Research Article
BibTex RIS Cite

BAKLA PROTEİNİ: MİKRODALGA DESTEKLİ ÖZÜTLEME KOŞULLARININ OPTİMİZASYONU VE KARAKTERİSTİK ÖZELLİKLERİNİN PEYNİRALTI SUYU PROTEİNİ İLE KARŞILAŞTIRILMASI

Year 2024, , 863 - 878, 10.10.2024
https://doi.org/10.15237/gida.GD23134

Abstract

Bu çalışmada bakla proteini konsantresinin (BP) mikrodalga destekli özütleme işlemi, yanıt yüzey yöntemi kullanılarak optimize edilmiştir. Mikrodalga gücü (250-500 W) ve işlem süresi (10-60 dakika) bağımsız değişkenler olarak seçilmiş ve bu parametrelerin protein verimi üzerine etkisi araştırılmıştır. En yüksek protein verimi (%47.74), 481.70 W mikrodalga gücünde ve 50.68 dakika işlem süresinde elde edilmiştir. Optimum koşullarda elde edilen BP’nin karakteristik özellikleri ticari peyniraltı suyu proteini (PSP) ile kıyaslanmıştır. Proteinlerin karakteristik bağ yapıları fourier dönüşümlü kızılötesi spektroskopisi (FTIR) ile doğrulanmış ve molekül ağırlıkları sodyum dodesil-sülfat poliakrilamid jel elektroforezi (SDS-page) ile tespit edilmiştir. BP ve PSP’nin çözünürlük değerleri sırasıyla %80.23 ve %91.12 olarak belirlenmiştir (P <0.05). BP’nin köpük oluşturma özellikleri, emülsifiye edici davranışları ve stabilite katsayısı PSP’den daha yüksek bulunmuştur. Sonuçlar bitkisel proteinlerin gıda sistemlerinde alternatif protein kaynağı olarak değerlendirileceğini göstermiştir.

