Ray, B. (1986). Cellular damage in dried Lactobacillus acidophilus. J Food Protect, 49: 47-53.
  • Callejon, S., Sendra, R., Ferrer, S., Pardo, I. (2017). Recombinant laccase from Pediococcus acidilactici CECT 5930 with ability to degrade tyramine. PloS one 12, e0186019, https://doi.org/10.1371/journal.pone.0186019
  • Chen, F., Zhu, L., Qiu, H. (2017). Isolation and probiotic potential of Lactobacillus salivarius and Pediococcus pentosaceus in specific pathogen free chickens. Braz J Poult Sci, 19: 325–332. doi: 10.1590/1806-9061- 2016-0413
  • Conway, P.L., Gorbach, S.L., Goldin, B.R. (1987). Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. J Dairy Sci, 70: 1-12.
  • Digută, C.F., Nitoi, G.D., Matei, F., Lută, G., Cornea, C.P. (2020).The Biotechnological potential of Pediococcus spp. isolated from Kombucha Microbial Consortium. Foods, 9, 1780; doi:10.3390/foods9121780
  • Dobson, C.M., Deneer, H., Lee, S., Hemmingsen, S., Glaze, S., Ziola, B. (2002). Phylogenetic analysis of the genus Pediococcus, including Pediococcus claussenii sp. nov., a novel lactic acid bacterium isolated from beer. Int J Syst Evol Microbiol, 52, 2003–2010. doi: 10.1099/00207713-52-6-2003
  • Doulgeraki, A.I., Pramateftaki, P., Argyri, A.A., Nychas, G.-J.E., Tassou, C.C., Panagou, E.Z. (2013). Molecular characterization of lactic acid bacteria isolated from industrially fermented Greek table olives. LWT, 50, 353–356.
  • Fernandez, M.F., Boris, S., Barbes, C. (2003). Probiotic properties of human lactobacilli strains to be used in the gastrointestinal tract. J Appl Microbiol, 94: 449-455.
  • Food and Agriculture Organization of the United Nations and World Health Organization (FAO/WHO), 2002. Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food, pp. 1–11. London, Ontario, Canada.
  • Gad S.A., El-Baky, R.M.A., Ahmed, A.B.F., Gad, G.F.M. (2016). In vitro evaluation of probiotic potential of five lactic acid bacteria and their antimicrobial activity against some enteric and food-borne pathogens. Afr J Microbiol Res, 10:400–9.
  • Gilliland, S.E., Walker, D.K. (1990). Factors to consider when selecting a culture of Lactobacillus acidophilus as a dietary adjunct to produce a hypocholesterolemic effect in humans. J Dairy Sci, 73: 905-911.
  • Grandy, G. Medina, M., Soria, R., Terán, C.G., Araya, M. (2010). Probiotics in the treatment of acute rotavirus diarrhoea. A randomized, double-blind, controlled trial using two different probiotic preparations in Bolivian children. BMC Infec Dis, 10 (253): pp. 1-7
  • Gupta, A., Sharma, N. (2017). Characterization of potential probiotic lactic acid bacteria- Pediococcus acidilactici Ch-2 isolated from Chuli- a traditional apricot product of Himalayan region for the production of novel bioactive compounds with special therapeutic properties. J Food Microbiol Saf Hyg, 2: 119. doi:10.4172/2476-2059.1000119
  • Hickson, M., D'Souza, A.L., Muthu, N., Rogers, T.R., Want, S., Rajkumar, C., Bulpitt, C.J. (2007). Use of probiotic Lactobacillus preparation to prevent diarrhoea associated with antibiotics: randomised double blind placebo controlled trial. BMJ, 335 (7610):80. doi: 10.1136/bmj.39231.599815.55.
