Review
BibTex RIS Cite

MICROENCAPSULATION TECHNIQUES FOR PROBIOTICS AND APPLICATIONS IN FOOD TECHNOLOGY

Year 2023, , 1143 - 1159, 15.12.2023
https://doi.org/10.15237/gida.GD22054

Abstract

Probiotics are non-pathogenic microorganisms that occur naturally in the human body and in nature. Probiotics have many benefits for human health such as strengthening the immune system, synthesis B and K vitamins, regulating colonic movements, preventing inflammation, reducing blood cholesterol levels, having an antagonistic effect against pathogenic microorganisms in the gastrointestinal tract. Due to these beneficial effects of probiotics, their consumption as food supplements or their use in functional food production has increased in recent years. However, probiotics can be negatively affected by environmental conditions during the production, processing and storage of foods. Therefore, the microencapsulation of probiotics has become an important issue for food and drug industry. Microencapsulation is coating of the active ingredients with different carrier materials in order to protect them from environmental conditions. In this study, different techniques used in the encapsulation of probiotics are explained and current knowledge and applications in the literature are summarized.

References

  • Abedinia, A., Alimohammadi, F., Teymori, F., Razgardani, N., Saeidi Asl, M. R., Ariffin, F., roslan, j. (2021). Characterization and cell viability of probiotic/prebiotics film based on duck feet gelation: a novel poultry gelatin as a suitable matrix for probiotics. Foods, 10(8), 1761.
  • Albert, C., Beladjine, M., Tsapis, N., Fattal, E., Agnely, F., Huang, N. (2019). Pickering emulsions: Preparation processes, key parameters governing their properties and potential for pharmaceutical applications. Journal of Controlled Release, 309, 302-332.
  • Altamirano‐Ríos, A. V., Guadarrama‐Lezama, A. Y., Arroyo‐Maya, I. J., Hernández‐Álvarez, A. J., Orozco‐Villafuerte, J. (2022). Effect of encapsulation methods and materials on the survival and viability of Lactobacillus acidophilus: A review. International Journal of Food Science Technology, 57(7), 4027-4040.
  • Arslan-Tontul, S., Erbaş, M. (2017). Biyoaktif gıda bileşenlerinin püskürterek dondurma yöntemi ile mikroenkapsülasyonu. GIDA, 43(1), 11-20.
  • Arslan-Tontul, S. (2017). Probiyotik mikroorganizmaların püskürterek dondurma ve kurutma teknikleriyle mikroenkapsüle edilerek probiyotik kek üretiminde kullanım imkanlarının araştırılması. Akdeniz Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı Doktora Tezi, Antalya, Türkiye, 153s.
  • Azam, M., Saeed, M., Pasha, I., Shahid, M. (2020). A prebiotic-based biopolymeric encapsulation system for improved survival of Lactobacillus rhamnosus. Food Bioscience, 37, 100679.
  • Balcı-Torun, F. (2019). Farklı enkapsülasyon yöntemleri kullanılarak elde edilen aroma kapsüllerinin depolama stabilitesinin ve gıda katkı maddesi olarak kullanımının araştırılması. Akdeniz Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı Doktora Tezi, Antalya, Türkiye, 211s.
  • Bampi, G.B., backes, G.T., Cansian, R.L. de Matos, F.E., Ansolin, I.M.A., Poleto, B.C., Favaro-Trindade, C.S. (2016). Spray chilling microencapsulation of Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis and its use in the preparation of savory probiotic cereal bars. Food and Bioprocess Technology, 9(8), 1422-1428.
  • Barat, A., Özcan, T. (2016). Fermente süt içeceğinde probiyotik bakterilerin gelişimi üzerine meyve ilavesinin etkisi. Journal of Agriculture Faculty of Ege University, 53(3), 259-267.
  • Bilginer, H., Çetin, B. (2019). Probiyotikler ve belirlenmelerinde kullanılan in vitro testler. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 50(3), 312-325.
  • Cai, S., Zhao, M., Fang, Y., Nishinari, K., Phillips, G. O., Jiang, F. (2014). Microencapsulation of Lactobacillus acidophilus CGMCC1.2686 via emulsification/internal gelation of alginate using Ca-EDTA and CaCO3 as calcium sources. Food hydrocolloids, 39, 295-300.
  • Campos, R.C.D.A.B., Martins, E.M.F., de Andrade Pires, B., Peluzio, M.D.C.G., da Rocha Campos, A.N., Ramos, A.M., Martins, M. L. (2019). In vitro and in vivo resistance of Lactobacillus rhamnosus GG carried by a mixed pineapple (Ananas comosus L. Merril) and jussara (Euterpe edulis Martius) juice to the gastrointestinal tract. Food Research International, 116, 1247-1257.
  • Castro‐Rosas, J., Gómez‐Aldapa, C. A., Chávez‐Urbiola, E. A., Hernández‐Bautista, M., Rodríguez‐Marín, M. L., Cabrera‐Canales, Z. E., Falfán‐Cortés, R. N. (2021). Characterisation, storage viability, and application of microspheres with Lactobacillus paracasei obtained by the extrusion technique. International Journal of Food Science Technology, 56(4), 1809-1817.
  • Chávarri, M., Maranón, I.,Ares, R., Ibánez. C., Marzo, F., del Carmen Villarán, M. (2010). Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. International Journal of Food Microbiology, 142(1-2), 185-189.
  • Chen, H., Tian, M., Chen, L., Cui, X., Meng, J., Shu, G. (2019). Optimization of composite cryoprotectant for freeze-drying Bifidobacterium bifidium BB01 by response surface methodology. Artificial Cells, Nanomedicine and Biotechnology, 47(1), 1559-1569.
  • Cozentino, I.D.S.C., de Paula, A.V., Riberio, C.A. Alonso, J.D., Grimaldi, R., Luccas, V., Cavallini, D.C.U. (2022). Development of a potentially functional chocolate spread containing probiotics and structured triglycerides. LWT-Food Science and Technology, 154, 112746.
  • Çam, G., Akın, N., Konak Göktepe, Ç., Demirci, T. (2022). Pea (Pisum sativum L.) pod powder as a potential enhancer of probiotic Enterococcus faecium M74 in ice cream and its physicochemical, structural, and sensory effects. Journal of the Science of Food and Agriculture, 103(6):3184-3193.
  • De Lara Pedroso, D., Thomazini, M., Heinemann, R.J.B., Fvaro-Trindade, C.S. (2012). Protection of Bifidobacterium lactis and Lactobacillus acidophilus by microencapsulation using spray-chilling. International Dairy Journal, 26(2), 127-132.
  • De Lara Pedroso, Dogenski, M., Thomazini, M., Heinemann, R.J.B., Favaro-Trindade, C.S. (2013). Microencapsulation of Bifidobacterium animalis subsp. lactis and Lactobacillus acidophilus in cocoa butter using spray chilling technology. Brazilian Journal of Microbiology, 44(3), 777-783.
  • Da Silva, T. M., Lopes, E. J., Codevilla, C. F., Cichoski, A. J., de Moraes Flores, É. M., Motta, M. H., … de Menezes, C. R. (2018). Development and characterization of microcapsules containing Bifidobacterium Bb-12 produced by complex coacervation followed by freeze drying. LWT-Food Science and Technology, 90, 412-417.
  • El-Salam, A., Mohamed, H., El-Shibiny, S. (2015). Preparation and properties of milk proteins-based encapsulated probiotics: a review. Dairy Science and Technology, 95(4), 393-412.
  • Enayati, M., Chang, M. W., Bragman, F., Edirisinghe, M., Stride, E. (2011). Electrohydrodynamic preparation of particles, capsules and bubbles for biomedical engineering applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 382(1-3), 154-164.
