Research Article
BibTex RIS Cite

OPTIMIZATION OF THE SYNERGISTIC ANTIOXIDANT EFFECT OF SELECTED PHENOLIC COMPOUNDS (GALLIC ACID, ROSMARINIC ACID and CAFFEIC ACID) AND INVESTIGATION OF THEIR ABILITY TO PREVENT FORMATION OF DNA BASE DAMAGE

Year 2024, , 777 - 790, 10.10.2024
https://doi.org/10.15237/gida.GD24012

Abstract

Considering the areas of use of phenolic compounds, it is important to determine the concentrations at which they show synergistic and antagonistic interactions for their integration into various systems and their correct use. In this study, the synergistic interaction concentration of rosmarinic acid, gallic acid, and caffeic acid was determined by Folin–Ciocalteu and FRAP methods. The central composite design–response surface methodology was used to determine the optimum concentration for synergistic interaction. As a result of the optimization, caffeic acid, rosmarinic acid, and gallic acid showed synergistic interaction at 7.87 μM, 6.75 μM and 9.42 μM concentrations for Folin–Ciocalteu method; 8.03 μM, 9.34 μM and 6.00 μM concentration for FRAP method respectively. The capacity of phenolic compounds to prevent the formation of DNA base damage products was evaluated by GC–MS/MS. As a result, the synergistic concentration of three phenolics reduces the DNA damage products at 37.17% (FOLIN) and 40.17% (FRAP).

