Research Article
BibTex RIS Cite

PREVENTING OF MIGRATION IN FOOD CONTACT POLYVINYL CHLORIDE-BASED STRETCH FILMS WITH POLYLACTIC ACID LAYER

Year 2024, , 624 - 640, 14.08.2024
https://doi.org/10.15237/gida.GD23131

Abstract

In this study, the effectiveness of biodegradable polylactic acid (PLA) coatings for the prevention of residues migrating through polyvinyl chloride (PVC) films was investigated. PLA films prepared in chloroform at concentrations of 5, 10, 15 and 20 wt% were heat sealed to PVC film surfaces in a hot press (130 °C, 5 min, 5 tons). Physical, mechanical, FTIR and migration analyses were performed on these two-layer films. With PLA coating, the thickness of the films increased, mechanical properties decreased and some changes in color values occurred. It was determined by FTIR that there was no structural change on both surfaces of the films as a result of hot pressing. From the overall migration analysis, no migration was observed in the tests with aqueous food simulants, while migration was detected in fatty food simulants. In the specific migration analysis by GC-MS, di-2-ethylhexyl phthalate (DEHP) migration decreased by 50% with PLA coating. It is concluded that PLA coating of PVC stretch films may be a promising application to reduce migration.

Supporting Institution

This research was financially supported by Bursa Technical University Scientific Research Projects Office with a project number of 182N29.