  • Eratte, D., Dowling, K., Barrow, C. J., Adhikari, B. (2018). Recent advances in the microencapsulation of omega-3 oil and probiotic bacteria through complex coacervation: a review. Trends in Food Science and Technology, 71, 121-131.
  • Ezekiel, O. O., Okehie, I.D., Adedeji, O. E. (2020). Visbility of Lactobacillus rhamnosus GG in simulated gastrointestinal conditions and after baking White pan bread at different temperature and time regimes. Current Microbiology, 77(12), 3869-3877.
  • Ezhilarasi, P.N., Karthik, P., Chhanwal, N., Anandharamakrishnan, C. (2013). Nanoencapsulation techniques for food bioactive components: a review. Food and Bioprocess Technology, 63(3), 628-647.
  • FAO, 2002. Guidelines for the evaluation of probiotics in food. World Health Organization- Food and Agriculture Organization of the United Nations, London, Ontario, Canada.
  • Favaro-Trindade, C.S., de Matos Junior, F. E., Okuro, P. K., Dias-Ferreira, J., Cano, A., Severino, P., Souto, E. B. (2021). Encapsulation of active pharmaceutical ingredients in lipit micro/nanoparticles for oral administration by spray-cooling. Pharmaceutics, 13(8), 1186.
  • Figueiredo, J., dePaula Silva, C. R., Oliveira, M. F. S., Norcino, L. B., Campelo, P. H., Botrel, D. A., Borges, S. V. (2021). Microencapsulation by spray chilling in the food industry: Opportunities, challenges and innovations. Trends in Food Science Technology, 120, 274-287.
  • Frakolaki, G., Kekes, T., Lympaki, F., Giannou, V., Tzia, C. (2021). Use of encapsulated Bifidobacterium animalis subsp. Lactis through extrusion or emulsification for the production of probiotic yogurt. Journal of Food Process Engineering, e13792.
  • Ghasemi, L., Nouri, L., Mohammadi Nafchi, A., Al-Hassan, A.A. (2022). The effects of encapsulated probiotic bacteria on the physicochemical properties, staling and viability of probiotic bacteria in gluten-free bread. Journal of Food Processing and Preservation, 46(3), e16359.
  • González-Ferrero, C., Irache, J. M., González-Navarro, C. J. (2018). Soybean protein-based microparticles for oral delivery of probiotics with improved stability during storage and gut resistance. Food Chemistry, 239, 879-888. Gouin, S. (2004). Microencapsulation: industrial appraisal of existing technologies and trends. Trends in Food Science and Technology, 15(7-8), 330-347.
  • Guo, Q., Li, S., Tang, J., Chang, S., Qiang, L., Du, G., Yuan, Y. (2022). Microencapsulation of Lactobacillus plantarum by spray drying: Protective effects during simulated food processing, gastrointestinal conditions, and in kefir. International Journal of Biological Macromolecules, 194, 539-545.
  • Hadidi, M., Majidiyan, N., Jelyani, A. Z., Moreno, A., Hadian, Z., Mousavi Khanegah, A. (2021). Alginate/fish gelatin* encapsulated Lactobacillus acidophilus: A study on viability and technological quality of bread during baking and storage. Foods, 10(9), 2215.
  • Hernández-Barrueta, T., Martínez-Bustos, F., Castaño-Tostado, E., Lee, Y., Miller, M. J., Amaya-Llano, S. L. (2020). Encapsulation of probiotics in whey protein isolate and modified huauzontle's starch: An approach to avoid fermentation and stabilize polyphenol compounds in a ready-to-drink probiotic green tea. LWT-Food Science and Technology, 124, 109131.
  • Homayoni Rad, A., Vaghef Mehrabany, E., Alipoor, B., Vaghef Mehrabany, L. (2016). The comparison of food and supplement as probiotic delivery vehicles. Critical Reviews in Food Science and Nutrition, (56)6, 896-909.
  • Hossain, M.N., Ranadheera, C.S., Fang, Z., Ajlouni, S. (2021). Impact of encapsulation probiotics with cocoa powder on the viability of probiotics during chocolate processing, storage, and in vitro gastrointestinal digestion. Journal of Food Science, 86(5),1629– 1641.
  • Huang, X. N., Zhu, J. J., Xi, Y. K., Yin, S. W., Ngai, T., Yang, X. Q. (2019). Protein-based Pickering high internal phase emulsions as nutraceutical vehicles of and the template for advanced materials: A perspective paper. Journal of Agricultural and Food Chemistry, 67(35), 9719-9726.
  • Huq, T., Khan, A., Khan, R. A., Riedl, B., Lacroix, M. (2013). Encapsulation of probiotic bacteria in biopolymeric system. Critical Reviews in Food Science and Nutrition, 53(9), 909-916.
  • Jaworek, A., Sobczyk, A. T. (2008). Electrospraying route to nanotechnology: An overview. Journal of Electrostatics, 66(3–4), 197–219.
  • Jiang, T., Charcosset, C. (2022). Encapsulation of curcumin within oil-in-water emulsion prepared by premix membrane emulsification: Impact of droplet size and carrier oil type on physicochemical stability and in vitro bioaccessibility. Food Chemistry, 375, 131825.
  • Kanat, S., Gülel, G.T. (2021). Mikroenkapsülasyon ve Gıda Endüstrisinde Kullanım Alanları. Aydın Gastronomy, 5(1), 81-89.
  • Karagül, M. S., Altuntaş, B. (2018). Liyofilizasyon: genel proses değerlendirmesi. Etlik Veteriner Mikrobiyoloji Dergisi, 29(1), 62-69. Kaushik, P., Dowling, K., McKnight, S., Barrow, C. J., Adhikari, B. (2016). Microencapsulation of flaxseed oil in flaxseed protein and flaxseed gum complex coacervates. Food Research International, 86, 1-8.
  • Kawasaki, H., Shimanouchi, T., Kimura, Y. (2019). Recent development of optimization of lyophilization process. Journal of Chemistry, 9502856.
  • Koşay, R. (2020). Antosiyanin ekstraktlarının çift emülsiyon yöntemiyle enkapsülasyonu. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüleri Ortak Yüksek Lisans Programı Gıda Mühendisliği Anabilim Dalı Yüksek Lisans Tezi, Osmaniye, Türkiye, 105s.
  • Lipan, L., Rusu, B., Sendra, E., Hernández, F., Vázquez-Araújo, L., Vodnar, D.C., Carbonell-Barrchina, A.A. (2020). Spray drying and storage of probiotic-enriched almond milk:probiotic survival and physicochemical properties. Journal of the Science of Food and Agriculture, 100(9).
  • Loyeau, P. A., Spotti, M. J., Vinderola, G., Carrara, C. R. (2021). Encapsulation of potential probiotic and canola oil through emulsification and ionotropic gelation, using protein/polysaccharides maillard conjugates as emulsifiers. LWT-Food Science and Technology, 150, 111980.
  • Mendes, A. C., Chronakis, I. S. (2021). Electrohydrodynamic encapsulation of probiotics: a review. Food Hydrocolloids, 117, 106688.
  • Meybodi, N. M., Mortazavian, A. (2017). Probiotic supplements and food products: a comparative approach. Biochemical Pharmacology, 6(2), 1-7.
  • Miranda, J. S., Costa, B. V., de Oliveira, I. V., de Lima, D. C. N., Martins, E. M. F., Júnior, B. R. D. C. L., ... Martins, M. L. (2020). Probiotic jelly candies enriched with native Atlantic Forest fruits and Bacillus coagulans GBI-30 6086. LWT-Food Science and Technology, 126, 109275.
  • Misra, S., Pandey, P., Mishra, H. N. (2021). Novel approaches for co-encapsulation of probiotic bacteria with bioactive compounds, their health benefits and functional food product development: a review. Trends in Food Science Technology, 109, 340-351.
  • Mollakhalili, M. N., Mortazavian, A. M., SOHRABVANDI, S., CRUZ, A. G. D., Mohammadi, R. (2017). Probiotic supplements and food products: Comparison for different targets. Applied Food Biotechnology, 4(3), 123-132.
