STANDART VE HİPOALERJENİK BEBEK SÜTÜ FORMÜLLERİNİN ATR-FTIR SPEKTROSKOPİSİ VE ÇOK DEĞIŞKENLİ ANALİZ YÖNTEMLERİYLE İNCELENMESİ
Year 2023,
, 171 - 184, 15.02.2023
Dilek Yonar
,
Sevgi Haman Bayarı
Abstract
Bebek formülleri, bebeklerin beslenme gereksinimlerini karşılamak için tasarlanmış besinler ve biyoaktif bileşenler içerir. Bebek formüllerinin çoğu inek sütü (CM) bazlı normal formüllerdir. CM en önemli alerjen kaynaklarından biri olduğu için CM alerjisi olan bebekler için kısmen ve yoğun hidrolize, aminoasit bazlı gibi özel formüller bulunmaktadır. Bu çalışmada, Türkiye’de ticari olarak satılan standart ve hipoalerjenik bebek sütü formüllerinin moleküler farklılıklarının ayırt edilebilmesi amacıyla zayıflatılmış toplam yansıma (ATR)- Fourier Dönüşümlü Kızılötesi (FTIR) spektroskopisi, kemometrik yöntemlerle birlikte kullanılmıştır. Hipoalerjenik formül (HF) örneklerinde standart formüllere (RF) göre önemli derecede daha yüksek doymuş yağ asidi miktarı ve niteliksel olarak daha uzun zincirli yağ asidi gruplarının olduğu bulunmuştur. Hiyerarşik kümele analizi (HCA) ve temel bileşen analizi (PCA) sonuçlarına göre, %100 duyarlılık ve %83 varyasyon ile en belirgin ayrımın olduğu spektral bölge 1200-800 cm-1 olarak belirlenmiştir.
References
- Akgun, O. M., Haman Bayari, S., Ide, S., Guven Polat, G., Yildirim, C., Orujalipoor, I. (2021). Evaluation of the protective effect on enamel demineralization of CPP-ACP paste and ROCS by vibrational spectroscopy and SAXS: An in vitro study. Microscopy research and technique, 84(12), 2977–2987. doi: 10.1002/jemt.23857
- American Academy of Pediatrics Committee on Nutrition. (2000). Hypoallergenic infant formulas. Pediatrics, 106 (2), 346–349, doi: 10.1542/peds.106.2.346
- Balan, B., Dhaulaniya, A.S., Jamwal, R.A., Sodhi, K.K. Kelly, S., Cannavan, A., Singh, D.K. (2020). Application of Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy coupled with chemometrics for detection and quantification of formalin in cow milk, Vibrational Spectroscopy, 107, 103033, doi: 10.1016/j.vibspec.2020.103033.
- Baltacioglu, H. (2022). Thermosonication of peach juice: investigation of PPO and POD activities, physicochemical and bioactive compounds changes, and development of FT-IR based chemometric models for the evaluation of quality. International Journal of Food Science and Technology, 57, 1688–1697, doi: 10.1111/ijfs.15536.
- Bayarı, S. H., Özdemir, K., Sen, E. H., Araujo-Andrade, C., Erdal, Y. S. (2020). Application of ATR-FTIR spectroscopy and chemometrics for the discrimination of human bone remains from different archaeological sites in Turkey. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 237, 118311. doi: 10.1016/j.saa.2020.118311
- Blanchard, E., Zhu, P., Schuck, P. (2013). Infant formula food powders. In: Handbook of food powders, Bhandari, B., Bansal, N., Zhang, M. & Schuck, P. (Eds.), 1st ed., United Kingdom.
- Botelho, B. G., Reis, N., Oliveira, L. S., Sena, M. M. (2015). Development and analytical validation of a screening method for simultaneous detection of five adulterants in raw milk using mid-infrared spectroscopy and PLS-DA. Food chemistry, 181, 31–37. doi: 10.1016/j.foodchem.2015.02.077
- Byrne, M.E., O’Mahony, J.A., O’Callaghan, T.F. (2021). Compositional and Functional Considerations for Bovine-, Caprine- and Plant-Based Infant Formulas. Dairy, 2, 695–715. doi: 10.3390/dairy2040054.