Project Number

182N29

References

  • Abdullah, C.J., Hafeez, M.A., Wang, Q., Farooq, S., Huang, Q., Tian, W., Xiao, J. (2022). Biopolymer-based functional films for packaging applications: A review. Front. Nutr., 9. https://doi.org/10.3389/fnut.2022.1000116.
  • Ackerman, L. K., Noonan, G. O., Begley, T. H. (2009). Assessing direct analysis in a real time-mass spectrometry (DART-MS) for the rapid identification of additives in food packaging. Food Additives and Contaminants, 26(12), 1611–1618. https://doi.org/10.1080/02652030903232753.
  • Al-Shalchy, S. I., Shabeeb, K. M., Hasan, A. M., Hasan, R. F. (2020). Mechanical Properties of Polyvinyl Chloride and Polypropylene Hybrid Polymeric Nanocomposites for Structural Applications. International Journal of Nanoelectronics and Materials, 13(2), 249-262. http://dspace.unimap.edu.my:80/xmlui/handle/123456789/64928.
  • Arvanitoyannis, I. S., Kotsanopoulos, K. V. (2014). Migration Phenomenon in Food Packaging. Food–Package Interactions, Mechanisms, Types of Migrants, Testing and Relative Legislation—A Review. Food and Bioprocess Technology, 7, 21–36. https://doi.org/ 10.1007/s11947-013-1106-8.
  • ASTM. (2007). Standard practice for general techniques for obtaining infrared spectra for qualitative analysis, E1252. American Society for Testing and Materials (ASTM).
  • ASTM. (2018). Standart test method for tensile properties of thin plastic sheeting, D882-18. American Society for Testing and Materials (ASTM).
  • ASTM. (2020). Standard Test Method for High Speed Puncture Properties of Plastic Films Using Load and Displacement Sensors, D7192-20. American Society for Testing and Materials (ASTM).
  • ASTM. (2022). Standard Practice for Computing the Colors of Objects by Using the CIE System, E308-22. American Society for Testing and Materials (ASTM).
  • Baur, E., Osswald, T. A., Rudolph, N. (2019). Plastics Handbook The Resource for Plastics Engineers. 5th Edt., Hanser Publication, E-Book ISBN 978-1-56990-560-9.
  • Bentayeb, K., Ackerman, L. K., Lord, T., Begley, T. H. (2013). Non-visible print set-off of photoinitiators in food packaging: detection by ambient ionization mass spectrometry. Food Additives and Contaminants, Part A, 30(4), 750-759. https://doi.org/10.1080/19440049.2012.762694.
  • Bernard, L., Bourdeaux, D., Pereira, B., Azaroual, N., Barthelemy, C., Breysse, C., Chennell, P., Cueff, R., Dine, T., Eljezi, T., Feutry, F., Genay, S., Kambia, N., Lecoeur, M., Masse, M., Odou, P., Radaniel, T., Simon, N., Vaccher, C., Verlhac, C., Yessad, M., Decaudin, B., Sautou, V. (2017). Analysis of plasticizers in PVC medical devices: Performance comparison of eight analytical methods. Talanta, 162, 604-611. https://doi.org/ 10.1016/j.talanta.2016.10.033.
  • Bor, Y., Alin, J., Hakkarainen, M. (2012). Electrospray Ionization‐Mass Spectrometry Analysis Reveals Migration of Cyclic Lactide Oligomers from Polylactide Packaging in Contact with Ethanolic Food Simulant. Packag. Technol. Sci., 25, 427-433. https://doi.org/10.1002/ pts.990.
  • Bourtoom, T., Chinnan, M.S. (2008). Preparation and properties of rice starch–chitosan blend biodegradable film. LWT-Food science and Technology, 41(9), 1633–1641. https://doi.org/ 10.1016/j.lwt.2007.10.014.
  • Bradley, E., Coulier, L. (2007). An investigation into the reaction and breakdown products from starting substances used to produce food contact plastics. Food Standards Agency, Project number A03054.
  • Briassoulis, D., Giannoulis, A. (2018). Evaluation of the functionality of bio-based food packaging films. Polymer Testing, 69, 39-51. https://doi.org/10.1016/j.polymertesting.2018.05.003.
  • Brunazzi, G., Parisi, S., Pereno, A. (2014). The Importance of Packaging Design for the Chemistry of Food Products. Springer International Publishing. https://doi.org/10.1007/978-3-319-08452-7.
  • Castle, L. (2007). Chemical migration and food contact materials. Chapter 1: Chemical migration into food: an overview, Edited by K. A. Barnes, C. R. Sinclair, D. H. Watson, Woodhead Publishing Limited, Cambridge England, 464 p.
  • CEN. (2002). Materials and articles in contact with foodstuffs - Plastics - Part 1: Guide to the selection of conditions and test methods for overall migration, EN 1186-1. European Committee for Standardization (CEN).
  • CEN. (2004). Materials and articles in contact with foodstuffs - Plastics substances subject to limitation - Part 1: Guide to test methods for the specific migration of substances from plastics to foods and food simulants and the determination of substances in plastics and the selection of conditions of exposure to food simulants, EN 13130-1. European Committee for Standardization (CEN).
  • Chieng, B. W., Ibrahim, N. A., Yunus, W. M. Z. W., Hussein, M. Z. (2014). Poly(lactic acid)/Poly(ethylene glycol) Polymer Nanocomposites: Effects of Graphene Nanoplatelets. Polymers, 6(1), 93-104. https://doi.org/10.3390/polym6010093.
  • Coltro, L., Pitta, J. B., Madaleno, E. (2013). Performance evaluation of new plasticizers for stretch PVC films. Polymer Testing, 32(2), 272-278. https://doi.org/10.1016/j.polymertesting.2012.11.009.
  • Coltro, L., Pitta, J. B., da Costa, P. A., Perez, M. Â. F., de Araújo, V. A., Rodrigues, R. (2014). Migration of conventional and new plasticizers from PVC films into food simulants: A comparative study. Food Control, 44, 118-129. https://doi.org/10.1016/j.foodcont.2014.03.058.
  • Conn, R. E., Kolstad, J. J., Borzelleca, J. F., Dixler, D. S., Filer, L. J. Jr., LaDu, B. N. Jr., Pariza, M. W. (1995). Safety assessment of polylactide (PLA) for use as a food-contact polymer. Food and Chemical Toxicology, 33, 273–283. https://doi.org/10.1016/0278-6915(94)00145-e.
  • Cruz, R. M. S., Alves, V., Khmelinskii, I., Vieira, M. C. (2018). Chapter 2 - New Food Packaging Systems. In Handbook of Food Bioengineering, Food Packaging and Preservation, 63-85. https://doi.org/10.1016/B978-0-12-811516-9.00002-6.
  • EU. (2011). Regulation on plastic materials and articles intended to come into contact with food, No 10/2011. European Union (EU).
  • FSA. (2007). An Investigation into the Reaction and Breakdown Products from Starting Substances used to Produce Food Contact Plastics. Food Standards Agency (FSA), Project number A03054.
  • Galdeano, M., Wilhelm, A., Mali, S., Grossmann, M. (2013). Influence of thickness on properties of plasticized oat starch films. Brazilian Archives of Biology and Technology, 56, 637-644. https://doi.org/10.1590/S1516-89132013000400014.
  • González-López, M.E., Calva-Estrada, Sd.J., Gradilla-Hernández, M.S., Barajas-Álvarez, P. (2023). Current trends in biopolymers for food packaging: a review. Front. Sustain. Food Syst., 7. https://doi.org/10.3389/fsufs.2023.1225371.
  • Groh, K. J., Backhaus, T., Carney-Almroth, B., Geueke, B., Inostroza, P. A., Lennquist, A., Leslie, H. A., Maffini, M., Slunge, D., Trasande, L., Warhurst, A. M., Muncke, J. (2019). Overview of known plastic packaging-associated chemicals and their hazards. Science of The Total Environment, 651(2), 3253-3268. https://doi.org/10.1016/ j.scitotenv.2018.10.015.
  • Guzman-Puyol, S., Benítez, J.J., Heredia-Guerrero, J.A. (2022). Transparency of polymeric food packaging materials. Food Research International, 161. https://doi.org/10.1016/ j.foodres.2022.111792.
  • Haghighi, H., De Leo, R., Bedin, E., Pfeifer, F., Siesler, H. W., Pulvirenti, A. (2019). Comparative analysis of blend and bilayer films based on chitosan and gelatin enriched with LAE (lauroyl arginate ethyl) with antimicrobial activity for food packaging applications. Food Packaging and Shelf Life, 19, 31-39. https://doi.org/10.1016/ j.fpsl.2018.11.015.
  • Hahladakisa, J. N., Velis, C. A., Weberb, R., Eleni Iacovidoua, E., Purnella, P. (2018). An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal, and recycling. Journal of Hazardous Materials, 344, 179–199. https://doi.org/10.1016/j.jhazmat.2017.10.014.
  • Hanušová, K., Rajchl, A., Votavová, L., Dobiáš, J., Steiner, I. (2013). Testing the influence of various conditions on the migration of epoxidized soybean oil from polyvinylchloride gaskets. Food Additives and Contaminants, Part A, 30(11), 1963-1975. https://doi.org/10.1080/19440049.2013.825818.
  • He, G., Zhang, F., Yu, H., Li, J., Guo, S. (2016). Puncture characterization of multilayered polypropylene homopolymer/ethylene 1-octene copolymer sheets. Royal Society of Chemistry Advances, 6, 12744–12752. https://doi.org/ 10.1039/C5RA23333J.
  • Howick, C., Mollett, C., Leadbitter, J., O'Brien, A. (2005). New developments concerning compliance of PVC with European food contact regulations: threats or opportunities? Plastics, Rubber and Composites, 34(3), 121-126. https://doi.org/10.1179/174328905X55489.
  • Ilyas, R. A., Sapuan, S. M., Kadier, A., Kalil, M. S., Ibrahim, R., Atikah, M. S. N., Nurazzi, N. M., Nazrin, A., Lee, C. H., Norrrahim, M. N. F., Sari, N. H., Syafri, E., Abral, H., Jasmani, L., Ibrahim, M. I. J. (2020). Advanced Processing, Properties, and Applications of Starch and Other Bio-Based Polymers. Chapter 8 - Properties and Characterization of PLA, PHA, and Other Types of Biopolymer Composites, Edt. by F. M. Al-Oqla, S. M. Sapuan, Elsevier, 111-138. https://doi.org/10.1016/ B978-0-12-819661-8.00008-1.
  • Iglesias Montes, M. L., Luzi, F., Dominici, F., Torre, L., Cyras, V. P., Manfredi, L. B., Puglia, D. (2019). Design and Characterization of PLA Bilayer Films Containing Lignin and Cellulose Nanostructures in Combination With Umbelliferone as Active Ingredient. Frontiers in Chemistry, 7, 157. https://doi.org/10.3389/ fchem.2019.00157.
  • IRSAT. (2024). Infrared Spectroscopy Absorption Table (IRSAT). Retrieved From https://chem.libretexts.org/Ancillary_Materials/Reference/Reference_Tables/Spectroscopic_Reference_Tables/Infrared_Spectroscopy_Absorption_Table. Accessed March 24, 2024.
  • Ito, R., Seshimo, F., Haishima, Y., Hasegawa, C., Isama, K., Yagami, T., Nakahashi, K., Yamazaki, H., Inoue, K., Yoshimura, Y., Saito, K., Tsuchiya, T., Nakazawa, H. (2005). Reducing the migration of di-2-ethylhexyl phthalate from polyvinyl chloride medical devices, International Journal of Pharmaceutics, 303(1–2), 104-112. https://doi.org/ 10.1016/j.ijpharm.2005.07.009
  • Jiang, Y., Zhuang, C., Zhong, Y., Zhao, Y., Deng, Y., Gao, H., Chen, H., Mu, H. (2018). Effect of bilayer coating composed of polyvinyl alcohol, chitosan, and sodium alginate on salted duck eggs. International Journal of Food Properties, 21(1), 868-878. https://doi.org/10.1080/ 10942912.2018.1466327.
  • Kassouf, A., Maalouly, J., Chebib, H., Rutledge, D.N., Ducruet,V. (2013). Chemometric tools to highlight non-intentionally added substances (NIAS) in polyethylene terephthalate (PET). Talanta, 115, 928–937. https://doi.org/10.1016/ j.talanta.2013.06.029.
  • Kerr, T. J., Duncan, K. L., Myers, L. (2013). Application of vibrational spectroscopy techniques for material identification from fire debris. Vibrational Spectroscopy, 68, 225-235. https://doi.org/10.1016/j.vibspec.2013.08.006.
  • Khoshgozaran-Abras, S., Azizi, M.H., Hamidy, Z., Bagheripoor-Fallah, N. (2012). Mechanical, physicochemical and color properties of chitosan based-films as a function of aloe vera gel incorporation. Carbohydr. Polym., 87(3), 2058–2062. https://doi.org/10.1016/j.carbpol.2011.10.020.