  • Holzapfel, W.H., Franz, C.M.A.P., Ludwig, W., Back, W., Dicks, L.M.T. (2006). “The genera Pediococcus and Tetragenococcus,” in The Prokaryotes, eds M.F.S. Dworkin, E. Rosenberg, K. H. Schleifer and E. Stackebrandt, E. (New York, NY: Springer-Verlag), 229–266. doi: 10.1007/0-387-30744-3_8
  • Holzapfel, W.H., Wood, B.J.B. (2014). Lactic Acid Bacteria: Biodiversity and Taxonomy, 1st Edn. Somerset Wiley. ISBN: 978-1-444-33383-1. p.632
  • Ilavenil, S., Vijayakumar, M., Kim, D.H., Valan Arasu, M., Park, H.S., Ravikumar, S., Choi, K.C. (2016). Assessment of probiotic, antifungal and cholesterol lowering properties of Pediococcus pentosaceus KCC-23 isolated from Italian ryegrass. J Sci Food Agric, 96(2):593-601. doi: 10.1002/jsfa.7128.
  • Mokoena, M.P., (2017). Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: a mini-review. Molecules, 22: 1255.
  • Ng, S.Y., Koon, S.S., Padam, B.S., Chye, F.Y. (2015). Evaluation of probiotic potential of lactic acid bacteria isolated from traditional Malaysian fermented Bambangan (Mangifera pajang). CyTA - J Food, 13 (4): 563–572.
  • Oelschlaeger, T.A. (2010). Mechanisms of probiotic actions—A review. Int J Med Microbiol, 300, 57–62
  • Olajugbagbe, T.E., Elugbadebo, O.E., Omafuvbe, B.O. (2020). Probiotic potentials of Pediococuss acidilactici isolated from wara; A Nigerian unripened soft cheese. Heliyon 6:9 e04889
  • Pan, X., Chen, F., Wu, T., Tang, H., Zhao, Z. (2008). The acid, bile tolerance and antimicrobial property of Lactobacillus acidophilus NIT. Food Control, 10: 135- 140
  • Papagianni, M., Anastasiadou, S. (2009). Encapsulation of Pediococcus acidilactici cells in corn and olive oil microcapsules emulsified by peptides and stabilized with xanthan in oil-in-water emulsions: studies on cell viability under gastro-intestinal simulating conditions. Enzyme Microb Tech, 45: 514-522.
  • Park S.C., Hwang, M.H., Kim, Y.H., Kim, J.C., Song, J.C., Lee, K.W. (2006). Comparison of pH and bile resistance of Lactobacillus acidophilus strains isolated from rat, pig, chicken, and human sources. World J Microb Biot, 22: 35-37.
  • Reuben, R.C., Roy, P.C., Sarkar, S.L., Alam, R., Jahid, I.K. (2019). Isolation, characterization, and assessment of lactic acid bacteria toward their selection as poultry probiotics. BMC Microbiol 19, 253. https://doi.org/10.1186/s12866-019-1626-0
  • Ribeiro M.C.O., Vandenberghe L. P.S., Spier M.R., Paludo K.S., Soccol C.R., Soccol V. T. (2014). Evaluation of probiotic properties of Pediococcus acidilactici B14 in association with Lactobacillus acidophilus ATCC 4356 for application in a soy based aerated symbiotic dessert. Arch. Biol. Technol. 57 (5) :755-765.
  • Rosenberg, M., Gutnick, D., Rosenberg, E. (1980). Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett, 9: 29-33.
  • Saad, N., Delattre, C., Urdaci, M., Schmitter, J.M., Bressollier, P. (2013). An overview of the last advances in probiotic and prebiotic field. Food Sci Technol, 50:1–16
  • Shani, N., Oberhaensli, S., Arias-Roth, E. (2021). Antibiotic susceptibility profiles of Pediococcus pentosaceus from various origins and their implications for the safety assessment of strains with food-technology applications. J Food Prot, 84(7):1160-1168.
  • Shukla, R., Goyal, A. (2014). Probiotic Potential of Pediococcus pentosaceus CRAG3: A New Isolate from Fermented Cucumber. Probiotics and Antimicro Prot, 6:11–21
  • Shyamala, G.R., Meenambigai, P., Prabhavathi, P., Raja, R., Yesudoss, L. (2016). Probiotics and its effects on human health- A review. Int J Curr Microbiol Appl, Sci. 5 (4): 384-392.