- Green Corkins, K., Shurley, T. (2016). What's in the Bottle? A Review of Infant Formulas. Nutrition in clinical practice: official publication of the American Society for Parenteral and Enteral Nutrition, 31(6), 723–729. doi: 10.1177/0884533616669362
- Daoud, S., Bou-Maroun, E., Waschatko, G., Horemans, B., Mestdagh, R., Billecke, N., Cayot, P. (2020). Detection of Lipid Oxidation in Infant Formulas: Application of Infrared Spectroscopy to Complex Food Systems. Foods (Basel, Switzerland), 9(10), 1432. doi: 10.3390/foods9101432
- Delplanque, B., Gibson, R., Koletzko, B., Lapillonne, A., Strandvik, B. (2015). Lipid Quality in Infant Nutrition: Current Knowledge and Future Opportunities. Journal of pediatric gastroenterology and nutrition, 61(1), 8–17. doi: 10.1097/MPG.0000000000000818
- Dias, J.A., Santos, E., Asseiceira, I., Jacob, S., Koninckx, C.R. (2022). The Role of Infant Formulas in the Primary Prevention of Allergies in Non-Breastfed Infants at Risk of Developing Allergies-Recommendations from a Multidisciplinary Group of Experts. Nutrients, 14, 4016. doi: 10.3390/nu14194016
- Djordjevic, J., Ledina, T., Baltic, M.Z., Trbovic, D., Babic, M. and Bulajic, S. (2019). Fatty acid profile of milk, IOP Conf. Ser.: Earth Environ. Sci. 333, 012057, doi: 10.1088/1755-1315/333/1/012057.
- Esbensen, K.H. (2010). Multivariate Data Analysis- In Practice, An Introduction to Multivariate Data Analysis and Experimental Design, Guyot, D., Westad F. and Houmoller, L.P. (Eds.), CAMO Software, 5th Edition.
- Food and Agriculture Organization – FAO. Codex Alimentarius Commission – CAC. (1981). Joint FAO/WHO Food Standards Programme. Standard for infant formula and formulas for special medical purposes intended for infants. Adopted as a worldwide standard in 1981. Amendment: 1983, 1985, 1987, 2011 and 2015.
- García-Miguel, E., Meza-Márquez, O., Osorio-Revilla, G., Téllez-Medina, D.I., Jimenez Martinez, C., Cornejo-Mazón, M., Hernández-Martínez, M., Gallardo-Velazquez, T. (2018). Detection of Cyanuric Acid and Melamine in Infant Formula Powders by Mid-FTIR Spectroscopy and Multivariate Analysis. Journal of Food Quality. 2018. 1-7. doi: 10.1155/2018/7926768.
Gok, S., Severcan, M., Goormaghtigh, E., Kandemir, I., Severcan, F. (2015). Differentiation of Anatolian honey samples from different botanical origins by ATR-FTIR spectroscopy using multivariate analysis, Food Chemistry, 170, 234-240, doi: 10.1016/j.foodchem.2014.08.040.
- Granato, D., Santos, J.S., Escher, G.B., Ferreira, B.L., Maggio, R.M. (2018). Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective, Trends in Food Science & Technology, 72, 83-90, doi: 10.1016/j.tifs.2017.12.006
- Grelet, C., Fernández Pierna, J. A., Dardenne, P., Baeten, V., Dehareng, F. (2015). Standardization of milk mid-infrared spectra from a European dairy network. Journal of dairy science, 98(4), 2150–2160. doi: 10.3168/jds.2014-8764
- Guillén, M.D., Cabo, N. (1997), Infrared spectroscopy in the study of edible oils and fats. J. Sci. Food Agric., 75: 1-11. doi: 10.1002/(SICI)1097-0010(199709)75:1<1::AID-JSFA842>3.0.CO;2-R
- Heine R.G., Elsayed S., Hosking C.S., Hill D.J. (2002). Cow’s milk allergy in infancy. Curr. Opin. Allergy Clin. Immunol., 2, 217–225. doi: 10.1097/00130832-200206000-00011.
- Huang, Y., Min, S., Duan, J., Wu, L., Li, Q. (2014). Identification of additive components in powdered milk by NIR imaging methods, Food Chemistry, 145, 278–283, doi: 10.1016/j.foodchem.2013.06.116.
- Jawaid, S., Talpur, F. N., Afridi, H. I., Nizamani, S. M., Khaskheli, A. A., Naz, S. (2014). Quick determination of melamine in infant powder and liquid milk by Fourier transform infrared spectroscopy, Analytical Methods, 6(14), 5269–5273, doi: 10.1039/C4AY00558A.