  • Kondratov, A.P., Volinsky, A.A., Chen, J. (2018). Scaling Effects on Color and Transparency of Multilayer Polyethylene Films in Polarized Light. Adv Polym Technol, 37, 668-673. https://doi.org/ 10.1002/adv.21708.
  • Lee, J.S., Park, M.A., Yoon, C.S., Na, J.H., Han, J. (2019). Characterization and preservation performance of multilayer film with insect repellent and antimicrobial activities for sliced wheat bread packaging. Journal of Food Science, 84, 3194–3203. https://doi.org/10.1111/1750-3841.14823.
  • Li, Å., Sem, S., Håland, J. T., Petersen, J. H., Jensen, L. K. (2015). Nordic project food contact materials Control of declarations of compliance (DoC). Nordic Council of Ministers. http://dx.doi.org/ 10.6027/TN2015‐559.
  • Liu, T., Jiang, P., Liu, H., Li, M., Dong, Y., Wang, R., Wang, Y. (2017). Performance testing of a green plasticizer based on lactic acid for PVC. Polymer Testing, 61, 205-213. https://doi.org/ 10.1016/j.polymertesting.2017.05.012.
  • López-Cervantes, J., Paseiro-Losada, P. (2003). Determination of bisphenol A in, and its migration from, PVC stretch film used for food packaging. Food Additives and Contaminants, 20(6), 596-606. https://doi.org/10.1080/ 0265203031000109495.
  • Ludwig, V., Da Costa Ludwig, Z. M., Rodrigues, M. M., Anjos, V., Costa, C. B., das Dores, D. R. A. S., da Silva, V. R., Soares, F. (2018). Analysis by Raman and infrared spectroscopy combined with theoretical studies on the identification of plasticizers in PVC films. Vibrational Spectroscopy, 98, 134-138. https://doi.org/10.1016/ j.vibspec.2018.08.004.
  • McGinty, K. M., Brittain, W. J. (2008). Hydrophilic surface modification of poly(vinyl chloride) film and tubing using physisorbed free radical grafting technique. Polymer, 49, 4350–4357. https://doi.org/10.1016/j.polymer.2008.07.063.
  • Messori, M., Toselli, M., Pilati, F., Fabbri, E., Fabbri, P., Pasquali, L., Nannarone, S. (2004). Prevention of plasticizer leaching from PVC medical devices by using organic–inorganic hybrid coatings. Polymer, 45(3), 805-813. https://doi.org/10.1016/j.polymer.2003.12.006
  • Mutsuga, M., Kawamura, Y., Tanamoto, K. (2008). Migration of lactic acid, lactide, and oligomers from polylactide food-contact materials. Food Additives and Contaminants, Part A, 25(10), 1283-1290. http://dx.doi.org/10.1080/ 02652030802017529.
  • Nerin, C., Albinana, J., Philo, M. R., Castle, L., Raffael, B., Simoneau, C. (2003). Evaluation of some screening methods for the analysis of contaminants in recycled polyethylene terephthalate flakes. Food Additives and Contaminants, 20(7), 668-677. https://doi.org/ 10.1080/0265203031000109503.
  • Niaounakis, M. (2015). Biopolymers: Processing and Products. Elsevier. https://doi.org/10.1016/ C2013-0-09982-3.
  • Nilsuwan, K., Benjakul, S., Prodpran, T. (2017). Properties, Microstructure and Heat Seal Ability of Bilayer Films Based on Fish Gelatin and Emulsified Gelatin Films. Food Biophysics, 12, 234–243. https://doi.org/10.1007/s11483-017-9479-2.
  • Nilsuwan, K., Benjakul, S., Prodpran, T. (2018). Physical/thermal properties and heat seal ability of bilayer films based on fish gelatin and poly(lactic acid). Food Hydrocolloids, 77, 2018, 248-256. https://doi.org/10.1016/ j.foodhyd.2017.10.001
  • Nuthong, P., Benjakul, S., Prodpran, T. (2009). Effect of some factors and pretreatment on the properties of porcine plasma protein-based films. LWT - Food Science and Technology, 42(9, 1545-1552. http://dx.doi.org/10.1016/j.lwt.2009.05.003.
  • Oksiuta, Z., Jalbrzykowski, M., Mystkowska, J., Romanczuk, E., Osiecki, T. (2020). Mechanical and Thermal Properties of Polylactide (PLA) Composites Modified with Mg, Fe, and Polyethylene (PE) Additives. Polymers, 12, 2939. https://doi.org/10.3390/polym12122939.
  • Olejnik, O., Masek, A. (2020). Bio-Based Packaging Materials Containing Substances Derived from Coffee and Tea Plants. Materials, 13(24), 5719. https://doi.org/10.3390/ ma13245719.
  • Park, M., Choi, I., Lee, S., Hong, S., Kim, A., Shin, J., Kang, H., Kim, Y. (2020). Renewable malic acid-based plasticizers for both PVC and PLA polymers. Journal of Industrial and Engineering Chemistry, 88, 148-158. https://doi.org/ 10.1016/j.jiec.2020.04.007.
  • Patwa, R., Kumar, A., Katiyar, V. (2018). Effect of silk nano-disc dispersion on mechanical, thermal, and barrier properties of poly(lactic acid) based bionanocomposites. Journal of Applied Polymer Science, 135(38), 46671. https://doi.org/ 10.1002/app.46671.
  • Petersen, J.H., Naamansen, T.E., Nielsen, P. A. (1995). PVC cling film in contact with cheese: Health aspects related to global migration and specific migration of DEHA. Food Additives and Contaminants, 12(2), 245–253. https://doi.org/ 10.1080/02652039509374299.
  • Petersen, J.H., Lillemark, L., Lund, L. (1997). Migration from PVC cling films compared with their field of application. Food Additives and Contaminants, 14(4), 345-353. https://doi.org/10.1080/02652039709374537.
  • Petersen, J.H., Togeskov, P., Hallas, J., Olsen, M.B., Jørgensen, B., Jakobsen, M. (2004). Evaluation of retail fresh meat packagings covered with stretch films of plasticized PVC and non-PVC alternatives. Packag. Technol. Sci., 17, 53–66. https://doi.org/10.1002/pts.639.
  • Petersen, J. H., Jensen, L. K. (2016). Phthalates in soft PVC products used in food production equipment and in other food contact materials on the Danish and the Nordic Market 2013-2014. International Journal of Food Contamination, 3. https://doi.org/10.1186/s40550-016-0026-6.
  • Piergiovanni, L., Limbo, S. (2016). Food Packaging Materials. Springer, Cham. https://doi.org/ 10.1007/978-3-319-24732-8.
  • Pirinc, F. T., Dagdelen, A. D., Saricaoglu, F. T. (2020). Optical and mechanical properties of bi-layer biodegradable films from poly lactic acid and bovine gelatin. European Food Science and Engineering, 1 (1), 13-17.
  • Raeisi, A., Faghihi, K., Shabanian, M. (2017). Designed biocompatible nano-inhibitor based on poly(β-cyclodextrin-ester) for reduction of the DEHP migration from plasticized PVC. Carbohydrate Polymers, 174, 858–868. http://dx.doi.org/10.1016/j.carbpol.2017.06.105.
  • Râpă, M., Miteluţ, A. C., Tănase, E. E., Grosu, E., Popescu, P., Popa, M. E., Rosnes, J. T., Sivertsvik, M., Darie-Niţă, R. N., Vasile, C. (2016). Influence of chitosan on mechanical, thermal, barrier and antimicrobial properties of PLA-biocomposites for food packaging. Composites Part B: Engineering, 102, 112-121. https://doi.org/10.1016/ j.compositesb.2016.07.016.
  • Reddy, N. N., Mohan, Y. M., Varaprasad, K., Ravindra, S., Vimala, K., Raju, K. M. (2009). Surface Treatment of Plasticized Poly(vinyl chloride) to Prevent Plasticizer Migration. Journal of Applied Polymer Science, 115, 1589–1597. https://doi.org/10.1002/app.31157.
  • Rocca-Smith, J. R., Karbowiak, T., Marcuzzo, E., Sensidoni, A., Piasente, F., Champion, D., Heinz, O., Vitry, P., Bourillot, E., Lesniewska, E., Debeaufort, F. (2016). Impact of corona treatment on PLA film properties. Polymer Degradation and Stability, 132, 109-116. https://doi.org/10.1016/j.polymdegradstab.2016.03.020. Saçak, M. (2010). Polymer Chemistry. Gazi Kitabevi, 5.Edt., Ankara, Turkey, 525 p.
  • Scarfato, P., Di Maio, L., Milana, M. R., Giamberardini, S., Denaro, M., Incarnato, L. (2017). Performance properties, lactic acid specific migration and swelling by simulant of biodegradable poly(lactic acid)/nanoclay multilayer films for food packaging. Food Additives and Contaminants, Part A, 34(10), 1730-1742. https://doi.org/10.1080/19440049.2017.1321786.
  • Sharma, V., Nani, D., Kumar, R. (2019). Spectroscopic and chemometric evaluation of cling films used for wrapping of foodstuff and illicit drugs. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 206, 558-568. https://doi.org/10.1016/j.saa.2018.08.052.
  • Silva, F. M., Silva, C. L. M. (1999). Colour changes in thermally processed cupuaçu (Theobroma grandiflorum) puree: critical times and kinetics modeling, International Journal of Food Science and Technology, 34 (1), 87–94. https://doi.org/ 10.1046/j.1365-2621.1999.00246.x.
  • Sothornvit, R., Krochta, J. M. (2000). Oxygen Permeability and Mechanical Properties of Films from Hydrolyzed Whey Protein. Journal of Agricultural and Food Chemistry, 48, 3913-3916. http://dx.doi.org/10.1021/jf000161m.
  • Tice, P. (2003). Packaging materials: 4. Polyethylene for food packaging applications. ILSI, Europe Report Series. Retrieved From https://ilsi.eu/wp-content/uploads/sites/3/2016/06/R2003Pac_Mat.pdf. Accessed November 15, 2022.
  • Ubeda, S., Aznar, M., Alfaro, P., Nerín, C. (2019). Migration of oligomers from a food contact biopolymer based on polylactic acid (PLA) and polyester. Analytical and Bioanalytical Chemistry, 411, 3521–3532. https://doi.org/10.1007/s00216-019-01831-0.
  • Üçüncü, M. (2007). Food Packaging Technology. Meta Basım, Izmir, Turkey, 896 p.
  • Villanueva, M. E., González, J. A., Rodríguez-Castellón, E., Teves, S., Copello, G. J. (2016). Antimicrobial surface functionalization of PVC by a guanidine based antimicrobial polymer. Materials Science and Engineering, C67, 214-220. https://doi.org/10.1016/j.msec.2016.05.052.
  • Wen, X. Q., Liu, X. H., Liu, G. S. (2010). Prevention of Plasticizer Leaching From the Inner Surface of Narrow Polyvinyl Chloride Tube by DC Glow Discharge Plasma. IEEE Transactions On Plasma Science, 38(11), 3152-3155. https://doi.org/10.1109/TPS.2010.2074209.
  • Xiong, .L, Yang, W., Li, C., Zhou, X., Jiao, Z. (2016). Plasticizer migration from micro-layered flexible poly (vinyl chloride) films prepared by multi-layer co-extrusion technology. Journal of Plastic Film and Sheeting, 32(4), 402-418. https://doi.org/10.1177/8756087915612884
  • Yavuz, H. T. (2013). Migration of Diopropylene and Tripropylene Glycol Diacrylate From Packaging Materials and Screening of Potential Risk in Paper Packagings. Istanbul Technical University Graduate School Of Science Engineering and Technology Department of Food Engineering, M.Sc. Thesis, Istanbul, Turkey, 102 p.
  • Yuniarto, K., Purwanto, Y. A., Purwanto, S., Welt, B. A., Purwadaria, H. K., Sunarti, T. C. (2016). Infrared and Raman studies on polylactide acid and polyethylene glycol-400 blend. AIP Conference Proceedings, 1725. https://doi.org/10.1063/ 1.4945555.
  • Zakaria, Z., Islam, Md. S., Hassan, A., Haafiz, M. K. M., Arjmandi, R., Inuwa, I. M., Hasan, M. (2013). Mechanical Properties and Morphological Characterization of PLA/Chitosan/Epoxidized Natural Rubber Composites. Advances in Materials Science and Engineering, 629092. https://doi.org/ 10.1155/2013/629092.
  • Zhao, J., Wang, Y., Liu, C. (2022). Film Transparency and Opacity Measurements. Food Anal. Methods, 15, 2840–2846. https://doi.org/ 10.1007/s12161-022-02343-x.
  • Zhou, X., Yang, R., Wang, B., Chen, K. (2019). Development and characterization of bilayer films based on pea starch/polylactic acid and use in the cherry tomatoes packaging. Carbohydrate Polymers, 222, 114912. https://doi.org/10.1016/ j.carbpol.2019.05.042.