  • Moreno, J. S., Dima, P., Chronakis, I. S., Mendes, A. C. (2021). Electrosprayed ethyl cellulose core-shell microcapsules for the encapsulation of probiotics. Pharmaceutics, 14(1), 7.
  • Mwangi, W. W., Lim, H. P., Low, L. E., Tey, B. T., Chan, E. S. (2020). Food-grade Pickering emulsions for encapsulation and delivery of bioactives. Trends in Food Science Technology, 100, 320-332.
  • Nami, Y., Lornezhad, G., Kiani, A., Abdullah, N., Haghsenas, B. (2020). Alginate-Persian gum-prebiotics microencapsulation impacts on the survival rate of Lactococcus lactis ABRIINW-N19 in orange juice. LWT-Food Science and Technology, 124, 109190.
  • Okuro, P.K. de Matos Junior, F.E., Favaro-Trindade, C.S. (2013). Technological challenges for spray chilling encapsulation of functional food ingredients. Food Technology and Biotechnology, 51(2), 171.
  • Özdemir, E.E., Görgüç, A., Gençdağ, E., Yılmaz, F.M. (2021). Püskürtmeli kurutma ve dondurarak kurutma yöntemlerinin temelleri ve bu yöntemler ile gıda atıklarından toz ürünlerin üretimi. Gıda, 46(3), 583-607.
  • Özgüner-Kabak, M. (2019). Meyan kökünde bulunan bazı biyoaktif bileşenlerin ekstraksiyonu üzerine farklı yöntemlerin etkisinin araştırılması. Akdeniz Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı Yüksek Lisans Tezi, Antalya, Türkiye, 91s.
  • Pérez-Masiá, R., Lagaron, J. M., & López-Rubio, A. (2014). Development and optimization of novel encapsulation structures of interest in functional foods through electrospraying. Food and Bioprocess Technology, 7, 3236-3245.
  • Pickering, S. U. (1907). Cxcvi.—emulsions. Journal of the Chemical Society, Transactions, 91, 2001-2021.
  • Qin, X. S., Gao, Q. Y., Luo, Z. G. (2021). Enhancing the storage and gastrointestinal passage viability of probiotic powder (Lactobacillus plantarum) through encapsulation with pickering high internal phase emulsions stabilized with WPI-EGCG covalent conjugate nanoparticles. Food Hydrocolloids, 116, 106658.
  • Rajagukguk, Y. V., Arnold, M., Sidor, A., Kulczyński, B., Brzozowska, A., Schmidt, M., Gramza-Michałowska, A. (2022). Antioxidant activity, probiotic survivability, and sensory properties of a phenolic-rich pulse snack bar enriched with Lactiplantibacillus plantarum. Foods, 11(3), 309.
  • Radulavić, Z., Miočinović, N., Mirković, M., Paunović, D., Ivanović, M., Seratlić, S. (2017). Survival of spray-dried and free-cells of potential probiotic Lactobacillus plantarum 564 in soft goat cheese. Animal Science Journal, 88(11), 1849-1854.
  • Ramsden, W. (1904). Separation of solids in the surface-layers of solutions and ‘suspensions’(observations on surface-membranes, bubbles, emulsions, and mechanical coagulation).—Preliminary account. Proceedings of the Royal Society of London, 72(477-486), 156-164.
  • Riaz, Q. U. A., Masud, T. (2013). Recent trends and applications of encapsulating materials for probiotic stability. Critical Reviews in Food Science And Nutrition, 53(3), 231-244.
  • Rizzoli, R., Biver, E. (2020). Are probiotics the new calcium and vitamin D for bone health? Current Osteoporosis Reports, 18(3), 273-284.
  • Rodrigues, F. J., Cedran, M. F., Bicas, J. L., Sato, H. H. (2020). Encapsulated probiotic cells: Relevant techniques, natural sources as encapsulating materials and food applications–A narrative review. Food Research International, 137, 109682.
  • Romero-Chapol, O.O., Varela-Pérez, A., Castillo- Olmos, A.G., García, H.S., Singh, J., García-Ramírez, P.J., Cano-Sarmiento, C. (2022). Encapsulation of Lacticaseibacillus rhamnosus GG: Probiotic survival, in vitro digestion and viability in apple juice and yogurt. Applied Sciences, 12(4), 2141.
  • Romyasamit, C., Saengsuwan, P., Boonserm, P., Thamjarongwong, B., Singkhamanan, K. (2022). Optimization of cryoprotectants for freeze-dried potential probiotic Enterococcus faecalis and evaluation of its storage stability. Drying Technology, 40:11, 2283-2292.
  • Santos Monteiro, S., Albertina Silva Beserra, Y., Miguel Lisboa Oliveira, H., Pasquali, M.A.D.B. (2020). Production of probiotic passion fruit (Passiflora edulis Sims f. Flavicarpa Deg.) drink using Lactobacillus reuteri and Microencapsulation via spray drying. Foods, 9(3),335.
  • Silva, M. P., Tulini, F. L., Marinho, J. F., Mazzocato, M. C., De Martinis, E. C., Luccas, V., Favaro-Trindade, C. S. (2017). Semisweet chocolate as a vehicle for the probiotics Lactobacillus acidophilus LA3 and Bifidobacterium animalis subsp. lactis BLC1: Evaluation of chocolate stability and probiotic survival under in vitro simulated gastrointestinal conditions. LWT-Food Science and Technology, 75, 640-647.
  • Silva, R., Pimentel, T.C., de Matos Junior, F.E., Esmerino, E.A., Freitas, M.Q., Fávaro-Trindade, C.S., Cruz, A.G. (2022). Microencapsulation with spray-chilling as an innovative strategy for probiotic low sodium rewueijão cremoso processed chesee processing. Food Bioscience, 46, 101517.
  • Silva, K.K.D.P., de Souza Queirós, M., Riberio, A. P. B., Gigante, M. L. (2022). Modified milk fat as encapsulating material for the probiotic microorganism Lactobacillus acidophilus LA3. International Dairy Journal, 105237.
  • Sornsenee, P., Chimplee, S., Saengsuwan, P., Romyasamit, C. (2022). Characterization of probiotic properties and development of banana powder enriched with freeze-dried Lacticaseibacillus paracasei probiotics. Heliyon, 8(10), e11063.
  • Sun, W.; Nguyen, Q.D.; Süli, B.K.; Alarawi, F.; Szécsi, A.; Gupta, V.K.; Friedrich, L.F.; Gere, A.; Bujna, E. (2023). Microencapsulation and Application of Probiotic Bacteria Lactiplantibacillus plantarum 299v Strain. Microorganisms, 11, 947.
  • Tao, T., Ding, Z., Hou, D., Prakash, S., Zhao, Y., Fan, Z., Han, J. (2019). Influence of polysaccharide as co-encapsulant on powder characteristics, survival and viability of microencapsulated Lactobacillus paracasei Lpc-37 by spray drying. Journal of Food Engineering, 252,10-17.
  • Ünal-Turhan, E., Erginkaya, Z., Benli, H., Akın, M.B., Agcam, E. (2019a). The effects of microencapsulated L. rhamnosus and storage on biogenic amine amount of sucuk. GIDA, 44(5), 819-825.
  • Ünal Turhan, E., Erginkaya, Z., Sarıkodal, E., Özkütük, S. T., Konuray, G. (2019b). Probiyotik bitter çikolata üretiminde mikroenkapsüle Lactobacillus Rhamnosus kullanımı. GIDA, 44(2), 238-247.
  • Ünal-Turhan, E. (2021). Mikroenkapsüle ve serbest probiyotik kültür ilavesiyle fonksiyonel keçiboynuzu pekmezi üretimi. Karadeniz Fen Bilimleri Dergisi, 11(1), 307-317.
  • Yeşilova Y, Sula B, Yavuz E, Uçmak D. (2010). Probiyotikler. Kartal Eğitim ve Araştırma Hastanesi Tıp Dergisi, 49-56. Zaeim, D., Sarabi-Jamab, M., Ghorani, B., Kadkhodaee, R., Tromp, R. H. (2018). Electrospray-assisted drying of live probiotics in acacia gum microparticles matrix. Carbohydrate polymers, 183, 183-191.
  • Zaeim, D., Sarabi-Jamab, M., Ghorani, B., Kadkhodaee, R. (2019). Double layer co-encapsulation of probiotics and prebiotics by electro-hydrodynamic atomization. LWT-Food Science and Technology, 110, 102-109