- Joeckel, R. J., Phillips, S. K. (2009). Overview of infant and pediatric formulas. Nutrition in clinical practice: official publication of the American Society for Parenteral and Enteral Nutrition, 24(3), 356–362. doi: 10.1177/0884533609335309.
- Kaylegian, K. E., Lynch, J. M., Fleming, J. R., Barbano, D. M. (2009). Influence of fatty acid chain length and unsaturation on mid-infrared milk analysis. Journal of dairy science, 92(6), 2485–2501. doi: 10.3168/jds.2008-1910
- Linker, R. (2011). Application of FTIR Spectroscopy to Agricultural Soils Analysis. In: Fourier Transforms - New Analytical Approaches and FTIR Strategies, Nikolic, G. (Ed.), IntechOpen, doi: 10.5772/15732.
- Lu, C., Xiang, B., Hao, G., Xu, J., Wang, Z., Chen, C. (2009). Rapid detection of melamine in milk powder by near infrared spectroscopy, Journal of Near Infrared Spectroscopy, 17(2), 59–67, doi: 10.1255/jnirs.829.
- Martin, C. R., Ling, P. R., Blackburn, G. L. (2016). Review of Infant Feeding: Key Features of Breast Milk and Infant Formula. Nutrients, 8(5), 279. doi: 10.3390/nu8050279.
- Andres Martinez, J., Ballew, M.P. (2011). Infant Formulas, Pediatr Rev 32(5), 179–189. doi: 10.1542/pir.32-5-179.
- Mauer, L.J., Chernyshova, A.A., Hiatt, A., Deering, A., Davis, R. (2009). Melamine detection in infant formula powder using near- and mid-infrared spectroscopy, Journal of Agricultural and Food Chemistry, 57(10), 3974–3980, doi: 10.1021/jf900587m.
- Mazzocchi, A., D'Oria, V., De Cosmi, V., Bettocchi, S., Milani, G. P., Silano, M., Agostoni, C. (2018). The Role of Lipids in Human Milk and Infant Formulae. Nutrients, 10(5), 567. doi: 10.3390/nu10050567.
- Mendonça, M. A., Araújo, W. M. C., Borgo, L. A., Alencar, E. R. (2017). Lipid profile of different infant formulas for infants. PloS One, 12(6), e0177812. doi: 10.1371/journal.pone.0177812
- Nieuwoudt H.H., Prior, B.A., Pretorius, I.S., Manley, M., Bauer, F.F. (2004). Principal component analysis applied to Fourier transform infrared spectroscopy for the design of calibration sets for glycerol prediction models in wine and for the detection and classification of outlier samples J. Agric. Food Chem. 52(12), 3726-3735. doi: 10.1021/jf035431q.
- Nocerino, R., di Scala, C., Coppola, S., Giglio, V., Carucci, L., Cosenza, L., Voto, L., Iannicelli, A.M., Luzzetti, A., Berni Canani, R. (2021). Tolerability of a new amino acid-based formula for children with IgE-mediated cow’s milk allergy. Italian Journal of Pediatrics, 47(1):151. doi: 10.1186/s13052-021-01096-3.
- Osborn, D. A., Sinn, J. K., Jones, L. J. (2017). Infant formulas containing hydrolysed protein for prevention of allergic disease and food allergy. The Cochrane database of systematic reviews, 3(3), CD003664. doi: 10.1002/14651858.CD003664.pub4.
- Panahipour, L., Abooneghab Tabatabaei, A., Gruber, R. (2020). Hypoallergenic infant formula lacks transforming growth factor beta activity and has a lower anti-inflammatory activity than regular infant formula, Journal of Dairy Science, 103(8), 6771-6781, doi: 10.3168/jds.2019-18067.
- Poulsen, N.A., Eskildsen, C.E., Akkerman, M., Johansen, L.B., Hansen, M.S., Hansen, P.W., Skov, T., Larsen, L.B. (2016). Predicting hydrolysis of whey protein by mid-infrared spectroscopy, International Dairy Journal, 61, 44-50, doi: 10.1016/j.idairyj.2016.04.002.
