Research Article
BibTex RIS Cite

ETANOLE DALDIRMA VE ULTRASON ÖN İŞLEMLERİNİN AYVANIN KONVEKTİF KURUTMA KİNETİĞİNE ETKİSİ

Year 2023, , 1099 - 1108, 15.10.2023
https://doi.org/10.15237/gida.GD23082

Abstract

Bu çalışmada 10 ve 20 dak etanole daldırma (E), ultrason (U) ve ultrason-etanole daldırma (UE) ön işlemlerinin ayvanın kuruma özellikleri üzerindeki etkileri incelenmiştir. Ön işlemler sonrası, numuneler sıcak hava kurutucusunda 2 m/s hızda 90 °C’de kurutulmuştur. Ultrason-etanole daldırma ile 20 dak ön işlem görmüş numunelerde (UE20) kuruma süresinin %50 oranında azaldığı görülmüştür Numunelerin nem difüzyon katsayıları 1.880 ile 2.933×10-9 m2/s arasında değişmiştir. Sürtünme kuvveti, konvektif ısı transfer katsayısı ve konvektif kütle transfer katsayısı sırasıyla 6.110×10-6 N; 24.077 W/m2K ve 0.020 m/s olarak elde edilmiştir. Ayvaların ısı iletkenliğinin 0.5278-0.5876 W/m K, özgül ısısının 3554-3908 J/kg. K ve yoğunluğunun 814.95-904.60 kg/m3 aralıklarında değiştiği belirlenmiştir. Tüm ön işlemler karşılaştırıldığında ayva üzerinde UE20 işleminin kurutma süresini önemli ölçüde azalttığı belirlenmiş ve endüstriyel boyutta bu işlemin kullanılabilir olduğu sonucuna varılmıştır.