References

  • Aiking, H. (2014). Protein production: planet, profit, plus people?. The American journal of clinical nutrition, 100: 483S-489S, doi.org/10.3945/ ajcn.113.071209.
  • Akalan, M., Karakuş, M. Ş., Başyiğit, B., Karaaslan, A., Karaaslan, M. (2023). Nohut proteini: Ultrases destekli özütlemenin optimizasyonu ve tekno-fonksiyonel davranışları. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(4): 1296-1304, doi.org/10.28948/ ngumuh.1296312.
  • Akalan, M., Başyiğit, B., Yücetepe, M., Karakuş, M. Ş., Bayrak Akay, K., Karaaslan, A., Karaaslan, M. (2024). Sour cherry seed proteins devoted to covalently bonded carbohydrate moieties: efficacy of transaction and carbohydrate type on amino acid distribution and emulsifier behavior. Journal of Food Measurement and Characterization, 1-15, doi.org/10.1007/s11694-023-02347-z.
  • Akharume, F. U., Aluko, R. E., Adedeji, A. A. (2021). Modification of plant proteins for improved functionality: A review. Comprehensive Reviews in Food Science and Food Safety, 20(1): 198-224, doi.org/10.1111/ 1541-4337.12688.
  • Alavi, F., Chen, L., Wang, Z., Emam-Djomeh, Z. (2021). Consequences of heating under alkaline pH alone or in the presence of maltodextrin on solubility, emulsifying and foaming properties of faba bean protein. Food Hydrocolloids, 112: 106335, doi.org/10.1016/j.foodhyd.2020.106335.
  • Alu’datt, M. H., Rababah, T., Alhamad, M. N., Ereifej, K., Gammoh, S., Kubow, S., Tawalbeh, D. (2017). Preparation of mayonnaise from extracted plant protein isolates of chickpea, broad bean and lupin flour: chemical, physiochemical, nutritional and therapeutic properties. Journal of Food Science and Technology, 54(6): 1395-1405, doi.org/10.1007/s13197-017-2551-6.
  • AOAC, C. (2005). Official Methods of Analysis of the Association of Official Analytical Chemists. Official Methods: Gaithersburg, MD, USA.
  • Ata, O., Kumcuoglu, S., Tavman, S. (2022). Effects of sonication on the extraction of pepsin-soluble collagens from lamb feet and product characterization. LWT-Food Science and Technology, 159: 113253, doi.org/10.1016/j.lwt.2022.113253.
  • Aydemir, L. Y., Yemenicioğlu, A. (2013). Potential of Turkish Kabuli type chickpea and green and red lentil cultivars as source of soy and animal origin functional protein alternatives. LWT-Food Science and Technology, 50(2): 686-694, doi.org/10.1016/j.lwt.2012.07.023.
  • Balasubramaniam, V. M., Martínez-Monteagudo, S. I., Gupta, R. (2015). Principles and Application of High Pressure–Based Technologies in the Food Industry. Annual Review of Food Science and Technology, 6(1): 435-462, doi.org/10.1146/ annurev-food-022814-015539.
  • Boye, J. I., Aksay, S., Roufik, S., Ribéreau, S., Mondor, M., Farnworth, E., Rajamohamed, S. H. (2010). Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Research International, 43(2): 537-546, doi.org/10.1016/ j.foodres.2009.07.021.
  • Boye, J., Zare, F., Pletch, A. (2010). Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Research International, 43(2): 414-431, doi.org/10.1016/j.foodres.2009.09.003.
  • Başyiğit, B., Yücetepe, M., Karaaslan, A., Karaaslan, M. (2021). High efficiency microencapsulation of extra virgin olive oil (EVOO) with novel carrier agents: Fruit proteins. Materials Today Communications, 28: 102618, doi.org/10.1016/j.mtcomm.2021.102618.
  • Cai, R., McCurdy, A., Baik, B.-K. (2002). Textural Property of 6 Legume Curds in Relation to their Protein Constituents. Journal of Food Science, 67(5): 1725-1730, doi.org/10.1111/j.1365-2621.2002.tb08713.x.
  • Cano-Medina, A., Jiménez-Islas, H., Dendooven, L., Herrera, R. P., González-Alatorre, G., Escamilla-Silva, E. M. (2011). Emulsifying and foaming capacity and emulsion and foam stability of sesame protein concentrates. Food Research International, 44(3): 684-692, doi.org/10.1016/ j.foodres.2010.12.015.
  • Cho, S. M., Kwak, K. S., Park, D. C., Gu, Y. S., Ji, C. I., Jang, D. H., Lee, Y. B., Kim, S. B. (2004). Processing optimization and functional properties of gelatin from shark (Isurus oxyrinchus) cartilage. Food Hydrocolloids, 18(4): 573-579, doi.org/10.1016/j.foodhyd.2003.10.001.
  • Conde, J. M., del Mar Yust Escobar, M., Pedroche Jiménez, J. J., Rodríguez, F. M., Rodríguez Patino, J. M. (2005). Effect of Enzymatic Treatment of Extracted Sunflower Proteins on Solubility, Amino Acid Composition, and Surface Activity. Journal of Agricultural and Food Chemistry, 53(20): 8038-8045, doi.org/10.1021/jf051026i.
  • Damodaran, S. (2006). Protein Stabilization of Emulsions and Foams. Journal of Food Science, 70(3): R54-R66, doi.org/10.1111/j.1365-2621.2005.tb07150.x.
  • Das, D., Panesar, P. S., Saini, C. S. (2023). Ultrasonic extraction of soy protein isolate: Characterization and comparison with microwave and enzymatic extraction methods. Journal of Food Science, 88(7): 2758-2779, doi.org/10.1111/1750-3841.16654.
  • Day, L., Cakebread, J. A., Loveday, S. M. (2022). Food proteins from animals and plants: Differences in the nutritional and functional properties. Trends in Food Science & Technology, 119: 428-442, doi.org/10.1016/j.tifs.2021.12.020.
  • de Paiva Gouvêa, L., Caldeira, R., de Lima Azevedo, T., Galdeano, M. C., Felberg, I., Lima, J. R., Grassi Mellinger, C. (2023). Physical and techno-functional properties of a common bean protein concentrate compared to commercial legume ingredients for the plant-based market. Food Hydrocolloids, 137: 108351, doi.org/10.1016/ j.foodhyd.2022.108351.