GIDA İLE TEMAS EDEN POLİVİNİL KLORÜR BAZLI STREÇ FİLMLERDEKİ MİGRASYONUN POLİLAKTİK ASİT KATMANI İLE ENGELLENMESİ

Year 2024, , 624 - 640, 14.08.2024
https://doi.org/10.15237/gida.GD23131

Abstract

Bu çalışmada, Polivinil klorür (PVC) filmlerden geçen kalıntıların engellenmesi için biyobozunur polilaktik asit (PLA) kaplamaların etkinlikleri araştırılmıştır. Kloroform içerisinde ağırlıkça %5, 10, 15 ve 20 konsantrasyonlarda hazırlanan PLA filmler, sıcak preste (130 °C, 5 dk., 5 t) PVC film yüzeylerine ısıl olarak yapıştırılmıştır. Hazırlanan bu iki katlı filmlerde fiziksel, mekanik, FTIR ve migrasyon analizleri gerçekleştirilmiştir. PLA kaplama ile birlikte filmlerin kalınlıklar artmış, mekanik özellikleri azalmış ve renk değerlerinde bazı değişikler meydana gelmiştir. Sıcak pres sonucu filmlerin her iki yüzeyinde de yapısal bir değişiklik olmadığı FTIR ile tespit edilmiştir. Toplam migrasyon analizlerinden sulu gıda benzerlerini ile yapılan testlerde migrasyon gözlenmezken, yağlı gıda benzerlerinde migrasyon tespit edilmiştir. GC-MS ile yapılan spesifik migrasyon analizinde ise di-2-etilhekzil ftalat (DEHP) migrasyonu PLA kaplama ile birlikte %50 oranında azalmıştır. PVC streç filmlerin PLA ile kaplanmasının migrasyonu azaltmak için umut verici bir uygulama olabileceği sonucuna varılmıştır.