  • Suscovic, J., Brkic, B., Matosic, S., Maric, V. (1997). Lactobacillus acidophilus M92 as potential probiotic strain. Milchwissenschaft, 52: 430-435.
  • Teply, M. (1984). Ciste mlekarske kultury. Phara. SNTL Nakladatelstvi. Technicke Litertury. In: Starters for Fermented Milks, Kurmann JA (chief ed), IDF Bulletin 227; pp. 41-55.
  • Thakur, N., Rokana, N., Panwar, H. (2016). Probiotics: selection criteria, safety and role in health and disease. J Innov Biol, 3 (1), 259–270.
  • Todorov, S.D., Dicks, L.M. (2009). Bacteriocin production by Pediococcus pentosaceus isolated from marula (Scerocarya birrea). Int J Food Microbiol, 132, 117–126.
  • Tokatlı M., Gülgör G., Elmacı S.B., Egleyen N.A., Özçelik F. (2015). In vitro properties of potential probiotic indigenous lactic acid bacteria originating from traditional pickles. Hindawi Publishing Corporation BioMed Research International, Article ID 315819, 8p.
  • Vieira, K.C.D.O., Ferreira, C.D.S., Bueno, E.B.T., de Moraes, Y.A., Toledo, A.C.C.G., Nakagaki, W.R., Pereira, V.C., Winkelstroter, L.K. (2020). Development and viability of probiotic orange juice supplemented by Pediococcus acidilactici CE51. LWT, 130, 109637.
  • Villena, J., Kitazawa, H. (2017). Probiotic microorganisms; A closer look. Microorganisms 5: 17–28.
  • Vinderola C.G., Reinheimer, J.A. (2003). Lactic acid starter and probiotic bacteria: a comparative ‘‘in vitro’’study of probiotic characteristics and biological barrier resistance. Food Res Int, 36: 895-904.
  • Wang, L.Q., Meng, X.C., Zhang, B.R., Wang, Y., Shang, Y.L. (2010). Influence of cell surface properties on adhesion ability of Bifidobacteria. World J Microbiol Biotechnol, 26: 1999–2007.
  • Yin, H., Ye, P., Lei, Q., Cheng,Y., Yu, H., Du, J., Pan, H., Cao, Z. (2020). In vitro probiotic properties of Pediococcus pentosaceus L1 and its effects on enterotoxigenic Escherichia coli-induced inflammatory responses in porcine intestinal epithelial cells. Microbial Pathogenesis 144,104163
  • Yuksekdag, Z.N., Aslim, B. (2010). Assessment of potential probiotic and starter properties of Pediococcus spp. isolated from Turkish-type fermented sausages (Sucuk). J Microbiol Biotechnol, 20:161–168.
  • Yüceer, Ö., Özden Tuncer, B. (2015). Determination of antibiotic resistance and biogenic amine production of lactic acid bacteria isolated from fermented Turkish sausage (sucuk). J. Food Safe, 35: 276-285.
  • Zommiti, M., Bouffartigues, E., Maillot, O., Barreau, M., Szunerits, S., Sebei, K., Feuilloley, M., Connil, N., Ferchichi, M. (2018). In vitro assessment of the probiotic properties and bacteriocinogenic potential of pediococcus pentosaceus MZF16 isolated from artisanal Tunisian meat “Dried Ossban”. Front Microbiol, 9:2607. doi: 10.3389/fmicb.2018.02607.