  • Du, Q., Zhou, L., Lyu, F., Liu, J., Ding, Y. (2022). The complex of whey protein and pectin: Interactions, functional properties and applications in food colloidal systems – A review. Colloids and Surfaces B: Biointerfaces, 210: 112253, doi.org/10.1016/j.colsurfb.2021.112253.
  • Duangmal, K., Saicheua, B., Sueeprasan, S. (2008). Colour evaluation of freeze-dried roselle extract as a natural food colorant in a model system of a drink. LWT-Food Science and Technology, 41(8): 1437-1445, doi.org/10.1016/ j.lwt.2007.08.014.
  • El Fiel, H. E. A., El Tinay, A. H., Elsheikh, E. A. E. (2002). Effect of nutritional status of faba bean (Vicia faba L.) on protein solubility profiles. Food Chemistry, 76(2): 219-223, doi.org/10.1016/ S0308-8146(00)00314-9.
  • Gao, Z., Shen, P., Lan, Y., Cui, L., Ohm, J.-B., Chen, B., Rao, J. (2020). Effect of alkaline extraction pH on structure properties, solubility, and beany flavor of yellow pea protein isolate. Food Research International, 131: 109045, doi.org/10.1016/j.foodres.2020.109045.
  • Gharibzahedi, S. M. T., Smith, B. (2020). The functional modification of legume proteins by ultrasonication: A review. Trends in Food Science & Technology, 98: 107-116, doi.org/10.1016/ j.tifs.2020.02.002.
  • Gochev, G., Retzlaff, I., Exerowa, D., Miller, R. (2014). Electrostatic stabilization of foam films from β-lactoglobulin solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 460: 272-279, doi.org/10.1016/j.colsurfa.2013.12.037.
  • Görgüç, A., Bircan, C., Yılmaz, F. M. (2019). Sesame bran as an unexploited by-product: Effect of enzyme and ultrasound-assisted extraction on the recovery of protein and antioxidant compounds. Food Chemistry, 283: 637-645, doi.org/10.1016/j.foodchem.2019.01.077.
  • Görgüç, A., Özer, P., Yılmaz, F. M. (2020). Microwave‐assisted enzymatic extraction of plant protein with antioxidant compounds from the food waste sesame bran: Comparative optimization study and identification of metabolomics using LC/Q‐TOF/MS. Journal of Food Processing and Preservation, 44(1): e14304, doi.org/10.1111/jfpp.14304.
  • Grdadolnik, J. (2003). Saturation effects in FTIR spectroscopy: intensity of amide I and amide II bands in protein spectra. Acta chimica slovenica, 50(4): 777-788.
  • Haris, P. I. (2013). Probing protein–protein interaction in biomembranes using Fourier transform infrared spectroscopy. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1828(10): 2265-2271, doi.org/10.1016/ j.bbamem.2013.04.008.
  • Hughes, G. J., Ryan, D. J., Mukherjea, R., Schasteen, C. S. (2011). Protein Digestibility-Corrected Amino Acid Scores (PDCAAS) for Soy Protein Isolates and Concentrate: Criteria for Evaluation. Journal of Agricultural and Food Chemistry, 59(23): 12707-12712, doi.org/10.1021/ jf203220v.
  • Kapoore, R., Butler, T., Pandhal, J., Vaidyanathan, S. (2018). Microwave-Assisted Extraction for Microalgae: From Biofuels to Biorefinery. Biology, 7(1): 18, doi.org/10.3390/ biology7010018.
  • Karaca, A. C., Low, N., Nickerson, M. (2011). Emulsifying properties of chickpea, faba bean, lentil and pea proteins produced by isoelectric precipitation and salt extraction. Food Research International, 44(9): 2742-2750, doi.org/10.1016/ j.foodres.2011.06.012.
  • Kim, W., Wang, Y., Selomulya, C. (2020). Dairy and plant proteins as natural food emulsifiers. Trends in Food Science & Technology, 105: 261-272, doi.org/10.1016/j.tifs.2020.09.012.
  • Kosińska, A., Karamać, M., Penkacik, K., Urbalewicz, A., Amarowicz, R. (2011). Interactions between tannins and proteins isolated from broad bean seeds (Vicia faba Major) yield soluble and non-soluble complexes. European Food Research and Technology, 233(2): 213-222, doi.org/10.1007/s00217-011-1506-9.
  • Kumar, M., Tomar, M., Potkule, J., Reetu, Punia, S., Dhakane-Lad, J., Singh, S., Dhumal, S., Chandra Pradhan, P., Bhushan, B., Anitha, T., Alajil, O., Alhariri, A., Amarowicz, R., Kennedy, J. F. (2022). Functional characterization of plant-based protein to determine its quality for food applications. Food Hydrocolloids, 123: 106986, doi.org/10.1016/j.foodhyd.2021.106986.
  • Kumar, M., Tomar, M., Punia, S., Dhakane-Lad, J., Dhumal, S., Changan, S., Senapathy, M., Berwal, M. K., Sampathrajan, V., Sayed, A. A. S., Chandran, D., Pandiselvam, R., Rais, N., Mahato, D. K., Udikeri, S. S., Satankar, V., Anitha, T., Reetu, Radha, … Kennedy, J. F. (2022). Plant-based proteins and their multifaceted industrial applications. LWT-Food Science and Technology, 154: 112620, doi.org/10.1016/j.lwt.2021.112620.
  • Kute, A., Mohapatra, D., Babu, B., Sawant, B. P. (2015). Optimization of microwave assisted extraction of pectin from orange peel using response surface methodology. Journal of Food Research and Technology, 3(2): 62-70.
  • Laemmli, U. K. (1970). Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature, 227(5259): 680-685, doi.org/10.1038/227680a0.
  • Lam, A. C. Y., Warkentin, T. D., Tyler, R. T., Nickerson, M. T. (2017). Physicochemical and Functional Properties of Protein Isolates Obtained from Several Pea Cultivars. Cereal Chemistry, 94(1): 89-97, doi.org/10.1094/ CCHEM-04-16-0097-FI.
  • Lee, H. W., Lu, Y., Zhang, Y., Fu, C., Huang, D. (2021). Physicochemical and functional properties of red lentil protein isolates from three origins at different pH. Food Chemistry, 358: 129749, doi.org/10.1016/ j.foodchem.2021.129749.