Project Number

182N29

References

  • Abdullah, C.J., Hafeez, M.A., Wang, Q., Farooq, S., Huang, Q., Tian, W., Xiao, J. (2022). Biopolymer-based functional films for packaging applications: A review. Front. Nutr., 9. https://doi.org/10.3389/fnut.2022.1000116.
  • Ackerman, L. K., Noonan, G. O., Begley, T. H. (2009). Assessing direct analysis in a real time-mass spectrometry (DART-MS) for the rapid identification of additives in food packaging. Food Additives and Contaminants, 26(12), 1611–1618. https://doi.org/10.1080/02652030903232753.
  • Al-Shalchy, S. I., Shabeeb, K. M., Hasan, A. M., Hasan, R. F. (2020). Mechanical Properties of Polyvinyl Chloride and Polypropylene Hybrid Polymeric Nanocomposites for Structural Applications. International Journal of Nanoelectronics and Materials, 13(2), 249-262. http://dspace.unimap.edu.my:80/xmlui/handle/123456789/64928.
  • Arvanitoyannis, I. S., Kotsanopoulos, K. V. (2014). Migration Phenomenon in Food Packaging. Food–Package Interactions, Mechanisms, Types of Migrants, Testing and Relative Legislation—A Review. Food and Bioprocess Technology, 7, 21–36. https://doi.org/ 10.1007/s11947-013-1106-8.
  • ASTM. (2007). Standard practice for general techniques for obtaining infrared spectra for qualitative analysis, E1252. American Society for Testing and Materials (ASTM).
  • ASTM. (2018). Standart test method for tensile properties of thin plastic sheeting, D882-18. American Society for Testing and Materials (ASTM).
  • ASTM. (2020). Standard Test Method for High Speed Puncture Properties of Plastic Films Using Load and Displacement Sensors, D7192-20. American Society for Testing and Materials (ASTM).
  • ASTM. (2022). Standard Practice for Computing the Colors of Objects by Using the CIE System, E308-22. American Society for Testing and Materials (ASTM).
  • Baur, E., Osswald, T. A., Rudolph, N. (2019). Plastics Handbook The Resource for Plastics Engineers. 5th Edt., Hanser Publication, E-Book ISBN 978-1-56990-560-9.
  • Bentayeb, K., Ackerman, L. K., Lord, T., Begley, T. H. (2013). Non-visible print set-off of photoinitiators in food packaging: detection by ambient ionization mass spectrometry. Food Additives and Contaminants, Part A, 30(4), 750-759. https://doi.org/10.1080/19440049.2012.762694.
  • Bernard, L., Bourdeaux, D., Pereira, B., Azaroual, N., Barthelemy, C., Breysse, C., Chennell, P., Cueff, R., Dine, T., Eljezi, T., Feutry, F., Genay, S., Kambia, N., Lecoeur, M., Masse, M., Odou, P., Radaniel, T., Simon, N., Vaccher, C., Verlhac, C., Yessad, M., Decaudin, B., Sautou, V. (2017). Analysis of plasticizers in PVC medical devices: Performance comparison of eight analytical methods. Talanta, 162, 604-611. https://doi.org/ 10.1016/j.talanta.2016.10.033.
  • Bor, Y., Alin, J., Hakkarainen, M. (2012). Electrospray Ionization‐Mass Spectrometry Analysis Reveals Migration of Cyclic Lactide Oligomers from Polylactide Packaging in Contact with Ethanolic Food Simulant. Packag. Technol. Sci., 25, 427-433. https://doi.org/10.1002/ pts.990.
  • Bourtoom, T., Chinnan, M.S. (2008). Preparation and properties of rice starch–chitosan blend biodegradable film. LWT-Food science and Technology, 41(9), 1633–1641. https://doi.org/ 10.1016/j.lwt.2007.10.014.
  • Bradley, E., Coulier, L. (2007). An investigation into the reaction and breakdown products from starting substances used to produce food contact plastics. Food Standards Agency, Project number A03054.
  • Briassoulis, D., Giannoulis, A. (2018). Evaluation of the functionality of bio-based food packaging films. Polymer Testing, 69, 39-51. https://doi.org/10.1016/j.polymertesting.2018.05.003.
  • Brunazzi, G., Parisi, S., Pereno, A. (2014). The Importance of Packaging Design for the Chemistry of Food Products. Springer International Publishing. https://doi.org/10.1007/978-3-319-08452-7.
  • Castle, L. (2007). Chemical migration and food contact materials. Chapter 1: Chemical migration into food: an overview, Edited by K. A. Barnes, C. R. Sinclair, D. H. Watson, Woodhead Publishing Limited, Cambridge England, 464 p.
  • CEN. (2002). Materials and articles in contact with foodstuffs - Plastics - Part 1: Guide to the selection of conditions and test methods for overall migration, EN 1186-1. European Committee for Standardization (CEN).
  • CEN. (2004). Materials and articles in contact with foodstuffs - Plastics substances subject to limitation - Part 1: Guide to test methods for the specific migration of substances from plastics to foods and food simulants and the determination of substances in plastics and the selection of conditions of exposure to food simulants, EN 13130-1. European Committee for Standardization (CEN).
  • Chieng, B. W., Ibrahim, N. A., Yunus, W. M. Z. W., Hussein, M. Z. (2014). Poly(lactic acid)/Poly(ethylene glycol) Polymer Nanocomposites: Effects of Graphene Nanoplatelets. Polymers, 6(1), 93-104. https://doi.org/10.3390/polym6010093.
  • Coltro, L., Pitta, J. B., Madaleno, E. (2013). Performance evaluation of new plasticizers for stretch PVC films. Polymer Testing, 32(2), 272-278. https://doi.org/10.1016/j.polymertesting.2012.11.009.
  • Coltro, L., Pitta, J. B., da Costa, P. A., Perez, M. Â. F., de Araújo, V. A., Rodrigues, R. (2014). Migration of conventional and new plasticizers from PVC films into food simulants: A comparative study. Food Control, 44, 118-129. https://doi.org/10.1016/j.foodcont.2014.03.058.
  • Conn, R. E., Kolstad, J. J., Borzelleca, J. F., Dixler, D. S., Filer, L. J. Jr., LaDu, B. N. Jr., Pariza, M. W. (1995). Safety assessment of polylactide (PLA) for use as a food-contact polymer. Food and Chemical Toxicology, 33, 273–283. https://doi.org/10.1016/0278-6915(94)00145-e.
  • Cruz, R. M. S., Alves, V., Khmelinskii, I., Vieira, M. C. (2018). Chapter 2 - New Food Packaging Systems. In Handbook of Food Bioengineering, Food Packaging and Preservation, 63-85. https://doi.org/10.1016/B978-0-12-811516-9.00002-6.
  • EU. (2011). Regulation on plastic materials and articles intended to come into contact with food, No 10/2011. European Union (EU).
  • FSA. (2007). An Investigation into the Reaction and Breakdown Products from Starting Substances used to Produce Food Contact Plastics. Food Standards Agency (FSA), Project number A03054.
  • Galdeano, M., Wilhelm, A., Mali, S., Grossmann, M. (2013). Influence of thickness on properties of plasticized oat starch films. Brazilian Archives of Biology and Technology, 56, 637-644. https://doi.org/10.1590/S1516-89132013000400014.
  • González-López, M.E., Calva-Estrada, Sd.J., Gradilla-Hernández, M.S., Barajas-Álvarez, P. (2023). Current trends in biopolymers for food packaging: a review. Front. Sustain. Food Syst., 7. https://doi.org/10.3389/fsufs.2023.1225371.
  • Groh, K. J., Backhaus, T., Carney-Almroth, B., Geueke, B., Inostroza, P. A., Lennquist, A., Leslie, H. A., Maffini, M., Slunge, D., Trasande, L., Warhurst, A. M., Muncke, J. (2019). Overview of known plastic packaging-associated chemicals and their hazards. Science of The Total Environment, 651(2), 3253-3268. https://doi.org/10.1016/ j.scitotenv.2018.10.015.
  • Guzman-Puyol, S., Benítez, J.J., Heredia-Guerrero, J.A. (2022). Transparency of polymeric food packaging materials. Food Research International, 161. https://doi.org/10.1016/ j.foodres.2022.111792.