- Rovere, G., de Los Campos, G., Lock, A. L., Worden, L., Vazquez, A. I., Lee, K., Tempelman, R. J. (2021). Prediction of fatty acid composition using milk spectral data and its associations with various mid-infrared spectral regions in Michigan Holsteins. Journal of dairy science, 104(10), 11242–11258. doi: 10.3168/jds.2021-20267
- Santos, P. M., Pereira-Filho, E. R., Rodriguez-Saona, L. E. (2013). Rapid detection and quantification of milk adulteration using infrared microspectroscopy and chemometrics analysis. Food chemistry, 138(1), 19–24. doi: 10.1016/j.foodchem.2012.10.024
- Saxton, R.; McDougal, O.M., Whey Protein Powder Analysis by Mid-Infrared Spectroscopy. Foods, 2021, 10, 1033. https://doi.org/10.3390/foods10051033.
- Sjaunja, L.O. (1984). Studies on Milk Analysis of Individual Cow Milk Samples, Acta Agriculturae Scandinavica, 34:3, 249-259, doi: 10.1080/00015128409435394
- Wang, J., Soojin, J., Qing, L. (2009). Rapid Analysis of Melamine Content in Powdered and Liquid Milk Using Fourier Transform Infrared Spectroscopy. Food Science and Biotechnology. 18. 1199-1203.
- Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of American Statistical Association, 58, 236.
- Wiercigroch, E., Szafraniec, E., Czamara, K., Pacia, M. Z., Majzner, K., Kochan, K., Kaczor, A., Baranska, M., Malek, K. (2017). Raman and infrared spectroscopy of carbohydrates: A review. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 185, 317–335. doi: 10.1016/j.saa.2017.05.045
- Wold, S., Esbensen, K., Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2 (1-3), 37–52, doi: 10.1016/0169-7439(87)80084-9.
- Ye, M. P., Zhou, R., Shi, Y. R., Chen, H. C., Du, Y. (2017). Effects of heating on the secondary structure of proteins in milk powders using mid-infrared spectroscopy. Journal of dairy science, 100(1), 89–95. doi: 10.3168/jds.2016-11443
- Yonar, D., Severcan, M., Gurbanov, R., Sandal, A., Yilmaz, U., Emri, S., Severcan, F. (2022). Rapid diagnosis of malignant pleural mesothelioma and its discrimination from lung cancer and benign exudative effusions using blood serum. Biochimica et biophysica acta. Molecular basis of disease, 1868(10), 166473. doi: 10.1016/j.bbadis.2022.166473.
INVESTIGATION OF REGULAR AND HYPOALLERGENIC INFANT MILK FORMULAS BY ATR-FTIR SPECTROSCOPY COMBINED WITH MULTIVARIATE ANALYSIS METHODS
Year 2023,
, 171 - 184, 15.02.2023
Dilek Yonar
,
Sevgi Haman Bayarı
Abstract
Infant formulas contain nutrients and bioactive ingredients designed to meet the nutrition requirements of infants. The majority of infant formulas are cow's milk (CM) based regular ones. Since CM is one of the most important allergen source, there are specialized formulas such as partially and extensively hydrolyzed, aminoacid‐based for CM‐allergic infants. In the current study, attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) in combination with multivariate analysis was used to identify the molecular differences between commercially available hypoallergenic (HF) and regular formulas (RF) in Turkey. Higher saturated fatty acid (FA) content and qualitatively longer acyl chained FAs were observed in hypoallergenic formulations. The results of hierarchical cluster analysis (HCA) and principal component analysis (PCA) showed that there were differences between the infrared spectra of the two groups. The HF and RF samples were clearly separated from each other in 1200-800 cm-1 spectral region with 83% variation and 100% accuracy.
References
- Akgun, O. M., Haman Bayari, S., Ide, S., Guven Polat, G., Yildirim, C., Orujalipoor, I. (2021). Evaluation of the protective effect on enamel demineralization of CPP-ACP paste and ROCS by vibrational spectroscopy and SAXS: An in vitro study. Microscopy research and technique, 84(12), 2977–2987. doi: 10.1002/jemt.23857
- American Academy of Pediatrics Committee on Nutrition. (2000). Hypoallergenic infant formulas. Pediatrics, 106 (2), 346–349, doi: 10.1542/peds.106.2.346
- Balan, B., Dhaulaniya, A.S., Jamwal, R.A., Sodhi, K.K. Kelly, S., Cannavan, A., Singh, D.K. (2020). Application of Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy coupled with chemometrics for detection and quantification of formalin in cow milk, Vibrational Spectroscopy, 107, 103033, doi: 10.1016/j.vibspec.2020.103033.