  • Lei, M., Jiang, F.-C., Cai, J., Hu, S., Zhou, R., Liu, G., Wang, Y.-H., Wang, H.-B., He, J.-R., Xiong, X.-G. (2018). Facile microencapsulation of olive oil in porous starch granules: Fabrication, characterization, and oxidative stability. International Journal of Biological Macromolecules, 111: 755-761, doi.org/10.1016/ j.ijbiomac.2018.01.051.
  • Li, Q., Wang, Z., Dai, C., Wang, Y., Chen, W., Ju, X., Yuan, J., He, R. (2019). Physical stability and microstructure of rapeseed protein isolate/gum Arabic stabilized emulsions at alkaline pH. Food Hydrocolloids, 88: 50-57, doi.org/10.1016/ j.foodhyd.2018.09.020.
  • Li, X., Shi, J., Scanlon, M., Xue, S. J., Lu, J. (2021). Effects of pretreatments on physicochemical and structural properties of proteins isolated from canola seeds after oil extraction by supercritical-CO2 process. LWT-Food Science and Technology, 137: 110415, doi.org/10.1016/j.lwt.2020.110415.
  • Lowry, OliverH., Rosebrough, NiraJ., Farr, A. L., & Randall, RoseJ. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193(1): 265-275, doi.org/10.1016/ S0021-9258(19)52451-6.
  • Martínez-Velasco, A., Lobato-Calleros, C., Hernández-Rodríguez, B. E., Román-Guerrero, A., Alvarez-Ramirez, J., Vernon-Carter, E. J. (2018). High intensity ultrasound treatment of faba bean (Vicia faba L.) protein: Effect on surface properties, foaming ability and structural changes. Ultrasonics Sonochemistry, 44: 97-105, doi.org/10.1016/j.ultsonch.2018.02.007.
  • Mcclements, D. J. (2007). Critical Review of Techniques and Methodologies for Characterization of Emulsion Stability. Critical Reviews in Food Science and Nutrition, 47(7): 611-649, doi.org/10.1080/10408390701289292.
  • Multari, S., Stewart, D., Russell, W. R. (2015). Potential of Fava Bean as Future Protein Supply to Partially Replace Meat Intake in the Human Diet. Comprehensive Reviews in Food Science and Food Safety, 14(5): 511-522, doi.org/10.1111/1541-4337.12146.
  • Pelegrine, D. H. G., Gasparetto, C. A. (2005). Whey proteins solubility as function of temperature and pH. LWT-Food Science and Technology, 38(1): 77-80, doi.org/10.1016/ j.lwt.2004.03.013.
  • Phuangjit, U., Klinkesorn, U., Tan, C. P., & Katekhong, W. (2024). Enhancing silkworm protein yield, extraction efficiency, structure, functionality, and antioxidant activity using ultrasound‐, microwave‐, and freeze–thaw‐assisted methods. Journal of the Science of Food and Agriculture, 104(1): 383-390, doi.org/10.1002/ jsfa.12929.
  • Quanhong, L., Caili, F. (2005). Application of response surface methodology for extraction optimization of germinant pumpkin seeds protein. Food Chemistry, 92(4): 701-706, doi.org/10.1016/j.foodchem.2004.08.042.
  • Sharan, S., Zanghelini, G., Zotzel, J., Bonerz, D., Aschoff, J., Saint‐Eve, A., Maillard, M. N. (2021). Fava bean (Vicia faba L.) for food applications: From seed to ingredient processing and its effect on functional properties, antinutritional factors, flavor, and color. Comprehensive Reviews in Food Science and Food Safety, 20(1): 401-428, doi.org/10.1111/1541-4337.12687.
  • Sharma, A., Jana, A. H., Chavan, R. S. (2012). Functionality of Milk Powders and Milk‐Based Powders for End Use Applications—A Review. Comprehensive Reviews in Food Science and Food Safety, 11(5): 518-528, doi.org/10.1111/j.1541-4337.2012.00199.x.
  • Shen, Y., Li, Y. (2021). Acylation modification and/or guar gum conjugation enhanced functional properties of pea protein isolate. Food Hydrocolloids, 117: 106686, doi.org/10.1016/ j.foodhyd.2021.106686.
  • Springmann, M., Clark, M., Mason-D’Croz, D., Wiebe, K., Bodirsky, B. L., Lassaletta, L., ... & Willett, W. (2018). Options for keeping the food system within environmental limits. Nature, 562(7728): 519-525, doi.org/10.1038/s41586-018-0594-0.
  • Stehfest, E., Bouwman, L., Van Vuuren, D. P., Den Elzen, M. G., Eickhout, B., & Kabat, P. (2009). Climate benefits of changing diet. Climatic change, 95(1): 83-102, doi.org/10.1007/s10584-008-9534-6.
  • Stone, A. K., Karalash, A., Tyler, R. T., Warkentin, T. D., Nickerson, M. T. (2015). Functional attributes of pea protein isolates prepared using different extraction methods and cultivars. Food Research International, 76: 31-38, doi.org/10.1016/j.foodres.2014.11.017.
  • Vagadia, B., Vanga, S., Singh, A., Gariepy, Y., Raghavan, V. (2018). Comparison of Conventional and Microwave Treatment on Soymilk for Inactivation of Trypsin Inhibitors and In Vitro Protein Digestibility. Foods, 7(1): 6, doi.org/10.3390/foods7010006.
  • Varghese, T., Pare, A. (2019). Effect of microwave assisted extraction on yield and protein characteristics of soymilk. Journal of Food Engineering, 262: 92-99, doi.org/10.1016/ j.jfoodeng.2019.05.020.
  • Vioque, J., Alaiz, M., Girón-Calle, J. (2012). Nutritional and functional properties of Vicia faba protein isolates and related fractions. Food Chemistry, 132(1): 67-72, doi.org/10.1016/ j.foodchem.2011.10.033.
  • Wang, W., Du, G., Li, C., Zhang, H., Long, Y., Ni, Y. (2016). Preparation of cellulose nanocrystals from asparagus (Asparagus officinalis L.) and their applications to palm oil/water Pickering emulsion. Carbohydrate Polymers, 151: 1-8, doi.org/10.1016/j.carbpol.2016.05.052.
  • Zhao, X., Fan, X., Shao, X., Cheng, M., Wang, C., Jiang, H., Zhang, X., & Yuan, C. (2022). Modifying the physicochemical properties, solubility and foaming capacity of milk proteins by ultrasound-assisted alkaline pH-shifting treatment. Ultrasonics Sonochemistry, 88: 106089, doi.org/10.1016/j.ultsonch.2022.106089.