  • Haghighi, H., De Leo, R., Bedin, E., Pfeifer, F., Siesler, H. W., Pulvirenti, A. (2019). Comparative analysis of blend and bilayer films based on chitosan and gelatin enriched with LAE (lauroyl arginate ethyl) with antimicrobial activity for food packaging applications. Food Packaging and Shelf Life, 19, 31-39. https://doi.org/10.1016/ j.fpsl.2018.11.015.
  • Hahladakisa, J. N., Velis, C. A., Weberb, R., Eleni Iacovidoua, E., Purnella, P. (2018). An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal, and recycling. Journal of Hazardous Materials, 344, 179–199. https://doi.org/10.1016/j.jhazmat.2017.10.014.
  • Hanušová, K., Rajchl, A., Votavová, L., Dobiáš, J., Steiner, I. (2013). Testing the influence of various conditions on the migration of epoxidized soybean oil from polyvinylchloride gaskets. Food Additives and Contaminants, Part A, 30(11), 1963-1975. https://doi.org/10.1080/19440049.2013.825818.
  • He, G., Zhang, F., Yu, H., Li, J., Guo, S. (2016). Puncture characterization of multilayered polypropylene homopolymer/ethylene 1-octene copolymer sheets. Royal Society of Chemistry Advances, 6, 12744–12752. https://doi.org/ 10.1039/C5RA23333J.
  • Howick, C., Mollett, C., Leadbitter, J., O'Brien, A. (2005). New developments concerning compliance of PVC with European food contact regulations: threats or opportunities? Plastics, Rubber and Composites, 34(3), 121-126. https://doi.org/10.1179/174328905X55489.
  • Ilyas, R. A., Sapuan, S. M., Kadier, A., Kalil, M. S., Ibrahim, R., Atikah, M. S. N., Nurazzi, N. M., Nazrin, A., Lee, C. H., Norrrahim, M. N. F., Sari, N. H., Syafri, E., Abral, H., Jasmani, L., Ibrahim, M. I. J. (2020). Advanced Processing, Properties, and Applications of Starch and Other Bio-Based Polymers. Chapter 8 - Properties and Characterization of PLA, PHA, and Other Types of Biopolymer Composites, Edt. by F. M. Al-Oqla, S. M. Sapuan, Elsevier, 111-138. https://doi.org/10.1016/ B978-0-12-819661-8.00008-1.
  • Iglesias Montes, M. L., Luzi, F., Dominici, F., Torre, L., Cyras, V. P., Manfredi, L. B., Puglia, D. (2019). Design and Characterization of PLA Bilayer Films Containing Lignin and Cellulose Nanostructures in Combination With Umbelliferone as Active Ingredient. Frontiers in Chemistry, 7, 157. https://doi.org/10.3389/ fchem.2019.00157.
  • IRSAT. (2024). Infrared Spectroscopy Absorption Table (IRSAT). Retrieved From https://chem.libretexts.org/Ancillary_Materials/Reference/Reference_Tables/Spectroscopic_Reference_Tables/Infrared_Spectroscopy_Absorption_Table. Accessed March 24, 2024.
  • Ito, R., Seshimo, F., Haishima, Y., Hasegawa, C., Isama, K., Yagami, T., Nakahashi, K., Yamazaki, H., Inoue, K., Yoshimura, Y., Saito, K., Tsuchiya, T., Nakazawa, H. (2005). Reducing the migration of di-2-ethylhexyl phthalate from polyvinyl chloride medical devices, International Journal of Pharmaceutics, 303(1–2), 104-112. https://doi.org/ 10.1016/j.ijpharm.2005.07.009
  • Jiang, Y., Zhuang, C., Zhong, Y., Zhao, Y., Deng, Y., Gao, H., Chen, H., Mu, H. (2018). Effect of bilayer coating composed of polyvinyl alcohol, chitosan, and sodium alginate on salted duck eggs. International Journal of Food Properties, 21(1), 868-878. https://doi.org/10.1080/ 10942912.2018.1466327.
  • Kassouf, A., Maalouly, J., Chebib, H., Rutledge, D.N., Ducruet,V. (2013). Chemometric tools to highlight non-intentionally added substances (NIAS) in polyethylene terephthalate (PET). Talanta, 115, 928–937. https://doi.org/10.1016/ j.talanta.2013.06.029.
  • Kerr, T. J., Duncan, K. L., Myers, L. (2013). Application of vibrational spectroscopy techniques for material identification from fire debris. Vibrational Spectroscopy, 68, 225-235. https://doi.org/10.1016/j.vibspec.2013.08.006.
  • Khoshgozaran-Abras, S., Azizi, M.H., Hamidy, Z., Bagheripoor-Fallah, N. (2012). Mechanical, physicochemical and color properties of chitosan based-films as a function of aloe vera gel incorporation. Carbohydr. Polym., 87(3), 2058–2062. https://doi.org/10.1016/j.carbpol.2011.10.020.
  • Kondratov, A.P., Volinsky, A.A., Chen, J. (2018). Scaling Effects on Color and Transparency of Multilayer Polyethylene Films in Polarized Light. Adv Polym Technol, 37, 668-673. https://doi.org/ 10.1002/adv.21708.
  • Lee, J.S., Park, M.A., Yoon, C.S., Na, J.H., Han, J. (2019). Characterization and preservation performance of multilayer film with insect repellent and antimicrobial activities for sliced wheat bread packaging. Journal of Food Science, 84, 3194–3203. https://doi.org/10.1111/1750-3841.14823.
  • Li, Å., Sem, S., Håland, J. T., Petersen, J. H., Jensen, L. K. (2015). Nordic project food contact materials Control of declarations of compliance (DoC). Nordic Council of Ministers. http://dx.doi.org/ 10.6027/TN2015‐559.
  • Liu, T., Jiang, P., Liu, H., Li, M., Dong, Y., Wang, R., Wang, Y. (2017). Performance testing of a green plasticizer based on lactic acid for PVC. Polymer Testing, 61, 205-213. https://doi.org/ 10.1016/j.polymertesting.2017.05.012.
  • López-Cervantes, J., Paseiro-Losada, P. (2003). Determination of bisphenol A in, and its migration from, PVC stretch film used for food packaging. Food Additives and Contaminants, 20(6), 596-606. https://doi.org/10.1080/ 0265203031000109495.
  • Ludwig, V., Da Costa Ludwig, Z. M., Rodrigues, M. M., Anjos, V., Costa, C. B., das Dores, D. R. A. S., da Silva, V. R., Soares, F. (2018). Analysis by Raman and infrared spectroscopy combined with theoretical studies on the identification of plasticizers in PVC films. Vibrational Spectroscopy, 98, 134-138. https://doi.org/10.1016/ j.vibspec.2018.08.004.
  • McGinty, K. M., Brittain, W. J. (2008). Hydrophilic surface modification of poly(vinyl chloride) film and tubing using physisorbed free radical grafting technique. Polymer, 49, 4350–4357. https://doi.org/10.1016/j.polymer.2008.07.063.
  • Messori, M., Toselli, M., Pilati, F., Fabbri, E., Fabbri, P., Pasquali, L., Nannarone, S. (2004). Prevention of plasticizer leaching from PVC medical devices by using organic–inorganic hybrid coatings. Polymer, 45(3), 805-813. https://doi.org/10.1016/j.polymer.2003.12.006
  • Mutsuga, M., Kawamura, Y., Tanamoto, K. (2008). Migration of lactic acid, lactide, and oligomers from polylactide food-contact materials. Food Additives and Contaminants, Part A, 25(10), 1283-1290. http://dx.doi.org/10.1080/ 02652030802017529.
  • Nerin, C., Albinana, J., Philo, M. R., Castle, L., Raffael, B., Simoneau, C. (2003). Evaluation of some screening methods for the analysis of contaminants in recycled polyethylene terephthalate flakes. Food Additives and Contaminants, 20(7), 668-677. https://doi.org/ 10.1080/0265203031000109503.
  • Niaounakis, M. (2015). Biopolymers: Processing and Products. Elsevier. https://doi.org/10.1016/ C2013-0-09982-3.
  • Nilsuwan, K., Benjakul, S., Prodpran, T. (2017). Properties, Microstructure and Heat Seal Ability of Bilayer Films Based on Fish Gelatin and Emulsified Gelatin Films. Food Biophysics, 12, 234–243. https://doi.org/10.1007/s11483-017-9479-2.
  • Nilsuwan, K., Benjakul, S., Prodpran, T. (2018). Physical/thermal properties and heat seal ability of bilayer films based on fish gelatin and poly(lactic acid). Food Hydrocolloids, 77, 2018, 248-256. https://doi.org/10.1016/ j.foodhyd.2017.10.001
  • Nuthong, P., Benjakul, S., Prodpran, T. (2009). Effect of some factors and pretreatment on the properties of porcine plasma protein-based films. LWT - Food Science and Technology, 42(9, 1545-1552. http://dx.doi.org/10.1016/j.lwt.2009.05.003.