PROBİYOTİKLERİN MİKROENKAPSÜLASYONUNDA KULLANILAN YÖNTEMLER VE GIDA TEKNOLOJİSİNDE UYGULAMALARI

Year 2023, , 1143 - 1159, 15.12.2023
https://doi.org/10.15237/gida.GD22054

Abstract

Probiyotikler insan vücudunda ve doğada doğal olarak bulunan ve patojen olmayan mikroorganizmalardır. Probiyotik mikroorganizmaların; B ve K vitaminlerini sentezleme, kolon hareketlerini düzenleme, enflamasyonu önleme, kandaki kolesterol seviyesini düşürme ve gastrointestinal sistemde patojen mikroorganizmalara karşı antagonistik etki gösterme gibi insan sağlığına olumlu etkileri vardır. Probiyotiklerin bu olumlu etkilerinden dolayı, gıda takviyesi olarak tüketimi ya da fonksiyonel gıda üretiminde kullanımı son yıllarda artmıştır. Ancak probiyotikler; gıdaların üretimi, işlenmesi ve depolanması sırasında çevre koşullarından olumsuz etkilenebilmektedir. Bu nedenle, probiyotik mikroorganizmaların mikroenkapsülasyonu gıda ve ilaç endüstrisi açısında önemli bir konu haline gelmiştir. Mikroenkapsülasyon; biyoaktif bileşenlerin ve mikroorganizmaların çevre koşullarından korunması veya tat-koku gibi özelliklerin maskelenmesi amacıyla taşıyıcı materyaller ile kaplanması işlemidir. Bu derlemede, probiyotik mikroorganizmaların kapsüllenmesinde kullanılan farklı teknikler incelenmiş ve literatürdeki güncel bilgi ve uygulamalar özetlenmiştir.