  • Xu H., Jeong H. S., Lee H. Y., Ahn J. (2009). Assessment of cell surface properties and adhesion potential of selected probiotic strains. Letters in applied microbiology 49, 434–442, https://doi.org/10.1111/j.1472-765X.2009.02684.x
There are 52 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Articles
Authors

Nazife Yıldırım 0000-0002-8560-7770

Banu Özden Tuncer 0000-0001-9678-4441

Project Number 4203-YL1-14
Publication Date April 1, 2022
Published in Issue Year 2022

Cite

APA Yıldırım, N., & Özden Tuncer, B. (2022). ANTİMİKROBİYEL AKTİVİTEYE SAHİP PEDIOCOCCUS ACIDILACTICI VE PEDIOCOCCUS PENTOSACEUS SUŞLARININ PROBİYOTİK ÖZELLİKLERİNİN BELİRLENMESİ. Gıda, 47(3), 434-446. https://doi.org/10.15237/gida.GD22025
AMA Yıldırım N, Özden Tuncer B. ANTİMİKROBİYEL AKTİVİTEYE SAHİP PEDIOCOCCUS ACIDILACTICI VE PEDIOCOCCUS PENTOSACEUS SUŞLARININ PROBİYOTİK ÖZELLİKLERİNİN BELİRLENMESİ. GIDA. April 2022;47(3):434-446. doi:10.15237/gida.GD22025
Chicago Yıldırım, Nazife, and Banu Özden Tuncer. “ANTİMİKROBİYEL AKTİVİTEYE SAHİP PEDIOCOCCUS ACIDILACTICI VE PEDIOCOCCUS PENTOSACEUS SUŞLARININ PROBİYOTİK ÖZELLİKLERİNİN BELİRLENMESİ”. Gıda 47, no. 3 (April 2022): 434-46. https://doi.org/10.15237/gida.GD22025.
EndNote Yıldırım N, Özden Tuncer B (April 1, 2022) ANTİMİKROBİYEL AKTİVİTEYE SAHİP PEDIOCOCCUS ACIDILACTICI VE PEDIOCOCCUS PENTOSACEUS SUŞLARININ PROBİYOTİK ÖZELLİKLERİNİN BELİRLENMESİ. Gıda 47 3 434–446.
IEEE N. Yıldırım and B. Özden Tuncer, “ANTİMİKROBİYEL AKTİVİTEYE SAHİP PEDIOCOCCUS ACIDILACTICI VE PEDIOCOCCUS PENTOSACEUS SUŞLARININ PROBİYOTİK ÖZELLİKLERİNİN BELİRLENMESİ”, GIDA, vol. 47, no. 3, pp. 434–446, 2022, doi: 10.15237/gida.GD22025.
ISNAD Yıldırım, Nazife - Özden Tuncer, Banu. “ANTİMİKROBİYEL AKTİVİTEYE SAHİP PEDIOCOCCUS ACIDILACTICI VE PEDIOCOCCUS PENTOSACEUS SUŞLARININ PROBİYOTİK ÖZELLİKLERİNİN BELİRLENMESİ”. Gıda 47/3 (April 2022), 434-446. https://doi.org/10.15237/gida.GD22025.
JAMA Yıldırım N, Özden Tuncer B. ANTİMİKROBİYEL AKTİVİTEYE SAHİP PEDIOCOCCUS ACIDILACTICI VE PEDIOCOCCUS PENTOSACEUS SUŞLARININ PROBİYOTİK ÖZELLİKLERİNİN BELİRLENMESİ. GIDA. 2022;47:434–446.
MLA Yıldırım, Nazife and Banu Özden Tuncer. “ANTİMİKROBİYEL AKTİVİTEYE SAHİP PEDIOCOCCUS ACIDILACTICI VE PEDIOCOCCUS PENTOSACEUS SUŞLARININ PROBİYOTİK ÖZELLİKLERİNİN BELİRLENMESİ”. Gıda, vol. 47, no. 3, 2022, pp. 434-46, doi:10.15237/gida.GD22025.
Vancouver Yıldırım N, Özden Tuncer B. ANTİMİKROBİYEL AKTİVİTEYE SAHİP PEDIOCOCCUS ACIDILACTICI VE PEDIOCOCCUS PENTOSACEUS SUŞLARININ PROBİYOTİK ÖZELLİKLERİNİN BELİRLENMESİ. GIDA. 2022;47(3):434-46.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/