- Baltacioglu, H. (2022). Thermosonication of peach juice: investigation of PPO and POD activities, physicochemical and bioactive compounds changes, and development of FT-IR based chemometric models for the evaluation of quality. International Journal of Food Science and Technology, 57, 1688–1697, doi: 10.1111/ijfs.15536.
- Bayarı, S. H., Özdemir, K., Sen, E. H., Araujo-Andrade, C., Erdal, Y. S. (2020). Application of ATR-FTIR spectroscopy and chemometrics for the discrimination of human bone remains from different archaeological sites in Turkey. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 237, 118311. doi: 10.1016/j.saa.2020.118311
- Blanchard, E., Zhu, P., Schuck, P. (2013). Infant formula food powders. In: Handbook of food powders, Bhandari, B., Bansal, N., Zhang, M. & Schuck, P. (Eds.), 1st ed., United Kingdom.
- Botelho, B. G., Reis, N., Oliveira, L. S., Sena, M. M. (2015). Development and analytical validation of a screening method for simultaneous detection of five adulterants in raw milk using mid-infrared spectroscopy and PLS-DA. Food chemistry, 181, 31–37. doi: 10.1016/j.foodchem.2015.02.077
- Byrne, M.E., O’Mahony, J.A., O’Callaghan, T.F. (2021). Compositional and Functional Considerations for Bovine-, Caprine- and Plant-Based Infant Formulas. Dairy, 2, 695–715. doi: 10.3390/dairy2040054.
- Green Corkins, K., Shurley, T. (2016). What's in the Bottle? A Review of Infant Formulas. Nutrition in clinical practice: official publication of the American Society for Parenteral and Enteral Nutrition, 31(6), 723–729. doi: 10.1177/0884533616669362
- Daoud, S., Bou-Maroun, E., Waschatko, G., Horemans, B., Mestdagh, R., Billecke, N., Cayot, P. (2020). Detection of Lipid Oxidation in Infant Formulas: Application of Infrared Spectroscopy to Complex Food Systems. Foods (Basel, Switzerland), 9(10), 1432. doi: 10.3390/foods9101432
- Delplanque, B., Gibson, R., Koletzko, B., Lapillonne, A., Strandvik, B. (2015). Lipid Quality in Infant Nutrition: Current Knowledge and Future Opportunities. Journal of pediatric gastroenterology and nutrition, 61(1), 8–17. doi: 10.1097/MPG.0000000000000818
- Dias, J.A., Santos, E., Asseiceira, I., Jacob, S., Koninckx, C.R. (2022). The Role of Infant Formulas in the Primary Prevention of Allergies in Non-Breastfed Infants at Risk of Developing Allergies-Recommendations from a Multidisciplinary Group of Experts. Nutrients, 14, 4016. doi: 10.3390/nu14194016
- Djordjevic, J., Ledina, T., Baltic, M.Z., Trbovic, D., Babic, M. and Bulajic, S. (2019). Fatty acid profile of milk, IOP Conf. Ser.: Earth Environ. Sci. 333, 012057, doi: 10.1088/1755-1315/333/1/012057.
- Esbensen, K.H. (2010). Multivariate Data Analysis- In Practice, An Introduction to Multivariate Data Analysis and Experimental Design, Guyot, D., Westad F. and Houmoller, L.P. (Eds.), CAMO Software, 5th Edition.
- Food and Agriculture Organization – FAO. Codex Alimentarius Commission – CAC. (1981). Joint FAO/WHO Food Standards Programme. Standard for infant formula and formulas for special medical purposes intended for infants. Adopted as a worldwide standard in 1981. Amendment: 1983, 1985, 1987, 2011 and 2015.
- García-Miguel, E., Meza-Márquez, O., Osorio-Revilla, G., Téllez-Medina, D.I., Jimenez Martinez, C., Cornejo-Mazón, M., Hernández-Martínez, M., Gallardo-Velazquez, T. (2018). Detection of Cyanuric Acid and Melamine in Infant Formula Powders by Mid-FTIR Spectroscopy and Multivariate Analysis. Journal of Food Quality. 2018. 1-7. doi: 10.1155/2018/7926768.