FABA BEAN PROTEIN: OPTIMIZATION OF MICROWAVE-ASSISTED EXTRACTION CONDITIONS AND COMPARISON OF ITS CHARACTERISTICS WITH WHEY PROTEIN

Year 2024, , 863 - 878, 10.10.2024
https://doi.org/10.15237/gida.GD23134

Abstract

In this study, microwave-assisted extraction of faba bean protein (BP) concentrate was optimized through the response surface methodology. Microwave power (250-500 W) and processing time (10-60 min) were chosen as independent variables and the effect of these parameters on protein yield was investigated. The highest protein yield (47.74%) was achieved at 481.70 W microwave power and 50.68 min processing time. The characteristic properties of BP obtained under optimum conditions were compared with whey protein. The characteristic bonds of the proteins were confirmed by Fourier transform infrared spectroscopy (FTIR) and molecular weights were determined by sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-page). The solubility values of BP and whey protein were found to be as 80.23% and 91.12%, respectively (P <0.05). BP's foaming properties, emulsifying behavior, and stability coefficient resulted in superior to whey protein. The results showed plant proteins will be considered as alternative protein sources in food systems.

References

  • Aiking, H. (2014). Protein production: planet, profit, plus people?. The American journal of clinical nutrition, 100: 483S-489S, doi.org/10.3945/ ajcn.113.071209.
  • Akalan, M., Karakuş, M. Ş., Başyiğit, B., Karaaslan, A., Karaaslan, M. (2023). Nohut proteini: Ultrases destekli özütlemenin optimizasyonu ve tekno-fonksiyonel davranışları. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(4): 1296-1304, doi.org/10.28948/ ngumuh.1296312.
  • Akalan, M., Başyiğit, B., Yücetepe, M., Karakuş, M. Ş., Bayrak Akay, K., Karaaslan, A., Karaaslan, M. (2024). Sour cherry seed proteins devoted to covalently bonded carbohydrate moieties: efficacy of transaction and carbohydrate type on amino acid distribution and emulsifier behavior. Journal of Food Measurement and Characterization, 1-15, doi.org/10.1007/s11694-023-02347-z.
  • Akharume, F. U., Aluko, R. E., Adedeji, A. A. (2021). Modification of plant proteins for improved functionality: A review. Comprehensive Reviews in Food Science and Food Safety, 20(1): 198-224, doi.org/10.1111/ 1541-4337.12688.
  • Alavi, F., Chen, L., Wang, Z., Emam-Djomeh, Z. (2021). Consequences of heating under alkaline pH alone or in the presence of maltodextrin on solubility, emulsifying and foaming properties of faba bean protein. Food Hydrocolloids, 112: 106335, doi.org/10.1016/j.foodhyd.2020.106335.
  • Alu’datt, M. H., Rababah, T., Alhamad, M. N., Ereifej, K., Gammoh, S., Kubow, S., Tawalbeh, D. (2017). Preparation of mayonnaise from extracted plant protein isolates of chickpea, broad bean and lupin flour: chemical, physiochemical, nutritional and therapeutic properties. Journal of Food Science and Technology, 54(6): 1395-1405, doi.org/10.1007/s13197-017-2551-6.
  • AOAC, C. (2005). Official Methods of Analysis of the Association of Official Analytical Chemists. Official Methods: Gaithersburg, MD, USA.
  • Ata, O., Kumcuoglu, S., Tavman, S. (2022). Effects of sonication on the extraction of pepsin-soluble collagens from lamb feet and product characterization. LWT-Food Science and Technology, 159: 113253, doi.org/10.1016/j.lwt.2022.113253.
  • Aydemir, L. Y., Yemenicioğlu, A. (2013). Potential of Turkish Kabuli type chickpea and green and red lentil cultivars as source of soy and animal origin functional protein alternatives. LWT-Food Science and Technology, 50(2): 686-694, doi.org/10.1016/j.lwt.2012.07.023.
  • Balasubramaniam, V. M., Martínez-Monteagudo, S. I., Gupta, R. (2015). Principles and Application of High Pressure–Based Technologies in the Food Industry. Annual Review of Food Science and Technology, 6(1): 435-462, doi.org/10.1146/ annurev-food-022814-015539.
  • Boye, J. I., Aksay, S., Roufik, S., Ribéreau, S., Mondor, M., Farnworth, E., Rajamohamed, S. H. (2010). Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Research International, 43(2): 537-546, doi.org/10.1016/ j.foodres.2009.07.021.
  • Boye, J., Zare, F., Pletch, A. (2010). Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Research International, 43(2): 414-431, doi.org/10.1016/j.foodres.2009.09.003.
  • Başyiğit, B., Yücetepe, M., Karaaslan, A., Karaaslan, M. (2021). High efficiency microencapsulation of extra virgin olive oil (EVOO) with novel carrier agents: Fruit proteins. Materials Today Communications, 28: 102618, doi.org/10.1016/j.mtcomm.2021.102618.
  • Cai, R., McCurdy, A., Baik, B.-K. (2002). Textural Property of 6 Legume Curds in Relation to their Protein Constituents. Journal of Food Science, 67(5): 1725-1730, doi.org/10.1111/j.1365-2621.2002.tb08713.x.
  • Cano-Medina, A., Jiménez-Islas, H., Dendooven, L., Herrera, R. P., González-Alatorre, G., Escamilla-Silva, E. M. (2011). Emulsifying and foaming capacity and emulsion and foam stability of sesame protein concentrates. Food Research International, 44(3): 684-692, doi.org/10.1016/ j.foodres.2010.12.015.
  • Cho, S. M., Kwak, K. S., Park, D. C., Gu, Y. S., Ji, C. I., Jang, D. H., Lee, Y. B., Kim, S. B. (2004). Processing optimization and functional properties of gelatin from shark (Isurus oxyrinchus) cartilage. Food Hydrocolloids, 18(4): 573-579, doi.org/10.1016/j.foodhyd.2003.10.001.
  • Conde, J. M., del Mar Yust Escobar, M., Pedroche Jiménez, J. J., Rodríguez, F. M., Rodríguez Patino, J. M. (2005). Effect of Enzymatic Treatment of Extracted Sunflower Proteins on Solubility, Amino Acid Composition, and Surface Activity. Journal of Agricultural and Food Chemistry, 53(20): 8038-8045, doi.org/10.1021/jf051026i.
  • Damodaran, S. (2006). Protein Stabilization of Emulsions and Foams. Journal of Food Science, 70(3): R54-R66, doi.org/10.1111/j.1365-2621.2005.tb07150.x.