Supporting Institution

Yok

Project Number

Yok

Thanks

Yok

References

  • AOAC. (1990). Official method of analysis. 19 edition, AOAC International.
  • Bassey, E. J., Cheng, J.-H., Sun, D.-W. (2021). Novel nonthermal and thermal pretreatments for enhancing drying performance and improving quality of fruits and vegetables. Trends in Food Science & Technology, 112: 137–148, doi:10.1016/j.tifs.2021.03.045.
  • Berktas, S., Cam, M., Salum, P., Erbay, Z. (2023). Microwave drying of quince coated with seed gum and pectin: A Taguchi optimization, techno-functional properties, and aromatic compounds. Journal of Food Science, 1-14, doi:10.1111/1750-3841.16660.
  • da Cunha, R. M., Brandão, S. C., Medeiros, R. A., Júnior, E. V., Silva, J. H., Azoubel, P. M. (2020). Effect of ethanol pretreatment on melon convective drying. Food Chemistry, 333: 127502, doi:10.1016/j.foodchem.2020.127502.
  • Çengel, Y. A. (2007). Heat & Mass Transfer: A Practical Approach. 2nd edition, McGraw-Hill Education Pvt Limited, India.
  • Çengel, Y. A., Cimbala, J. M. (2006). Fluid mechanics: Fundamentals and applications. 1st edition, McGraw-Hill, New York.
  • Fotiou, D., Argyropoulos, K., Kolompourda, P., Goula, A. M. (2023). Valorization of peach peels: preservation with an optimized drying process based on ultrasounds pretreatment with ethanol. Biomass Conversion and Biorefinery, 1-13, doi:10.1007/s13399-023-03753-5.
  • de Freitas, L., Brandão, S. C., Silva, J. H., Rocha, O. R., Azoubel, P. M. (2021). Effect of Ethanol and Ultrasound Pretreatments on Pineapple Convective Drying. Food Technology & Biotechnology, 59: 209–215, doi:10.17113/ftb.59.02.21.7045.
  • Geankoplis, C. J. (1993). Transport processes and unit operations, 3rd edition. Prentice-Hall. Inc. New Jersey.
  • Guedes, J. S., Santos, K. C., Castanha, N., Rojas, M. L., Junior, M. D., Lima, D. C., Augusto, P. E. (2021). Structural modification on potato tissue and starch using ethanol pre-treatment and drying process. Food Structure, 29: 100202. doi:10.1016/j.foostr.2021.100202.
  • Islam, M. Z., Saha, T., Monalisa, K., Hoque, M. M. (2019). Effect of starch edible coating on drying characteristics and antioxidant properties of papaya. Journal of Food Measurement and Characterization, 13: 2951–2960, doi:10.1007/s11694-019-00215-3.
  • Kian-Pour, N. (2023a). Effect of Biopolymer Dip-Coating Pretreatments as a Non-Thermal Green Technology on Physicochemical Characteristics, Drying, and Rehydration Kinetics of Santa Maria Pears. Foods, 12:2466, doi:10.3390/foods12132466.
  • Kian-Pour, N. (2023b). Impact of Microwave-Starch-Blanching on the Drying Kinetics, Transport and Thermophysical Properties of Green Almond. Journal of the Institute of Science and Technology, 13(1): 305-316, doi:10.21597/jist.1166340.
  • Kian-Pour, N., Karatas, S. (2019). Impact of different geometric shapes on drying kinetics and textural characteristics of apples at temperatures above 100 °C. Heat and Mass Transfer, 55: 3721–3732, doi:10.1007/s00231-019-02691-1.
  • Kian-Pour, N., Akdeniz, E., Toker, O. (2022). Influence of coating-blanching in starch solutions, on the drying kinetics, transport properties, quality parameters, and microstructure of celery root chips. LWT - Food Science and Technology, 160: 113262, doi:10.1016/j.lwt.2022.113262.
  • Macedo, L. L., Vimercati, W. C., Araújo, C., Saraiva, S. H., Teixeira, L. J. (2020). Effect of drying air temperature on drying kinetics and physicochemical characteristics of dried banana. Journal of Food Process Engineering, 43: e13451, doi:10.1111/jfpe.13451.
  • Miano, A. C., Rojas, M. L., Augusto, P. E. (2021). Combining ultrasound, vacuum and/or ethanol as pretreatments to the convective drying of celery slices. Ultrasonics Sonochemistry, 79:105779, doi:10.1016/j.ultsonch.2021.105779.
  • Najman, K., Adrian, S., Hallmann, E., Sadowska, A., Buczak, K., Bo˙zena Waszkiewicz-Robak, Szterk, A. (2023). Effect of Various Drying Methods on Physicochemical and Bioactive Properties of Quince Fruit (Cydonia oblonga Mill.). Agriculture, 13: 446, doi:10.3390/agriculture13020446.
  • Pandiselvam, R., Aydar, A. Y., Kutlu, N., Aslam, R., Sahni, P., Mitharwal, S., . . . Kothakota, A. (2023). Individual and interactive effect of ultrasound pre-treatment on drying kinetics and biochemical qualities of food: A critical review. Ultrasonics Sonochemistry, 92: 106261, doi:10.1016/j.ultsonch.2022.106261.
  • Pasban, A., Sadrnia, H., Mohebbi, M., Shahidi, S. A. (2017). Spectral method for simulating 3D heat and mass transfer during drying of apple slices. Journal of Food Engineering, 212: 201-212, doi:10.1016/j.jfoodeng.2017.05.013.
  • Rojas, M. L., Augusto, P. E. (2018). Ethanol pre-treatment improves vegetable drying and rehydration: Kinetics, mechanisms and impact on viscoelastic properties. Journal of Food Engineering, 233: 17-27, doi:10.1016/j.jfoodeng.2018.03.028.
  • Rojas, M., Augusto, P., Cárcel, J. (2020). Ethanol pre-treatment to ultrasound-assisted convective drying of apple. Innovative Food Science and Emerging Technologies, 61: 102328, doi:10.1016/ j.ifset.2020.102328.
  • Salehi, F., Goharpour, K., Kamran, H. R. (2023). Optimization of sonication time, edible coating concentration, and osmotic solution °Brix for the dehydration process of quince slices using response surface methodology. Food Science & Nutrition, 00: 1-17, doi:10.1002/fsn3.3382.
  • Santos, K. C., Guedes, Souza, J., Rojas, M. L., Carvalho, G. R., Augusto, P. E. (2021). Enhancing carrot convective drying by combining ethanol and ultrasound as pre-treatments: Effect on product structure, quality, energy consumption, drying and rehydration kinetics. Ultrasonics - Sonochemistry, 74: 105304, doi:10.1016/j.ultsonch.2020.105304.
  • Zang, Z., Huang, X., Zhang, Q., Jiang, C., Wang, T., Shang, J., Wan, F. (2023). Evaluation of the effect of ultrasonic pretreatment on vacuum far-infrared drying characteristics and quality of Angelica sinensis based on entropy weight-coefficient of variation method. Journal of Food Science, 88: 1905–1923, doi:10.1111/1750-3841.16566.