References

  • Abedinia, A., Alimohammadi, F., Teymori, F., Razgardani, N., Saeidi Asl, M. R., Ariffin, F., roslan, j. (2021). Characterization and cell viability of probiotic/prebiotics film based on duck feet gelation: a novel poultry gelatin as a suitable matrix for probiotics. Foods, 10(8), 1761.
  • Albert, C., Beladjine, M., Tsapis, N., Fattal, E., Agnely, F., Huang, N. (2019). Pickering emulsions: Preparation processes, key parameters governing their properties and potential for pharmaceutical applications. Journal of Controlled Release, 309, 302-332.
  • Altamirano‐Ríos, A. V., Guadarrama‐Lezama, A. Y., Arroyo‐Maya, I. J., Hernández‐Álvarez, A. J., Orozco‐Villafuerte, J. (2022). Effect of encapsulation methods and materials on the survival and viability of Lactobacillus acidophilus: A review. International Journal of Food Science Technology, 57(7), 4027-4040.
  • Arslan-Tontul, S., Erbaş, M. (2017). Biyoaktif gıda bileşenlerinin püskürterek dondurma yöntemi ile mikroenkapsülasyonu. GIDA, 43(1), 11-20.
  • Arslan-Tontul, S. (2017). Probiyotik mikroorganizmaların püskürterek dondurma ve kurutma teknikleriyle mikroenkapsüle edilerek probiyotik kek üretiminde kullanım imkanlarının araştırılması. Akdeniz Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı Doktora Tezi, Antalya, Türkiye, 153s.
  • Azam, M., Saeed, M., Pasha, I., Shahid, M. (2020). A prebiotic-based biopolymeric encapsulation system for improved survival of Lactobacillus rhamnosus. Food Bioscience, 37, 100679.
  • Balcı-Torun, F. (2019). Farklı enkapsülasyon yöntemleri kullanılarak elde edilen aroma kapsüllerinin depolama stabilitesinin ve gıda katkı maddesi olarak kullanımının araştırılması. Akdeniz Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı Doktora Tezi, Antalya, Türkiye, 211s.
  • Bampi, G.B., backes, G.T., Cansian, R.L. de Matos, F.E., Ansolin, I.M.A., Poleto, B.C., Favaro-Trindade, C.S. (2016). Spray chilling microencapsulation of Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis and its use in the preparation of savory probiotic cereal bars. Food and Bioprocess Technology, 9(8), 1422-1428.
  • Barat, A., Özcan, T. (2016). Fermente süt içeceğinde probiyotik bakterilerin gelişimi üzerine meyve ilavesinin etkisi. Journal of Agriculture Faculty of Ege University, 53(3), 259-267.
  • Bilginer, H., Çetin, B. (2019). Probiyotikler ve belirlenmelerinde kullanılan in vitro testler. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 50(3), 312-325.
  • Cai, S., Zhao, M., Fang, Y., Nishinari, K., Phillips, G. O., Jiang, F. (2014). Microencapsulation of Lactobacillus acidophilus CGMCC1.2686 via emulsification/internal gelation of alginate using Ca-EDTA and CaCO3 as calcium sources. Food hydrocolloids, 39, 295-300.
  • Campos, R.C.D.A.B., Martins, E.M.F., de Andrade Pires, B., Peluzio, M.D.C.G., da Rocha Campos, A.N., Ramos, A.M., Martins, M. L. (2019). In vitro and in vivo resistance of Lactobacillus rhamnosus GG carried by a mixed pineapple (Ananas comosus L. Merril) and jussara (Euterpe edulis Martius) juice to the gastrointestinal tract. Food Research International, 116, 1247-1257.
  • Castro‐Rosas, J., Gómez‐Aldapa, C. A., Chávez‐Urbiola, E. A., Hernández‐Bautista, M., Rodríguez‐Marín, M. L., Cabrera‐Canales, Z. E., Falfán‐Cortés, R. N. (2021). Characterisation, storage viability, and application of microspheres with Lactobacillus paracasei obtained by the extrusion technique. International Journal of Food Science Technology, 56(4), 1809-1817.
  • Chávarri, M., Maranón, I.,Ares, R., Ibánez. C., Marzo, F., del Carmen Villarán, M. (2010). Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. International Journal of Food Microbiology, 142(1-2), 185-189.
  • Chen, H., Tian, M., Chen, L., Cui, X., Meng, J., Shu, G. (2019). Optimization of composite cryoprotectant for freeze-drying Bifidobacterium bifidium BB01 by response surface methodology. Artificial Cells, Nanomedicine and Biotechnology, 47(1), 1559-1569.
  • Cozentino, I.D.S.C., de Paula, A.V., Riberio, C.A. Alonso, J.D., Grimaldi, R., Luccas, V., Cavallini, D.C.U. (2022). Development of a potentially functional chocolate spread containing probiotics and structured triglycerides. LWT-Food Science and Technology, 154, 112746.
  • Çam, G., Akın, N., Konak Göktepe, Ç., Demirci, T. (2022). Pea (Pisum sativum L.) pod powder as a potential enhancer of probiotic Enterococcus faecium M74 in ice cream and its physicochemical, structural, and sensory effects. Journal of the Science of Food and Agriculture, 103(6):3184-3193.
  • De Lara Pedroso, D., Thomazini, M., Heinemann, R.J.B., Fvaro-Trindade, C.S. (2012). Protection of Bifidobacterium lactis and Lactobacillus acidophilus by microencapsulation using spray-chilling. International Dairy Journal, 26(2), 127-132.
  • De Lara Pedroso, Dogenski, M., Thomazini, M., Heinemann, R.J.B., Favaro-Trindade, C.S. (2013). Microencapsulation of Bifidobacterium animalis subsp. lactis and Lactobacillus acidophilus in cocoa butter using spray chilling technology. Brazilian Journal of Microbiology, 44(3), 777-783.
  • Da Silva, T. M., Lopes, E. J., Codevilla, C. F., Cichoski, A. J., de Moraes Flores, É. M., Motta, M. H., … de Menezes, C. R. (2018). Development and characterization of microcapsules containing Bifidobacterium Bb-12 produced by complex coacervation followed by freeze drying. LWT-Food Science and Technology, 90, 412-417.
  • El-Salam, A., Mohamed, H., El-Shibiny, S. (2015). Preparation and properties of milk proteins-based encapsulated probiotics: a review. Dairy Science and Technology, 95(4), 393-412.
  • Enayati, M., Chang, M. W., Bragman, F., Edirisinghe, M., Stride, E. (2011). Electrohydrodynamic preparation of particles, capsules and bubbles for biomedical engineering applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 382(1-3), 154-164.
  • Eratte, D., Dowling, K., Barrow, C. J., Adhikari, B. (2018). Recent advances in the microencapsulation of omega-3 oil and probiotic bacteria through complex coacervation: a review. Trends in Food Science and Technology, 71, 121-131.
  • Ezekiel, O. O., Okehie, I.D., Adedeji, O. E. (2020). Visbility of Lactobacillus rhamnosus GG in simulated gastrointestinal conditions and after baking White pan bread at different temperature and time regimes. Current Microbiology, 77(12), 3869-3877.
  • Ezhilarasi, P.N., Karthik, P., Chhanwal, N., Anandharamakrishnan, C. (2013). Nanoencapsulation techniques for food bioactive components: a review. Food and Bioprocess Technology, 63(3), 628-647.
  • FAO, 2002. Guidelines for the evaluation of probiotics in food. World Health Organization- Food and Agriculture Organization of the United Nations, London, Ontario, Canada.