  • Das, D., Panesar, P. S., Saini, C. S. (2023). Ultrasonic extraction of soy protein isolate: Characterization and comparison with microwave and enzymatic extraction methods. Journal of Food Science, 88(7): 2758-2779, doi.org/10.1111/1750-3841.16654.
  • Day, L., Cakebread, J. A., Loveday, S. M. (2022). Food proteins from animals and plants: Differences in the nutritional and functional properties. Trends in Food Science & Technology, 119: 428-442, doi.org/10.1016/j.tifs.2021.12.020.
  • de Paiva Gouvêa, L., Caldeira, R., de Lima Azevedo, T., Galdeano, M. C., Felberg, I., Lima, J. R., Grassi Mellinger, C. (2023). Physical and techno-functional properties of a common bean protein concentrate compared to commercial legume ingredients for the plant-based market. Food Hydrocolloids, 137: 108351, doi.org/10.1016/ j.foodhyd.2022.108351.
  • Du, Q., Zhou, L., Lyu, F., Liu, J., Ding, Y. (2022). The complex of whey protein and pectin: Interactions, functional properties and applications in food colloidal systems – A review. Colloids and Surfaces B: Biointerfaces, 210: 112253, doi.org/10.1016/j.colsurfb.2021.112253.
  • Duangmal, K., Saicheua, B., Sueeprasan, S. (2008). Colour evaluation of freeze-dried roselle extract as a natural food colorant in a model system of a drink. LWT-Food Science and Technology, 41(8): 1437-1445, doi.org/10.1016/ j.lwt.2007.08.014.
  • El Fiel, H. E. A., El Tinay, A. H., Elsheikh, E. A. E. (2002). Effect of nutritional status of faba bean (Vicia faba L.) on protein solubility profiles. Food Chemistry, 76(2): 219-223, doi.org/10.1016/ S0308-8146(00)00314-9.
  • Gao, Z., Shen, P., Lan, Y., Cui, L., Ohm, J.-B., Chen, B., Rao, J. (2020). Effect of alkaline extraction pH on structure properties, solubility, and beany flavor of yellow pea protein isolate. Food Research International, 131: 109045, doi.org/10.1016/j.foodres.2020.109045.
  • Gharibzahedi, S. M. T., Smith, B. (2020). The functional modification of legume proteins by ultrasonication: A review. Trends in Food Science & Technology, 98: 107-116, doi.org/10.1016/ j.tifs.2020.02.002.
  • Gochev, G., Retzlaff, I., Exerowa, D., Miller, R. (2014). Electrostatic stabilization of foam films from β-lactoglobulin solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 460: 272-279, doi.org/10.1016/j.colsurfa.2013.12.037.
  • Görgüç, A., Bircan, C., Yılmaz, F. M. (2019). Sesame bran as an unexploited by-product: Effect of enzyme and ultrasound-assisted extraction on the recovery of protein and antioxidant compounds. Food Chemistry, 283: 637-645, doi.org/10.1016/j.foodchem.2019.01.077.
  • Görgüç, A., Özer, P., Yılmaz, F. M. (2020). Microwave‐assisted enzymatic extraction of plant protein with antioxidant compounds from the food waste sesame bran: Comparative optimization study and identification of metabolomics using LC/Q‐TOF/MS. Journal of Food Processing and Preservation, 44(1): e14304, doi.org/10.1111/jfpp.14304.
  • Grdadolnik, J. (2003). Saturation effects in FTIR spectroscopy: intensity of amide I and amide II bands in protein spectra. Acta chimica slovenica, 50(4): 777-788.
  • Haris, P. I. (2013). Probing protein–protein interaction in biomembranes using Fourier transform infrared spectroscopy. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1828(10): 2265-2271, doi.org/10.1016/ j.bbamem.2013.04.008.
  • Hughes, G. J., Ryan, D. J., Mukherjea, R., Schasteen, C. S. (2011). Protein Digestibility-Corrected Amino Acid Scores (PDCAAS) for Soy Protein Isolates and Concentrate: Criteria for Evaluation. Journal of Agricultural and Food Chemistry, 59(23): 12707-12712, doi.org/10.1021/ jf203220v.
  • Kapoore, R., Butler, T., Pandhal, J., Vaidyanathan, S. (2018). Microwave-Assisted Extraction for Microalgae: From Biofuels to Biorefinery. Biology, 7(1): 18, doi.org/10.3390/ biology7010018.
  • Karaca, A. C., Low, N., Nickerson, M. (2011). Emulsifying properties of chickpea, faba bean, lentil and pea proteins produced by isoelectric precipitation and salt extraction. Food Research International, 44(9): 2742-2750, doi.org/10.1016/ j.foodres.2011.06.012.
  • Kim, W., Wang, Y., Selomulya, C. (2020). Dairy and plant proteins as natural food emulsifiers. Trends in Food Science & Technology, 105: 261-272, doi.org/10.1016/j.tifs.2020.09.012.
  • Kosińska, A., Karamać, M., Penkacik, K., Urbalewicz, A., Amarowicz, R. (2011). Interactions between tannins and proteins isolated from broad bean seeds (Vicia faba Major) yield soluble and non-soluble complexes. European Food Research and Technology, 233(2): 213-222, doi.org/10.1007/s00217-011-1506-9.
  • Kumar, M., Tomar, M., Potkule, J., Reetu, Punia, S., Dhakane-Lad, J., Singh, S., Dhumal, S., Chandra Pradhan, P., Bhushan, B., Anitha, T., Alajil, O., Alhariri, A., Amarowicz, R., Kennedy, J. F. (2022). Functional characterization of plant-based protein to determine its quality for food applications. Food Hydrocolloids, 123: 106986, doi.org/10.1016/j.foodhyd.2021.106986.
  • Kumar, M., Tomar, M., Punia, S., Dhakane-Lad, J., Dhumal, S., Changan, S., Senapathy, M., Berwal, M. K., Sampathrajan, V., Sayed, A. A. S., Chandran, D., Pandiselvam, R., Rais, N., Mahato, D. K., Udikeri, S. S., Satankar, V., Anitha, T., Reetu, Radha, … Kennedy, J. F. (2022). Plant-based proteins and their multifaceted industrial applications. LWT-Food Science and Technology, 154: 112620, doi.org/10.1016/j.lwt.2021.112620.
  • Kute, A., Mohapatra, D., Babu, B., Sawant, B. P. (2015). Optimization of microwave assisted extraction of pectin from orange peel using response surface methodology. Journal of Food Research and Technology, 3(2): 62-70.
  • Laemmli, U. K. (1970). Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature, 227(5259): 680-685, doi.org/10.1038/227680a0.
  • Lam, A. C. Y., Warkentin, T. D., Tyler, R. T., Nickerson, M. T. (2017). Physicochemical and Functional Properties of Protein Isolates Obtained from Several Pea Cultivars. Cereal Chemistry, 94(1): 89-97, doi.org/10.1094/ CCHEM-04-16-0097-FI.