Gok, S., Severcan, M., Goormaghtigh, E., Kandemir, I., Severcan, F. (2015). Differentiation of Anatolian honey samples from different botanical origins by ATR-FTIR spectroscopy using multivariate analysis, Food Chemistry, 170, 234-240, doi: 10.1016/j.foodchem.2014.08.040.
- Granato, D., Santos, J.S., Escher, G.B., Ferreira, B.L., Maggio, R.M. (2018). Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective, Trends in Food Science & Technology, 72, 83-90, doi: 10.1016/j.tifs.2017.12.006
- Grelet, C., Fernández Pierna, J. A., Dardenne, P., Baeten, V., Dehareng, F. (2015). Standardization of milk mid-infrared spectra from a European dairy network. Journal of dairy science, 98(4), 2150–2160. doi: 10.3168/jds.2014-8764
- Guillén, M.D., Cabo, N. (1997), Infrared spectroscopy in the study of edible oils and fats. J. Sci. Food Agric., 75: 1-11. doi: 10.1002/(SICI)1097-0010(199709)75:1<1::AID-JSFA842>3.0.CO;2-R
- Heine R.G., Elsayed S., Hosking C.S., Hill D.J. (2002). Cow’s milk allergy in infancy. Curr. Opin. Allergy Clin. Immunol., 2, 217–225. doi: 10.1097/00130832-200206000-00011.
- Huang, Y., Min, S., Duan, J., Wu, L., Li, Q. (2014). Identification of additive components in powdered milk by NIR imaging methods, Food Chemistry, 145, 278–283, doi: 10.1016/j.foodchem.2013.06.116.
- Jawaid, S., Talpur, F. N., Afridi, H. I., Nizamani, S. M., Khaskheli, A. A., Naz, S. (2014). Quick determination of melamine in infant powder and liquid milk by Fourier transform infrared spectroscopy, Analytical Methods, 6(14), 5269–5273, doi: 10.1039/C4AY00558A.
- Joeckel, R. J., Phillips, S. K. (2009). Overview of infant and pediatric formulas. Nutrition in clinical practice: official publication of the American Society for Parenteral and Enteral Nutrition, 24(3), 356–362. doi: 10.1177/0884533609335309.
- Kaylegian, K. E., Lynch, J. M., Fleming, J. R., Barbano, D. M. (2009). Influence of fatty acid chain length and unsaturation on mid-infrared milk analysis. Journal of dairy science, 92(6), 2485–2501. doi: 10.3168/jds.2008-1910
- Linker, R. (2011). Application of FTIR Spectroscopy to Agricultural Soils Analysis. In: Fourier Transforms - New Analytical Approaches and FTIR Strategies, Nikolic, G. (Ed.), IntechOpen, doi: 10.5772/15732.
- Lu, C., Xiang, B., Hao, G., Xu, J., Wang, Z., Chen, C. (2009). Rapid detection of melamine in milk powder by near infrared spectroscopy, Journal of Near Infrared Spectroscopy, 17(2), 59–67, doi: 10.1255/jnirs.829.
- Martin, C. R., Ling, P. R., Blackburn, G. L. (2016). Review of Infant Feeding: Key Features of Breast Milk and Infant Formula. Nutrients, 8(5), 279. doi: 10.3390/nu8050279.
- Andres Martinez, J., Ballew, M.P. (2011). Infant Formulas, Pediatr Rev 32(5), 179–189. doi: 10.1542/pir.32-5-179.
- Mauer, L.J., Chernyshova, A.A., Hiatt, A., Deering, A., Davis, R. (2009). Melamine detection in infant formula powder using near- and mid-infrared spectroscopy, Journal of Agricultural and Food Chemistry, 57(10), 3974–3980, doi: 10.1021/jf900587m.
- Mazzocchi, A., D'Oria, V., De Cosmi, V., Bettocchi, S., Milani, G. P., Silano, M., Agostoni, C. (2018). The Role of Lipids in Human Milk and Infant Formulae. Nutrients, 10(5), 567. doi: 10.3390/nu10050567.