EFFECT OF ETHANOL IMMERSION AND ULTRASOUND PRETREATMENTS ON THE KINETICS OF CONVECTIVE DRYING OF QUINCE

Year 2023, , 1099 - 1108, 15.10.2023
https://doi.org/10.15237/gida.GD23082

Abstract

This work studied the impact of ethanol immersion (E), ultrasound (U), and ultrasound-ethanol immersion (UE) for 10, and 20 min on the drying characteristics of quince. After pretreatments, the samples were dried at a hot dryer at 90℃ and air velocity of 2 m/s. Drying time was reduced by 50% for samples pretreated in Ultrasonic-Ethanol (UE20) for 20 min. Moisture diffusion coefficient varied from 1.880 to 2.933×10-9 m2/s. The friction drag force, convective heat transfer coefficient, and convective mass transfer coefficient were 6.110×10-6 N, 24.077 W/m2K, and 0.020 m/s, respectively. The thermal conductivity, the specific heat, and the density of quince samples ranged from 0.5278 to 0.5876 W/m. K, 3554.00 to 3908.00 J/kg. K, and 814.95 to 904.60 kg/m3, respectively. Among all pretreatments, UE20 could prefer for significant decreases in the drying time and improve drying characteristics of quince at the industrial extent.

Project Number

Yok

References

  • AOAC. (1990). Official method of analysis. 19 edition, AOAC International.
  • Bassey, E. J., Cheng, J.-H., Sun, D.-W. (2021). Novel nonthermal and thermal pretreatments for enhancing drying performance and improving quality of fruits and vegetables. Trends in Food Science & Technology, 112: 137–148, doi:10.1016/j.tifs.2021.03.045.
  • Berktas, S., Cam, M., Salum, P., Erbay, Z. (2023). Microwave drying of quince coated with seed gum and pectin: A Taguchi optimization, techno-functional properties, and aromatic compounds. Journal of Food Science, 1-14, doi:10.1111/1750-3841.16660.
  • da Cunha, R. M., Brandão, S. C., Medeiros, R. A., Júnior, E. V., Silva, J. H., Azoubel, P. M. (2020). Effect of ethanol pretreatment on melon convective drying. Food Chemistry, 333: 127502, doi:10.1016/j.foodchem.2020.127502.
  • Çengel, Y. A. (2007). Heat & Mass Transfer: A Practical Approach. 2nd edition, McGraw-Hill Education Pvt Limited, India.
  • Çengel, Y. A., Cimbala, J. M. (2006). Fluid mechanics: Fundamentals and applications. 1st edition, McGraw-Hill, New York.
  • Fotiou, D., Argyropoulos, K., Kolompourda, P., Goula, A. M. (2023). Valorization of peach peels: preservation with an optimized drying process based on ultrasounds pretreatment with ethanol. Biomass Conversion and Biorefinery, 1-13, doi:10.1007/s13399-023-03753-5.
  • de Freitas, L., Brandão, S. C., Silva, J. H., Rocha, O. R., Azoubel, P. M. (2021). Effect of Ethanol and Ultrasound Pretreatments on Pineapple Convective Drying. Food Technology & Biotechnology, 59: 209–215, doi:10.17113/ftb.59.02.21.7045.
  • Geankoplis, C. J. (1993). Transport processes and unit operations, 3rd edition. Prentice-Hall. Inc. New Jersey.
  • Guedes, J. S., Santos, K. C., Castanha, N., Rojas, M. L., Junior, M. D., Lima, D. C., Augusto, P. E. (2021). Structural modification on potato tissue and starch using ethanol pre-treatment and drying process. Food Structure, 29: 100202. doi:10.1016/j.foostr.2021.100202.
  • Islam, M. Z., Saha, T., Monalisa, K., Hoque, M. M. (2019). Effect of starch edible coating on drying characteristics and antioxidant properties of papaya. Journal of Food Measurement and Characterization, 13: 2951–2960, doi:10.1007/s11694-019-00215-3.
  • Kian-Pour, N. (2023a). Effect of Biopolymer Dip-Coating Pretreatments as a Non-Thermal Green Technology on Physicochemical Characteristics, Drying, and Rehydration Kinetics of Santa Maria Pears. Foods, 12:2466, doi:10.3390/foods12132466.