  • Lee, H. W., Lu, Y., Zhang, Y., Fu, C., Huang, D. (2021). Physicochemical and functional properties of red lentil protein isolates from three origins at different pH. Food Chemistry, 358: 129749, doi.org/10.1016/ j.foodchem.2021.129749.
  • Lei, M., Jiang, F.-C., Cai, J., Hu, S., Zhou, R., Liu, G., Wang, Y.-H., Wang, H.-B., He, J.-R., Xiong, X.-G. (2018). Facile microencapsulation of olive oil in porous starch granules: Fabrication, characterization, and oxidative stability. International Journal of Biological Macromolecules, 111: 755-761, doi.org/10.1016/ j.ijbiomac.2018.01.051.
  • Li, Q., Wang, Z., Dai, C., Wang, Y., Chen, W., Ju, X., Yuan, J., He, R. (2019). Physical stability and microstructure of rapeseed protein isolate/gum Arabic stabilized emulsions at alkaline pH. Food Hydrocolloids, 88: 50-57, doi.org/10.1016/ j.foodhyd.2018.09.020.
  • Li, X., Shi, J., Scanlon, M., Xue, S. J., Lu, J. (2021). Effects of pretreatments on physicochemical and structural properties of proteins isolated from canola seeds after oil extraction by supercritical-CO2 process. LWT-Food Science and Technology, 137: 110415, doi.org/10.1016/j.lwt.2020.110415.
  • Lowry, OliverH., Rosebrough, NiraJ., Farr, A. L., & Randall, RoseJ. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193(1): 265-275, doi.org/10.1016/ S0021-9258(19)52451-6.
  • Martínez-Velasco, A., Lobato-Calleros, C., Hernández-Rodríguez, B. E., Román-Guerrero, A., Alvarez-Ramirez, J., Vernon-Carter, E. J. (2018). High intensity ultrasound treatment of faba bean (Vicia faba L.) protein: Effect on surface properties, foaming ability and structural changes. Ultrasonics Sonochemistry, 44: 97-105, doi.org/10.1016/j.ultsonch.2018.02.007.
  • Mcclements, D. J. (2007). Critical Review of Techniques and Methodologies for Characterization of Emulsion Stability. Critical Reviews in Food Science and Nutrition, 47(7): 611-649, doi.org/10.1080/10408390701289292.
  • Multari, S., Stewart, D., Russell, W. R. (2015). Potential of Fava Bean as Future Protein Supply to Partially Replace Meat Intake in the Human Diet. Comprehensive Reviews in Food Science and Food Safety, 14(5): 511-522, doi.org/10.1111/1541-4337.12146.
  • Pelegrine, D. H. G., Gasparetto, C. A. (2005). Whey proteins solubility as function of temperature and pH. LWT-Food Science and Technology, 38(1): 77-80, doi.org/10.1016/ j.lwt.2004.03.013.
  • Phuangjit, U., Klinkesorn, U., Tan, C. P., & Katekhong, W. (2024). Enhancing silkworm protein yield, extraction efficiency, structure, functionality, and antioxidant activity using ultrasound‐, microwave‐, and freeze–thaw‐assisted methods. Journal of the Science of Food and Agriculture, 104(1): 383-390, doi.org/10.1002/ jsfa.12929.
  • Quanhong, L., Caili, F. (2005). Application of response surface methodology for extraction optimization of germinant pumpkin seeds protein. Food Chemistry, 92(4): 701-706, doi.org/10.1016/j.foodchem.2004.08.042.
  • Sharan, S., Zanghelini, G., Zotzel, J., Bonerz, D., Aschoff, J., Saint‐Eve, A., Maillard, M. N. (2021). Fava bean (Vicia faba L.) for food applications: From seed to ingredient processing and its effect on functional properties, antinutritional factors, flavor, and color. Comprehensive Reviews in Food Science and Food Safety, 20(1): 401-428, doi.org/10.1111/1541-4337.12687.
  • Sharma, A., Jana, A. H., Chavan, R. S. (2012). Functionality of Milk Powders and Milk‐Based Powders for End Use Applications—A Review. Comprehensive Reviews in Food Science and Food Safety, 11(5): 518-528, doi.org/10.1111/j.1541-4337.2012.00199.x.
  • Shen, Y., Li, Y. (2021). Acylation modification and/or guar gum conjugation enhanced functional properties of pea protein isolate. Food Hydrocolloids, 117: 106686, doi.org/10.1016/ j.foodhyd.2021.106686.
  • Springmann, M., Clark, M., Mason-D’Croz, D., Wiebe, K., Bodirsky, B. L., Lassaletta, L., ... & Willett, W. (2018). Options for keeping the food system within environmental limits. Nature, 562(7728): 519-525, doi.org/10.1038/s41586-018-0594-0.
  • Stehfest, E., Bouwman, L., Van Vuuren, D. P., Den Elzen, M. G., Eickhout, B., & Kabat, P. (2009). Climate benefits of changing diet. Climatic change, 95(1): 83-102, doi.org/10.1007/s10584-008-9534-6.
  • Stone, A. K., Karalash, A., Tyler, R. T., Warkentin, T. D., Nickerson, M. T. (2015). Functional attributes of pea protein isolates prepared using different extraction methods and cultivars. Food Research International, 76: 31-38, doi.org/10.1016/j.foodres.2014.11.017.
  • Vagadia, B., Vanga, S., Singh, A., Gariepy, Y., Raghavan, V. (2018). Comparison of Conventional and Microwave Treatment on Soymilk for Inactivation of Trypsin Inhibitors and In Vitro Protein Digestibility. Foods, 7(1): 6, doi.org/10.3390/foods7010006.
  • Varghese, T., Pare, A. (2019). Effect of microwave assisted extraction on yield and protein characteristics of soymilk. Journal of Food Engineering, 262: 92-99, doi.org/10.1016/ j.jfoodeng.2019.05.020.
  • Vioque, J., Alaiz, M., Girón-Calle, J. (2012). Nutritional and functional properties of Vicia faba protein isolates and related fractions. Food Chemistry, 132(1): 67-72, doi.org/10.1016/ j.foodchem.2011.10.033.
  • Wang, W., Du, G., Li, C., Zhang, H., Long, Y., Ni, Y. (2016). Preparation of cellulose nanocrystals from asparagus (Asparagus officinalis L.) and their applications to palm oil/water Pickering emulsion. Carbohydrate Polymers, 151: 1-8, doi.org/10.1016/j.carbpol.2016.05.052.
  • Zhao, X., Fan, X., Shao, X., Cheng, M., Wang, C., Jiang, H., Zhang, X., & Yuan, C. (2022). Modifying the physicochemical properties, solubility and foaming capacity of milk proteins by ultrasound-assisted alkaline pH-shifting treatment. Ultrasonics Sonochemistry, 88: 106089, doi.org/10.1016/j.ultsonch.2022.106089.
There are 63 citations in total.