  • Oksiuta, Z., Jalbrzykowski, M., Mystkowska, J., Romanczuk, E., Osiecki, T. (2020). Mechanical and Thermal Properties of Polylactide (PLA) Composites Modified with Mg, Fe, and Polyethylene (PE) Additives. Polymers, 12, 2939. https://doi.org/10.3390/polym12122939.
  • Olejnik, O., Masek, A. (2020). Bio-Based Packaging Materials Containing Substances Derived from Coffee and Tea Plants. Materials, 13(24), 5719. https://doi.org/10.3390/ ma13245719.
  • Park, M., Choi, I., Lee, S., Hong, S., Kim, A., Shin, J., Kang, H., Kim, Y. (2020). Renewable malic acid-based plasticizers for both PVC and PLA polymers. Journal of Industrial and Engineering Chemistry, 88, 148-158. https://doi.org/ 10.1016/j.jiec.2020.04.007.
  • Patwa, R., Kumar, A., Katiyar, V. (2018). Effect of silk nano-disc dispersion on mechanical, thermal, and barrier properties of poly(lactic acid) based bionanocomposites. Journal of Applied Polymer Science, 135(38), 46671. https://doi.org/ 10.1002/app.46671.
  • Petersen, J.H., Naamansen, T.E., Nielsen, P. A. (1995). PVC cling film in contact with cheese: Health aspects related to global migration and specific migration of DEHA. Food Additives and Contaminants, 12(2), 245–253. https://doi.org/ 10.1080/02652039509374299.
  • Petersen, J.H., Lillemark, L., Lund, L. (1997). Migration from PVC cling films compared with their field of application. Food Additives and Contaminants, 14(4), 345-353. https://doi.org/10.1080/02652039709374537.
  • Petersen, J.H., Togeskov, P., Hallas, J., Olsen, M.B., Jørgensen, B., Jakobsen, M. (2004). Evaluation of retail fresh meat packagings covered with stretch films of plasticized PVC and non-PVC alternatives. Packag. Technol. Sci., 17, 53–66. https://doi.org/10.1002/pts.639.
  • Petersen, J. H., Jensen, L. K. (2016). Phthalates in soft PVC products used in food production equipment and in other food contact materials on the Danish and the Nordic Market 2013-2014. International Journal of Food Contamination, 3. https://doi.org/10.1186/s40550-016-0026-6.
  • Piergiovanni, L., Limbo, S. (2016). Food Packaging Materials. Springer, Cham. https://doi.org/ 10.1007/978-3-319-24732-8.
  • Pirinc, F. T., Dagdelen, A. D., Saricaoglu, F. T. (2020). Optical and mechanical properties of bi-layer biodegradable films from poly lactic acid and bovine gelatin. European Food Science and Engineering, 1 (1), 13-17.
  • Raeisi, A., Faghihi, K., Shabanian, M. (2017). Designed biocompatible nano-inhibitor based on poly(β-cyclodextrin-ester) for reduction of the DEHP migration from plasticized PVC. Carbohydrate Polymers, 174, 858–868. http://dx.doi.org/10.1016/j.carbpol.2017.06.105.
  • Râpă, M., Miteluţ, A. C., Tănase, E. E., Grosu, E., Popescu, P., Popa, M. E., Rosnes, J. T., Sivertsvik, M., Darie-Niţă, R. N., Vasile, C. (2016). Influence of chitosan on mechanical, thermal, barrier and antimicrobial properties of PLA-biocomposites for food packaging. Composites Part B: Engineering, 102, 112-121. https://doi.org/10.1016/ j.compositesb.2016.07.016.
  • Reddy, N. N., Mohan, Y. M., Varaprasad, K., Ravindra, S., Vimala, K., Raju, K. M. (2009). Surface Treatment of Plasticized Poly(vinyl chloride) to Prevent Plasticizer Migration. Journal of Applied Polymer Science, 115, 1589–1597. https://doi.org/10.1002/app.31157.
  • Rocca-Smith, J. R., Karbowiak, T., Marcuzzo, E., Sensidoni, A., Piasente, F., Champion, D., Heinz, O., Vitry, P., Bourillot, E., Lesniewska, E., Debeaufort, F. (2016). Impact of corona treatment on PLA film properties. Polymer Degradation and Stability, 132, 109-116. https://doi.org/10.1016/j.polymdegradstab.2016.03.020. Saçak, M. (2010). Polymer Chemistry. Gazi Kitabevi, 5.Edt., Ankara, Turkey, 525 p.
  • Scarfato, P., Di Maio, L., Milana, M. R., Giamberardini, S., Denaro, M., Incarnato, L. (2017). Performance properties, lactic acid specific migration and swelling by simulant of biodegradable poly(lactic acid)/nanoclay multilayer films for food packaging. Food Additives and Contaminants, Part A, 34(10), 1730-1742. https://doi.org/10.1080/19440049.2017.1321786.
  • Sharma, V., Nani, D., Kumar, R. (2019). Spectroscopic and chemometric evaluation of cling films used for wrapping of foodstuff and illicit drugs. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 206, 558-568. https://doi.org/10.1016/j.saa.2018.08.052.
  • Silva, F. M., Silva, C. L. M. (1999). Colour changes in thermally processed cupuaçu (Theobroma grandiflorum) puree: critical times and kinetics modeling, International Journal of Food Science and Technology, 34 (1), 87–94. https://doi.org/ 10.1046/j.1365-2621.1999.00246.x.
  • Sothornvit, R., Krochta, J. M. (2000). Oxygen Permeability and Mechanical Properties of Films from Hydrolyzed Whey Protein. Journal of Agricultural and Food Chemistry, 48, 3913-3916. http://dx.doi.org/10.1021/jf000161m.
  • Tice, P. (2003). Packaging materials: 4. Polyethylene for food packaging applications. ILSI, Europe Report Series. Retrieved From https://ilsi.eu/wp-content/uploads/sites/3/2016/06/R2003Pac_Mat.pdf. Accessed November 15, 2022.
  • Ubeda, S., Aznar, M., Alfaro, P., Nerín, C. (2019). Migration of oligomers from a food contact biopolymer based on polylactic acid (PLA) and polyester. Analytical and Bioanalytical Chemistry, 411, 3521–3532. https://doi.org/10.1007/s00216-019-01831-0.
  • Üçüncü, M. (2007). Food Packaging Technology. Meta Basım, Izmir, Turkey, 896 p.
  • Villanueva, M. E., González, J. A., Rodríguez-Castellón, E., Teves, S., Copello, G. J. (2016). Antimicrobial surface functionalization of PVC by a guanidine based antimicrobial polymer. Materials Science and Engineering, C67, 214-220. https://doi.org/10.1016/j.msec.2016.05.052.
  • Wen, X. Q., Liu, X. H., Liu, G. S. (2010). Prevention of Plasticizer Leaching From the Inner Surface of Narrow Polyvinyl Chloride Tube by DC Glow Discharge Plasma. IEEE Transactions On Plasma Science, 38(11), 3152-3155. https://doi.org/10.1109/TPS.2010.2074209.
  • Xiong, .L, Yang, W., Li, C., Zhou, X., Jiao, Z. (2016). Plasticizer migration from micro-layered flexible poly (vinyl chloride) films prepared by multi-layer co-extrusion technology. Journal of Plastic Film and Sheeting, 32(4), 402-418. https://doi.org/10.1177/8756087915612884
  • Yavuz, H. T. (2013). Migration of Diopropylene and Tripropylene Glycol Diacrylate From Packaging Materials and Screening of Potential Risk in Paper Packagings. Istanbul Technical University Graduate School Of Science Engineering and Technology Department of Food Engineering, M.Sc. Thesis, Istanbul, Turkey, 102 p.
  • Yuniarto, K., Purwanto, Y. A., Purwanto, S., Welt, B. A., Purwadaria, H. K., Sunarti, T. C. (2016). Infrared and Raman studies on polylactide acid and polyethylene glycol-400 blend. AIP Conference Proceedings, 1725. https://doi.org/10.1063/ 1.4945555.
  • Zakaria, Z., Islam, Md. S., Hassan, A., Haafiz, M. K. M., Arjmandi, R., Inuwa, I. M., Hasan, M. (2013). Mechanical Properties and Morphological Characterization of PLA/Chitosan/Epoxidized Natural Rubber Composites. Advances in Materials Science and Engineering, 629092. https://doi.org/ 10.1155/2013/629092.
  • Zhao, J., Wang, Y., Liu, C. (2022). Film Transparency and Opacity Measurements. Food Anal. Methods, 15, 2840–2846. https://doi.org/ 10.1007/s12161-022-02343-x.
  • Zhou, X., Yang, R., Wang, B., Chen, K. (2019). Development and characterization of bilayer films based on pea starch/polylactic acid and use in the cherry tomatoes packaging. Carbohydrate Polymers, 222, 114912. https://doi.org/10.1016/ j.carbpol.2019.05.042.
There are 86 citations in total.