  • Favaro-Trindade, C.S., de Matos Junior, F. E., Okuro, P. K., Dias-Ferreira, J., Cano, A., Severino, P., Souto, E. B. (2021). Encapsulation of active pharmaceutical ingredients in lipit micro/nanoparticles for oral administration by spray-cooling. Pharmaceutics, 13(8), 1186.
  • Figueiredo, J., dePaula Silva, C. R., Oliveira, M. F. S., Norcino, L. B., Campelo, P. H., Botrel, D. A., Borges, S. V. (2021). Microencapsulation by spray chilling in the food industry: Opportunities, challenges and innovations. Trends in Food Science Technology, 120, 274-287.
  • Frakolaki, G., Kekes, T., Lympaki, F., Giannou, V., Tzia, C. (2021). Use of encapsulated Bifidobacterium animalis subsp. Lactis through extrusion or emulsification for the production of probiotic yogurt. Journal of Food Process Engineering, e13792.
  • Ghasemi, L., Nouri, L., Mohammadi Nafchi, A., Al-Hassan, A.A. (2022). The effects of encapsulated probiotic bacteria on the physicochemical properties, staling and viability of probiotic bacteria in gluten-free bread. Journal of Food Processing and Preservation, 46(3), e16359.
  • González-Ferrero, C., Irache, J. M., González-Navarro, C. J. (2018). Soybean protein-based microparticles for oral delivery of probiotics with improved stability during storage and gut resistance. Food Chemistry, 239, 879-888. Gouin, S. (2004). Microencapsulation: industrial appraisal of existing technologies and trends. Trends in Food Science and Technology, 15(7-8), 330-347.
  • Guo, Q., Li, S., Tang, J., Chang, S., Qiang, L., Du, G., Yuan, Y. (2022). Microencapsulation of Lactobacillus plantarum by spray drying: Protective effects during simulated food processing, gastrointestinal conditions, and in kefir. International Journal of Biological Macromolecules, 194, 539-545.
  • Hadidi, M., Majidiyan, N., Jelyani, A. Z., Moreno, A., Hadian, Z., Mousavi Khanegah, A. (2021). Alginate/fish gelatin* encapsulated Lactobacillus acidophilus: A study on viability and technological quality of bread during baking and storage. Foods, 10(9), 2215.
  • Hernández-Barrueta, T., Martínez-Bustos, F., Castaño-Tostado, E., Lee, Y., Miller, M. J., Amaya-Llano, S. L. (2020). Encapsulation of probiotics in whey protein isolate and modified huauzontle's starch: An approach to avoid fermentation and stabilize polyphenol compounds in a ready-to-drink probiotic green tea. LWT-Food Science and Technology, 124, 109131.
  • Homayoni Rad, A., Vaghef Mehrabany, E., Alipoor, B., Vaghef Mehrabany, L. (2016). The comparison of food and supplement as probiotic delivery vehicles. Critical Reviews in Food Science and Nutrition, (56)6, 896-909.
  • Hossain, M.N., Ranadheera, C.S., Fang, Z., Ajlouni, S. (2021). Impact of encapsulation probiotics with cocoa powder on the viability of probiotics during chocolate processing, storage, and in vitro gastrointestinal digestion. Journal of Food Science, 86(5),1629– 1641.
  • Huang, X. N., Zhu, J. J., Xi, Y. K., Yin, S. W., Ngai, T., Yang, X. Q. (2019). Protein-based Pickering high internal phase emulsions as nutraceutical vehicles of and the template for advanced materials: A perspective paper. Journal of Agricultural and Food Chemistry, 67(35), 9719-9726.
  • Huq, T., Khan, A., Khan, R. A., Riedl, B., Lacroix, M. (2013). Encapsulation of probiotic bacteria in biopolymeric system. Critical Reviews in Food Science and Nutrition, 53(9), 909-916.
  • Jaworek, A., Sobczyk, A. T. (2008). Electrospraying route to nanotechnology: An overview. Journal of Electrostatics, 66(3–4), 197–219.
  • Jiang, T., Charcosset, C. (2022). Encapsulation of curcumin within oil-in-water emulsion prepared by premix membrane emulsification: Impact of droplet size and carrier oil type on physicochemical stability and in vitro bioaccessibility. Food Chemistry, 375, 131825.
  • Kanat, S., Gülel, G.T. (2021). Mikroenkapsülasyon ve Gıda Endüstrisinde Kullanım Alanları. Aydın Gastronomy, 5(1), 81-89.
  • Karagül, M. S., Altuntaş, B. (2018). Liyofilizasyon: genel proses değerlendirmesi. Etlik Veteriner Mikrobiyoloji Dergisi, 29(1), 62-69. Kaushik, P., Dowling, K., McKnight, S., Barrow, C. J., Adhikari, B. (2016). Microencapsulation of flaxseed oil in flaxseed protein and flaxseed gum complex coacervates. Food Research International, 86, 1-8.
  • Kawasaki, H., Shimanouchi, T., Kimura, Y. (2019). Recent development of optimization of lyophilization process. Journal of Chemistry, 9502856.
  • Koşay, R. (2020). Antosiyanin ekstraktlarının çift emülsiyon yöntemiyle enkapsülasyonu. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüleri Ortak Yüksek Lisans Programı Gıda Mühendisliği Anabilim Dalı Yüksek Lisans Tezi, Osmaniye, Türkiye, 105s.
  • Lipan, L., Rusu, B., Sendra, E., Hernández, F., Vázquez-Araújo, L., Vodnar, D.C., Carbonell-Barrchina, A.A. (2020). Spray drying and storage of probiotic-enriched almond milk:probiotic survival and physicochemical properties. Journal of the Science of Food and Agriculture, 100(9).
  • Loyeau, P. A., Spotti, M. J., Vinderola, G., Carrara, C. R. (2021). Encapsulation of potential probiotic and canola oil through emulsification and ionotropic gelation, using protein/polysaccharides maillard conjugates as emulsifiers. LWT-Food Science and Technology, 150, 111980.
  • Mendes, A. C., Chronakis, I. S. (2021). Electrohydrodynamic encapsulation of probiotics: a review. Food Hydrocolloids, 117, 106688.
  • Meybodi, N. M., Mortazavian, A. (2017). Probiotic supplements and food products: a comparative approach. Biochemical Pharmacology, 6(2), 1-7.
  • Miranda, J. S., Costa, B. V., de Oliveira, I. V., de Lima, D. C. N., Martins, E. M. F., Júnior, B. R. D. C. L., ... Martins, M. L. (2020). Probiotic jelly candies enriched with native Atlantic Forest fruits and Bacillus coagulans GBI-30 6086. LWT-Food Science and Technology, 126, 109275.
  • Misra, S., Pandey, P., Mishra, H. N. (2021). Novel approaches for co-encapsulation of probiotic bacteria with bioactive compounds, their health benefits and functional food product development: a review. Trends in Food Science Technology, 109, 340-351.
  • Mollakhalili, M. N., Mortazavian, A. M., SOHRABVANDI, S., CRUZ, A. G. D., Mohammadi, R. (2017). Probiotic supplements and food products: Comparison for different targets. Applied Food Biotechnology, 4(3), 123-132.
  • Moreno, J. S., Dima, P., Chronakis, I. S., Mendes, A. C. (2021). Electrosprayed ethyl cellulose core-shell microcapsules for the encapsulation of probiotics. Pharmaceutics, 14(1), 7.
  • Mwangi, W. W., Lim, H. P., Low, L. E., Tey, B. T., Chan, E. S. (2020). Food-grade Pickering emulsions for encapsulation and delivery of bioactives. Trends in Food Science Technology, 100, 320-332.