  • Kian-Pour, N. (2023b). Impact of Microwave-Starch-Blanching on the Drying Kinetics, Transport and Thermophysical Properties of Green Almond. Journal of the Institute of Science and Technology, 13(1): 305-316, doi:10.21597/jist.1166340.
  • Kian-Pour, N., Karatas, S. (2019). Impact of different geometric shapes on drying kinetics and textural characteristics of apples at temperatures above 100 °C. Heat and Mass Transfer, 55: 3721–3732, doi:10.1007/s00231-019-02691-1.
  • Kian-Pour, N., Akdeniz, E., Toker, O. (2022). Influence of coating-blanching in starch solutions, on the drying kinetics, transport properties, quality parameters, and microstructure of celery root chips. LWT - Food Science and Technology, 160: 113262, doi:10.1016/j.lwt.2022.113262.
  • Macedo, L. L., Vimercati, W. C., Araújo, C., Saraiva, S. H., Teixeira, L. J. (2020). Effect of drying air temperature on drying kinetics and physicochemical characteristics of dried banana. Journal of Food Process Engineering, 43: e13451, doi:10.1111/jfpe.13451.
  • Miano, A. C., Rojas, M. L., Augusto, P. E. (2021). Combining ultrasound, vacuum and/or ethanol as pretreatments to the convective drying of celery slices. Ultrasonics Sonochemistry, 79:105779, doi:10.1016/j.ultsonch.2021.105779.
  • Najman, K., Adrian, S., Hallmann, E., Sadowska, A., Buczak, K., Bo˙zena Waszkiewicz-Robak, Szterk, A. (2023). Effect of Various Drying Methods on Physicochemical and Bioactive Properties of Quince Fruit (Cydonia oblonga Mill.). Agriculture, 13: 446, doi:10.3390/agriculture13020446.
  • Pandiselvam, R., Aydar, A. Y., Kutlu, N., Aslam, R., Sahni, P., Mitharwal, S., . . . Kothakota, A. (2023). Individual and interactive effect of ultrasound pre-treatment on drying kinetics and biochemical qualities of food: A critical review. Ultrasonics Sonochemistry, 92: 106261, doi:10.1016/j.ultsonch.2022.106261.
  • Pasban, A., Sadrnia, H., Mohebbi, M., Shahidi, S. A. (2017). Spectral method for simulating 3D heat and mass transfer during drying of apple slices. Journal of Food Engineering, 212: 201-212, doi:10.1016/j.jfoodeng.2017.05.013.
  • Rojas, M. L., Augusto, P. E. (2018). Ethanol pre-treatment improves vegetable drying and rehydration: Kinetics, mechanisms and impact on viscoelastic properties. Journal of Food Engineering, 233: 17-27, doi:10.1016/j.jfoodeng.2018.03.028.
  • Rojas, M., Augusto, P., Cárcel, J. (2020). Ethanol pre-treatment to ultrasound-assisted convective drying of apple. Innovative Food Science and Emerging Technologies, 61: 102328, doi:10.1016/ j.ifset.2020.102328.
  • Salehi, F., Goharpour, K., Kamran, H. R. (2023). Optimization of sonication time, edible coating concentration, and osmotic solution °Brix for the dehydration process of quince slices using response surface methodology. Food Science & Nutrition, 00: 1-17, doi:10.1002/fsn3.3382.
  • Santos, K. C., Guedes, Souza, J., Rojas, M. L., Carvalho, G. R., Augusto, P. E. (2021). Enhancing carrot convective drying by combining ethanol and ultrasound as pre-treatments: Effect on product structure, quality, energy consumption, drying and rehydration kinetics. Ultrasonics - Sonochemistry, 74: 105304, doi:10.1016/j.ultsonch.2020.105304.
  • Zang, Z., Huang, X., Zhang, Q., Jiang, C., Wang, T., Shang, J., Wan, F. (2023). Evaluation of the effect of ultrasonic pretreatment on vacuum far-infrared drying characteristics and quality of Angelica sinensis based on entropy weight-coefficient of variation method. Journal of Food Science, 88: 1905–1923, doi:10.1111/1750-3841.16566.
There are 25 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Articles
Authors