Details

Primary Language Turkish
Subjects Food Technology
Journal Section Articles
Authors

Mehmet Şükrü Karakuş 0000-0002-1805-8206

Publication Date October 10, 2024
Submission Date November 24, 2023
Acceptance Date September 20, 2024
Published in Issue Year 2024

Cite

APA Karakuş, M. Ş. (2024). BAKLA PROTEİNİ: MİKRODALGA DESTEKLİ ÖZÜTLEME KOŞULLARININ OPTİMİZASYONU VE KARAKTERİSTİK ÖZELLİKLERİNİN PEYNİRALTI SUYU PROTEİNİ İLE KARŞILAŞTIRILMASI. Gıda, 49(5), 863-878. https://doi.org/10.15237/gida.GD23134
AMA Karakuş MŞ. BAKLA PROTEİNİ: MİKRODALGA DESTEKLİ ÖZÜTLEME KOŞULLARININ OPTİMİZASYONU VE KARAKTERİSTİK ÖZELLİKLERİNİN PEYNİRALTI SUYU PROTEİNİ İLE KARŞILAŞTIRILMASI. GIDA. October 2024;49(5):863-878. doi:10.15237/gida.GD23134
Chicago Karakuş, Mehmet Şükrü. “BAKLA PROTEİNİ: MİKRODALGA DESTEKLİ ÖZÜTLEME KOŞULLARININ OPTİMİZASYONU VE KARAKTERİSTİK ÖZELLİKLERİNİN PEYNİRALTI SUYU PROTEİNİ İLE KARŞILAŞTIRILMASI”. Gıda 49, no. 5 (October 2024): 863-78. https://doi.org/10.15237/gida.GD23134.
EndNote Karakuş MŞ (October 1, 2024) BAKLA PROTEİNİ: MİKRODALGA DESTEKLİ ÖZÜTLEME KOŞULLARININ OPTİMİZASYONU VE KARAKTERİSTİK ÖZELLİKLERİNİN PEYNİRALTI SUYU PROTEİNİ İLE KARŞILAŞTIRILMASI. Gıda 49 5 863–878.
IEEE M. Ş. Karakuş, “BAKLA PROTEİNİ: MİKRODALGA DESTEKLİ ÖZÜTLEME KOŞULLARININ OPTİMİZASYONU VE KARAKTERİSTİK ÖZELLİKLERİNİN PEYNİRALTI SUYU PROTEİNİ İLE KARŞILAŞTIRILMASI”, GIDA, vol. 49, no. 5, pp. 863–878, 2024, doi: 10.15237/gida.GD23134.
ISNAD Karakuş, Mehmet Şükrü. “BAKLA PROTEİNİ: MİKRODALGA DESTEKLİ ÖZÜTLEME KOŞULLARININ OPTİMİZASYONU VE KARAKTERİSTİK ÖZELLİKLERİNİN PEYNİRALTI SUYU PROTEİNİ İLE KARŞILAŞTIRILMASI”. Gıda 49/5 (October 2024), 863-878. https://doi.org/10.15237/gida.GD23134.
JAMA Karakuş MŞ. BAKLA PROTEİNİ: MİKRODALGA DESTEKLİ ÖZÜTLEME KOŞULLARININ OPTİMİZASYONU VE KARAKTERİSTİK ÖZELLİKLERİNİN PEYNİRALTI SUYU PROTEİNİ İLE KARŞILAŞTIRILMASI. GIDA. 2024;49:863–878.
MLA Karakuş, Mehmet Şükrü. “BAKLA PROTEİNİ: MİKRODALGA DESTEKLİ ÖZÜTLEME KOŞULLARININ OPTİMİZASYONU VE KARAKTERİSTİK ÖZELLİKLERİNİN PEYNİRALTI SUYU PROTEİNİ İLE KARŞILAŞTIRILMASI”. Gıda, vol. 49, no. 5, 2024, pp. 863-78, doi:10.15237/gida.GD23134.
Vancouver Karakuş MŞ. BAKLA PROTEİNİ: MİKRODALGA DESTEKLİ ÖZÜTLEME KOŞULLARININ OPTİMİZASYONU VE KARAKTERİSTİK ÖZELLİKLERİNİN PEYNİRALTI SUYU PROTEİNİ İLE KARŞILAŞTIRILMASI. GIDA. 2024;49(5):863-78.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/