  • Nami, Y., Lornezhad, G., Kiani, A., Abdullah, N., Haghsenas, B. (2020). Alginate-Persian gum-prebiotics microencapsulation impacts on the survival rate of Lactococcus lactis ABRIINW-N19 in orange juice. LWT-Food Science and Technology, 124, 109190.
  • Okuro, P.K. de Matos Junior, F.E., Favaro-Trindade, C.S. (2013). Technological challenges for spray chilling encapsulation of functional food ingredients. Food Technology and Biotechnology, 51(2), 171.
  • Özdemir, E.E., Görgüç, A., Gençdağ, E., Yılmaz, F.M. (2021). Püskürtmeli kurutma ve dondurarak kurutma yöntemlerinin temelleri ve bu yöntemler ile gıda atıklarından toz ürünlerin üretimi. Gıda, 46(3), 583-607.
  • Özgüner-Kabak, M. (2019). Meyan kökünde bulunan bazı biyoaktif bileşenlerin ekstraksiyonu üzerine farklı yöntemlerin etkisinin araştırılması. Akdeniz Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı Yüksek Lisans Tezi, Antalya, Türkiye, 91s.
  • Pérez-Masiá, R., Lagaron, J. M., & López-Rubio, A. (2014). Development and optimization of novel encapsulation structures of interest in functional foods through electrospraying. Food and Bioprocess Technology, 7, 3236-3245.
  • Pickering, S. U. (1907). Cxcvi.—emulsions. Journal of the Chemical Society, Transactions, 91, 2001-2021.
  • Qin, X. S., Gao, Q. Y., Luo, Z. G. (2021). Enhancing the storage and gastrointestinal passage viability of probiotic powder (Lactobacillus plantarum) through encapsulation with pickering high internal phase emulsions stabilized with WPI-EGCG covalent conjugate nanoparticles. Food Hydrocolloids, 116, 106658.
  • Rajagukguk, Y. V., Arnold, M., Sidor, A., Kulczyński, B., Brzozowska, A., Schmidt, M., Gramza-Michałowska, A. (2022). Antioxidant activity, probiotic survivability, and sensory properties of a phenolic-rich pulse snack bar enriched with Lactiplantibacillus plantarum. Foods, 11(3), 309.
  • Radulavić, Z., Miočinović, N., Mirković, M., Paunović, D., Ivanović, M., Seratlić, S. (2017). Survival of spray-dried and free-cells of potential probiotic Lactobacillus plantarum 564 in soft goat cheese. Animal Science Journal, 88(11), 1849-1854.
  • Ramsden, W. (1904). Separation of solids in the surface-layers of solutions and ‘suspensions’(observations on surface-membranes, bubbles, emulsions, and mechanical coagulation).—Preliminary account. Proceedings of the Royal Society of London, 72(477-486), 156-164.
  • Riaz, Q. U. A., Masud, T. (2013). Recent trends and applications of encapsulating materials for probiotic stability. Critical Reviews in Food Science And Nutrition, 53(3), 231-244.
  • Rizzoli, R., Biver, E. (2020). Are probiotics the new calcium and vitamin D for bone health? Current Osteoporosis Reports, 18(3), 273-284.
  • Rodrigues, F. J., Cedran, M. F., Bicas, J. L., Sato, H. H. (2020). Encapsulated probiotic cells: Relevant techniques, natural sources as encapsulating materials and food applications–A narrative review. Food Research International, 137, 109682.
  • Romero-Chapol, O.O., Varela-Pérez, A., Castillo- Olmos, A.G., García, H.S., Singh, J., García-Ramírez, P.J., Cano-Sarmiento, C. (2022). Encapsulation of Lacticaseibacillus rhamnosus GG: Probiotic survival, in vitro digestion and viability in apple juice and yogurt. Applied Sciences, 12(4), 2141.
  • Romyasamit, C., Saengsuwan, P., Boonserm, P., Thamjarongwong, B., Singkhamanan, K. (2022). Optimization of cryoprotectants for freeze-dried potential probiotic Enterococcus faecalis and evaluation of its storage stability. Drying Technology, 40:11, 2283-2292.
  • Santos Monteiro, S., Albertina Silva Beserra, Y., Miguel Lisboa Oliveira, H., Pasquali, M.A.D.B. (2020). Production of probiotic passion fruit (Passiflora edulis Sims f. Flavicarpa Deg.) drink using Lactobacillus reuteri and Microencapsulation via spray drying. Foods, 9(3),335.
  • Silva, M. P., Tulini, F. L., Marinho, J. F., Mazzocato, M. C., De Martinis, E. C., Luccas, V., Favaro-Trindade, C. S. (2017). Semisweet chocolate as a vehicle for the probiotics Lactobacillus acidophilus LA3 and Bifidobacterium animalis subsp. lactis BLC1: Evaluation of chocolate stability and probiotic survival under in vitro simulated gastrointestinal conditions. LWT-Food Science and Technology, 75, 640-647.
  • Silva, R., Pimentel, T.C., de Matos Junior, F.E., Esmerino, E.A., Freitas, M.Q., Fávaro-Trindade, C.S., Cruz, A.G. (2022). Microencapsulation with spray-chilling as an innovative strategy for probiotic low sodium rewueijão cremoso processed chesee processing. Food Bioscience, 46, 101517.
  • Silva, K.K.D.P., de Souza Queirós, M., Riberio, A. P. B., Gigante, M. L. (2022). Modified milk fat as encapsulating material for the probiotic microorganism Lactobacillus acidophilus LA3. International Dairy Journal, 105237.
  • Sornsenee, P., Chimplee, S., Saengsuwan, P., Romyasamit, C. (2022). Characterization of probiotic properties and development of banana powder enriched with freeze-dried Lacticaseibacillus paracasei probiotics. Heliyon, 8(10), e11063.
  • Sun, W.; Nguyen, Q.D.; Süli, B.K.; Alarawi, F.; Szécsi, A.; Gupta, V.K.; Friedrich, L.F.; Gere, A.; Bujna, E. (2023). Microencapsulation and Application of Probiotic Bacteria Lactiplantibacillus plantarum 299v Strain. Microorganisms, 11, 947.
  • Tao, T., Ding, Z., Hou, D., Prakash, S., Zhao, Y., Fan, Z., Han, J. (2019). Influence of polysaccharide as co-encapsulant on powder characteristics, survival and viability of microencapsulated Lactobacillus paracasei Lpc-37 by spray drying. Journal of Food Engineering, 252,10-17.
  • Ünal-Turhan, E., Erginkaya, Z., Benli, H., Akın, M.B., Agcam, E. (2019a). The effects of microencapsulated L. rhamnosus and storage on biogenic amine amount of sucuk. GIDA, 44(5), 819-825.
  • Ünal Turhan, E., Erginkaya, Z., Sarıkodal, E., Özkütük, S. T., Konuray, G. (2019b). Probiyotik bitter çikolata üretiminde mikroenkapsüle Lactobacillus Rhamnosus kullanımı. GIDA, 44(2), 238-247.
  • Ünal-Turhan, E. (2021). Mikroenkapsüle ve serbest probiyotik kültür ilavesiyle fonksiyonel keçiboynuzu pekmezi üretimi. Karadeniz Fen Bilimleri Dergisi, 11(1), 307-317.
  • Yeşilova Y, Sula B, Yavuz E, Uçmak D. (2010). Probiyotikler. Kartal Eğitim ve Araştırma Hastanesi Tıp Dergisi, 49-56. Zaeim, D., Sarabi-Jamab, M., Ghorani, B., Kadkhodaee, R., Tromp, R. H. (2018). Electrospray-assisted drying of live probiotics in acacia gum microparticles matrix. Carbohydrate polymers, 183, 183-191.
  • Zaeim, D., Sarabi-Jamab, M., Ghorani, B., Kadkhodaee, R. (2019). Double layer co-encapsulation of probiotics and prebiotics by electro-hydrodynamic atomization. LWT-Food Science and Technology, 110, 102-109
There are 80 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Articles
Authors