- Mendonça, M. A., Araújo, W. M. C., Borgo, L. A., Alencar, E. R. (2017). Lipid profile of different infant formulas for infants. PloS One, 12(6), e0177812. doi: 10.1371/journal.pone.0177812
- Nieuwoudt H.H., Prior, B.A., Pretorius, I.S., Manley, M., Bauer, F.F. (2004). Principal component analysis applied to Fourier transform infrared spectroscopy for the design of calibration sets for glycerol prediction models in wine and for the detection and classification of outlier samples J. Agric. Food Chem. 52(12), 3726-3735. doi: 10.1021/jf035431q.
- Nocerino, R., di Scala, C., Coppola, S., Giglio, V., Carucci, L., Cosenza, L., Voto, L., Iannicelli, A.M., Luzzetti, A., Berni Canani, R. (2021). Tolerability of a new amino acid-based formula for children with IgE-mediated cow’s milk allergy. Italian Journal of Pediatrics, 47(1):151. doi: 10.1186/s13052-021-01096-3.
- Osborn, D. A., Sinn, J. K., Jones, L. J. (2017). Infant formulas containing hydrolysed protein for prevention of allergic disease and food allergy. The Cochrane database of systematic reviews, 3(3), CD003664. doi: 10.1002/14651858.CD003664.pub4.
- Panahipour, L., Abooneghab Tabatabaei, A., Gruber, R. (2020). Hypoallergenic infant formula lacks transforming growth factor beta activity and has a lower anti-inflammatory activity than regular infant formula, Journal of Dairy Science, 103(8), 6771-6781, doi: 10.3168/jds.2019-18067.
- Poulsen, N.A., Eskildsen, C.E., Akkerman, M., Johansen, L.B., Hansen, M.S., Hansen, P.W., Skov, T., Larsen, L.B. (2016). Predicting hydrolysis of whey protein by mid-infrared spectroscopy, International Dairy Journal, 61, 44-50, doi: 10.1016/j.idairyj.2016.04.002.
- Rovere, G., de Los Campos, G., Lock, A. L., Worden, L., Vazquez, A. I., Lee, K., Tempelman, R. J. (2021). Prediction of fatty acid composition using milk spectral data and its associations with various mid-infrared spectral regions in Michigan Holsteins. Journal of dairy science, 104(10), 11242–11258. doi: 10.3168/jds.2021-20267
- Santos, P. M., Pereira-Filho, E. R., Rodriguez-Saona, L. E. (2013). Rapid detection and quantification of milk adulteration using infrared microspectroscopy and chemometrics analysis. Food chemistry, 138(1), 19–24. doi: 10.1016/j.foodchem.2012.10.024
- Saxton, R.; McDougal, O.M., Whey Protein Powder Analysis by Mid-Infrared Spectroscopy. Foods, 2021, 10, 1033. https://doi.org/10.3390/foods10051033.
- Sjaunja, L.O. (1984). Studies on Milk Analysis of Individual Cow Milk Samples, Acta Agriculturae Scandinavica, 34:3, 249-259, doi: 10.1080/00015128409435394
- Wang, J., Soojin, J., Qing, L. (2009). Rapid Analysis of Melamine Content in Powdered and Liquid Milk Using Fourier Transform Infrared Spectroscopy. Food Science and Biotechnology. 18. 1199-1203.
- Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of American Statistical Association, 58, 236.
- Wiercigroch, E., Szafraniec, E., Czamara, K., Pacia, M. Z., Majzner, K., Kochan, K., Kaczor, A., Baranska, M., Malek, K. (2017). Raman and infrared spectroscopy of carbohydrates: A review. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 185, 317–335. doi: 10.1016/j.saa.2017.05.045
- Wold, S., Esbensen, K., Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2 (1-3), 37–52, doi: 10.1016/0169-7439(87)80084-9.
- Ye, M. P., Zhou, R., Shi, Y. R., Chen, H. C., Du, Y. (2017). Effects of heating on the secondary structure of proteins in milk powders using mid-infrared spectroscopy. Journal of dairy science, 100(1), 89–95. doi: 10.3168/jds.2016-11443
- Yonar, D., Severcan, M., Gurbanov, R., Sandal, A., Yilmaz, U., Emri, S., Severcan, F. (2022). Rapid diagnosis of malignant pleural mesothelioma and its discrimination from lung cancer and benign exudative effusions using blood serum. Biochimica et biophysica acta. Molecular basis of disease, 1868(10), 166473. doi: 10.1016/j.bbadis.2022.166473.