Nasim Kian-pour 0000-0001-9558-4077

Project Number Yok
Early Pub Date October 9, 2023
Publication Date October 15, 2023
Published in Issue Year 2023

Cite

APA Kian-pour, N. (2023). EFFECT OF ETHANOL IMMERSION AND ULTRASOUND PRETREATMENTS ON THE KINETICS OF CONVECTIVE DRYING OF QUINCE. Gıda, 48(5), 1099-1108. https://doi.org/10.15237/gida.GD23082
AMA Kian-pour N. EFFECT OF ETHANOL IMMERSION AND ULTRASOUND PRETREATMENTS ON THE KINETICS OF CONVECTIVE DRYING OF QUINCE. GIDA. October 2023;48(5):1099-1108. doi:10.15237/gida.GD23082
Chicago Kian-pour, Nasim. “EFFECT OF ETHANOL IMMERSION AND ULTRASOUND PRETREATMENTS ON THE KINETICS OF CONVECTIVE DRYING OF QUINCE”. Gıda 48, no. 5 (October 2023): 1099-1108. https://doi.org/10.15237/gida.GD23082.
EndNote Kian-pour N (October 1, 2023) EFFECT OF ETHANOL IMMERSION AND ULTRASOUND PRETREATMENTS ON THE KINETICS OF CONVECTIVE DRYING OF QUINCE. Gıda 48 5 1099–1108.
IEEE N. Kian-pour, “EFFECT OF ETHANOL IMMERSION AND ULTRASOUND PRETREATMENTS ON THE KINETICS OF CONVECTIVE DRYING OF QUINCE”, GIDA, vol. 48, no. 5, pp. 1099–1108, 2023, doi: 10.15237/gida.GD23082.
ISNAD Kian-pour, Nasim. “EFFECT OF ETHANOL IMMERSION AND ULTRASOUND PRETREATMENTS ON THE KINETICS OF CONVECTIVE DRYING OF QUINCE”. Gıda 48/5 (October 2023), 1099-1108. https://doi.org/10.15237/gida.GD23082.
JAMA Kian-pour N. EFFECT OF ETHANOL IMMERSION AND ULTRASOUND PRETREATMENTS ON THE KINETICS OF CONVECTIVE DRYING OF QUINCE. GIDA. 2023;48:1099–1108.
MLA Kian-pour, Nasim. “EFFECT OF ETHANOL IMMERSION AND ULTRASOUND PRETREATMENTS ON THE KINETICS OF CONVECTIVE DRYING OF QUINCE”. Gıda, vol. 48, no. 5, 2023, pp. 1099-08, doi:10.15237/gida.GD23082.
Vancouver Kian-pour N. EFFECT OF ETHANOL IMMERSION AND ULTRASOUND PRETREATMENTS ON THE KINETICS OF CONVECTIVE DRYING OF QUINCE. GIDA. 2023;48(5):1099-108.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/