Müzeyyen Kalfazade This is me 0000-0002-0812-2235

Kübra Sultan Özdemir 0000-0002-7428-1840

Early Pub Date October 13, 2023
Publication Date December 15, 2023
Published in Issue Year 2023

Cite

APA Kalfazade, M., & Özdemir, K. S. (2023). PROBİYOTİKLERİN MİKROENKAPSÜLASYONUNDA KULLANILAN YÖNTEMLER VE GIDA TEKNOLOJİSİNDE UYGULAMALARI. Gıda, 48(6), 1143-1159. https://doi.org/10.15237/gida.GD22054
AMA Kalfazade M, Özdemir KS. PROBİYOTİKLERİN MİKROENKAPSÜLASYONUNDA KULLANILAN YÖNTEMLER VE GIDA TEKNOLOJİSİNDE UYGULAMALARI. GIDA. December 2023;48(6):1143-1159. doi:10.15237/gida.GD22054
Chicago Kalfazade, Müzeyyen, and Kübra Sultan Özdemir. “PROBİYOTİKLERİN MİKROENKAPSÜLASYONUNDA KULLANILAN YÖNTEMLER VE GIDA TEKNOLOJİSİNDE UYGULAMALARI”. Gıda 48, no. 6 (December 2023): 1143-59. https://doi.org/10.15237/gida.GD22054.
EndNote Kalfazade M, Özdemir KS (December 1, 2023) PROBİYOTİKLERİN MİKROENKAPSÜLASYONUNDA KULLANILAN YÖNTEMLER VE GIDA TEKNOLOJİSİNDE UYGULAMALARI. Gıda 48 6 1143–1159.
IEEE M. Kalfazade and K. S. Özdemir, “PROBİYOTİKLERİN MİKROENKAPSÜLASYONUNDA KULLANILAN YÖNTEMLER VE GIDA TEKNOLOJİSİNDE UYGULAMALARI”, GIDA, vol. 48, no. 6, pp. 1143–1159, 2023, doi: 10.15237/gida.GD22054.
ISNAD Kalfazade, Müzeyyen - Özdemir, Kübra Sultan. “PROBİYOTİKLERİN MİKROENKAPSÜLASYONUNDA KULLANILAN YÖNTEMLER VE GIDA TEKNOLOJİSİNDE UYGULAMALARI”. Gıda 48/6 (December 2023), 1143-1159. https://doi.org/10.15237/gida.GD22054.
JAMA Kalfazade M, Özdemir KS. PROBİYOTİKLERİN MİKROENKAPSÜLASYONUNDA KULLANILAN YÖNTEMLER VE GIDA TEKNOLOJİSİNDE UYGULAMALARI. GIDA. 2023;48:1143–1159.
MLA Kalfazade, Müzeyyen and Kübra Sultan Özdemir. “PROBİYOTİKLERİN MİKROENKAPSÜLASYONUNDA KULLANILAN YÖNTEMLER VE GIDA TEKNOLOJİSİNDE UYGULAMALARI”. Gıda, vol. 48, no. 6, 2023, pp. 1143-59, doi:10.15237/gida.GD22054.
Vancouver Kalfazade M, Özdemir KS. PROBİYOTİKLERİN MİKROENKAPSÜLASYONUNDA KULLANILAN YÖNTEMLER VE GIDA TEKNOLOJİSİNDE UYGULAMALARI. GIDA. 2023;48(6):1143-59.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/