Details

Primary Language English
Subjects Food Engineering, Food Packaging, Preservation and Processing, Food Technology
Journal Section Articles
Authors

Adnan Fatih Dağdelen 0000-0002-6777-273X

Fatma Tuba Kıraç Demirel 0000-0002-1730-7688

Furkan Türker Sarıcaoğlu 0000-0003-1173-5793

Project Number 182N29
Publication Date August 14, 2024
Submission Date November 16, 2023
Acceptance Date July 9, 2024
Published in Issue Year 2024

Cite

APA Dağdelen, A. F., Kıraç Demirel, F. T., & Sarıcaoğlu, F. T. (2024). PREVENTING OF MIGRATION IN FOOD CONTACT POLYVINYL CHLORIDE-BASED STRETCH FILMS WITH POLYLACTIC ACID LAYER. Gıda, 49(4), 624-640. https://doi.org/10.15237/gida.GD23131
AMA Dağdelen AF, Kıraç Demirel FT, Sarıcaoğlu FT. PREVENTING OF MIGRATION IN FOOD CONTACT POLYVINYL CHLORIDE-BASED STRETCH FILMS WITH POLYLACTIC ACID LAYER. GIDA. August 2024;49(4):624-640. doi:10.15237/gida.GD23131
Chicago Dağdelen, Adnan Fatih, Fatma Tuba Kıraç Demirel, and Furkan Türker Sarıcaoğlu. “PREVENTING OF MIGRATION IN FOOD CONTACT POLYVINYL CHLORIDE-BASED STRETCH FILMS WITH POLYLACTIC ACID LAYER”. Gıda 49, no. 4 (August 2024): 624-40. https://doi.org/10.15237/gida.GD23131.
EndNote Dağdelen AF, Kıraç Demirel FT, Sarıcaoğlu FT (August 1, 2024) PREVENTING OF MIGRATION IN FOOD CONTACT POLYVINYL CHLORIDE-BASED STRETCH FILMS WITH POLYLACTIC ACID LAYER. Gıda 49 4 624–640.
IEEE A. F. Dağdelen, F. T. Kıraç Demirel, and F. T. Sarıcaoğlu, “PREVENTING OF MIGRATION IN FOOD CONTACT POLYVINYL CHLORIDE-BASED STRETCH FILMS WITH POLYLACTIC ACID LAYER”, GIDA, vol. 49, no. 4, pp. 624–640, 2024, doi: 10.15237/gida.GD23131.
ISNAD Dağdelen, Adnan Fatih et al. “PREVENTING OF MIGRATION IN FOOD CONTACT POLYVINYL CHLORIDE-BASED STRETCH FILMS WITH POLYLACTIC ACID LAYER”. Gıda 49/4 (August 2024), 624-640. https://doi.org/10.15237/gida.GD23131.
JAMA Dağdelen AF, Kıraç Demirel FT, Sarıcaoğlu FT. PREVENTING OF MIGRATION IN FOOD CONTACT POLYVINYL CHLORIDE-BASED STRETCH FILMS WITH POLYLACTIC ACID LAYER. GIDA. 2024;49:624–640.
MLA Dağdelen, Adnan Fatih et al. “PREVENTING OF MIGRATION IN FOOD CONTACT POLYVINYL CHLORIDE-BASED STRETCH FILMS WITH POLYLACTIC ACID LAYER”. Gıda, vol. 49, no. 4, 2024, pp. 624-40, doi:10.15237/gida.GD23131.
Vancouver Dağdelen AF, Kıraç Demirel FT, Sarıcaoğlu FT. PREVENTING OF MIGRATION IN FOOD CONTACT POLYVINYL CHLORIDE-BASED STRETCH FILMS WITH POLYLACTIC ACID LAYER. GIDA. 2024;49(4):624-40.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/