References

  • Aklan, A., Aybastıer, Ö. (2024). Characterization of Cichorium intybus L. extract in preventing oxidative DNA base damage using Gas Chromatography–Tandem Mass Spectrometry (GC–MS/MS). Analytical Letters, 1–10. https://doi.org/10.1080/00032719.2024.2372675
  • Andrés, C.M.C., Pérez de la Lastra, J.M., Juan, C.A., Plou, F.J., Pérez-Lebeña, E. (2023). Polyphenols as Antioxidant/Pro-Oxidant compounds and donors of reducing species: Relationship with human antioxidant metabolism. Processes, 2023, 11(9), 2771. https://doi.org/ 10.3390/PR11092771
  • Aybastıer, Ö., Demir, C. (2021). Optimization and validation of ultrasensitive GC–MS/MS method to measure oxidatively induced DNA damage products and role of antioxidants in oxidation mechanism. Journal of Pharmaceutical and Biomedical Analysis, 200, 114068. https://doi.org/ 10.1016/J.JPBA.2021.114068
  • Berker, K.I., Güçlü, K., Demirata, B., Apak, R. (2010). A novel antioxidant assay of ferric reducing capacity measurement using ferrozine as the colour forming complexation reagent. Analytical Methods, 2(11), 1770–1778. https://doi.org/10.1039/C0AY00245C
  • Buonocore, G., Perrone, S., Tataranno, M.L. (2010). Oxygen toxicity: Chemistry and biology of reactive oxygen species. Seminars in Fetal and Neonatal Medicine, 15(4), 186–190. https://doi.org/10.1016/j.siny.2010.04.003
  • Ceylan, D., Tuna, G., Kirkali, G., Tunca, Z., Can, G., Arat, H.E., Kant, M., Dizdaroglu, M., Özerdem, A. (2018). Oxidatively-induced DNA damage and base excision repair in euthymic patients with bipolar disorder. DNA Repair, 65, 64–72. https://doi.org/10.1016/ J.DNAREP.2018.03.006
  • Chandrasekara, A., Shahidi, F. (2012). Bioaccessibility and antioxidant potential of millet grain phenolics as affected by simulated in vitro digestion and microbial fermentation. Journal of Functional Foods, 4(1), 226–237. https://doi.org/ 10.1016/j.jff.2011.11.001
  • Dawbaa, S., Aybastıer, Ö., Demir, C. (2017). Ultrasensitive determination of DNA oxidation products by gas chromatography–tandem mass spectrometry and the role of antioxidants in the prevention of oxidative damage. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1051, 84–91. https://doi.org/10.1016/j.jchromb.2017.03.014
  • De Guzman, R., Tang, H., Salley, S., Ng, K.Y.S. (2009). Synergistic effects of antioxidants on the oxidative stability of soybean oil- and poultry fat-based biodiesel. JAOCS, Journal of the American Oil Chemists’ Society, 86(5), 459–467. https://doi.org/ 10.1007/s11746-009-1373-8
  • Dizdaroglu, M., Jaruga, P., Birincioglu, M., Rodriguez, H. (2002). Free radical-induced damage to DNA: Mechanisms and measurement. Free Radical Biology and Medicine, 32(11), 1102–1115. https://doi.org/10.1016/S0891-5849(02)00826-2
  • Dreher, D., Junod, A.F. (1996). Role of oxygen free radicals in cancer development. European Journal of Cancer, 32(1), 30–38. https://doi.org/10.1016/0959-8049(95)00531-5
  • Ferguson, L.R. (2001). Role of plant polyphenols in genomic stability. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 475(1–2), 89–111.
  • Hajimehdipoor, H., Shahrestani, R., Shekarchi, M. (2014). Investigating the synergistic antioxidant effects of some flavonoid and phenolic compounds. Research Journal of Pharmacognosy, 1(3), 35–40.
  • Halliwell, B. (2006). Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiology, 141(2), 312–322. https://doi.org/10.1104/pp.106.077073
  • Irwandi, J., Che Man, Y.B., Kitts, D.D., Bakar, J., Jinap, S. (2000). Synergies between plant antioxidant blends in preventing peroxidation reactions in model and food oil systems. Journal of the American Oil Chemists' Society, 77, 945–951.
  • Jiang, D., Rusling, J.F. (2019). Oxidation chemistry of DNA and p53 tumor suppressor gene. ChemistryOpen, 8(3), 252. https://doi.org/ 10.1002/OPEN.201800292
  • Karkar, B., Şahin, S. (2022). Determination of phenolic compounds profiles and antioxidant properties of oleaster (Elaeagnus angustifolia L.) grown in Turkey. European Food Research and Technology, 248(1), 219–241. https://doi.org/ 10.1007/s00217-021-03875-y
  • Kaur, C., Kapoor, H.C. (2001). Antioxidants in fruits and vegetables – the millennium’s health. International Journal of Food Science & Technology, 36(7), 703–725. https://doi.org/10.1111/J.1365-2621.2001.00513.X
  • Kaur, P., Dhull, S.B., Sandhu, K.S., Salar, R.K., Purewal, S.S. (2018). Tulsi (Ocimum tenuiflorum) seeds: in vitro DNA damage protection, bioactive compounds and antioxidant potential. Journal of Food Measurement and Characterization, 12(3), 1530–1538. https://doi.org/10.1007/s11694-018-9768-6
  • Kaur, P., Purewal, S.S., Sandhu, K.S., Kaur, M. (2019). DNA damage protection: an excellent application of bioactive compounds. Bioresources and Bioprocessing, 6, 1–11. https://doi.org/ 10.1186/s40643-019-0237-9
  • Mohamed, H.M.A. (2011). Antioxidant synergy effect of rosemary aqueous extract and green tea flavanol-rich concentrate for superior protection of buffalo meatloaves. Seria Zootehnie, 56, 242–52.
  • Munteanu, I.G., Apetrei, C. (2021). Analytical methods used in determining antioxidant activity: A review. International Journal of Molecular Sciences, 22(7), 3380. https://doi.org/10.3390/ IJMS22073380
  • Nile, S.H., Park, S.W. (2014). Edible berries: Bioactive components and their effect on human health. Nutrition, 30(2), 134–144. https://doi.org/10.1016/j.nut.2013.04.007
  • Şahin, S., Karkar, B. (2019). The antioxidant properties of the chestnut bee pollen extract and its preventive action against oxidatively induced damage in DNA bases. Journal of Food Biochemistry, 43(7), e12888. https://doi.org/10.1111/ JFBC.12888
  • Salar, R.K., Purewal, S.S. (2017). Phenolic content, antioxidant potential and DNA damage protection of pearl millet (Pennisetum glaucum) cultivars of North Indian region. Journal of Food Measurement and Characterization, 11(1), 126–133. https://doi.org/10.1007/s11694-016-9379-z
  • Saucier, C.T., Waterhouse, A.L. (1999). Synergetic activity of catechin and other antioxidants. Journal of Agricultural and Food Chemistry, 47(11), 4491–4494. https://doi.org/10.1021/jf990352t
  • Seal, T., Chaudhuri, K., Pillai, B., Chakrabarti, S., Mondal, T., Auddy, B. (2020). Evaluation of antioxidant activities, toxicity studies and the DNA damage protective effect of various solvent extracts of Litsea cubeba fruits. Heliyon, 6(3). https://doi.org/10.1016/j.heliyon.2020.e03637
  • Skroza, D., Šimat, V., Vrdoljak, L., Jolić, N., Skelin, A., Čagalj, M., Frleta, R., Generalić Mekinić, I. (2022). Investigation of antioxidant synergisms and antagonisms among phenolic acids in the model matrices using FRAP and ORAC methods. Antioxidants, 11(9), 1784. https://doi.org/10.3390/antiox11091784
  • Srinivas, U.S., Tan, B.W.Q., Vellayappan, B.A., Jeyasekharan, A.D. (2019). ROS and the DNA damage response in cancer. Redox Biology, 25, 101084. https://doi.org/10.1016/ j.redox.2018.101084
  • Sudha, M.L., Dharmesh, S.M., Pynam, H., Bhimangouder, S.V., Eipson, S.W., Somasundaram, R., Nanjarajurs, S.M. (2016). Antioxidant and cyto/DNA protective properties of apple pomace enriched bakery products. Journal of Food Science and Technology, 53(4), 1909–1918. https://doi.org/10.1007/s13197-015-2151-2
  • Tsao, R. (2010). Chemistry and biochemistry of dietary polyphenols. Nutrients, 2(12), 1231–1246. https://doi.org/10.3390/nu2121231
  • Tsao, R. (2015). Synergistic interactions between antioxidants used in food preservation. In Handbook of Antioxidants for Food Preservation (pp.335–347). Woodhead Publishing. https://doi.org/10.1016/B978-1-78242-089-7.00013-0
  • Wang, S., Meckling, K.A., Marcone, M.F., Kakuda, Y., Tsao, R. (2011). Synergistic, additive, and antagonistic effects of food mixtures on total antioxidant capacities. Journal of Agricultural and Food Chemistry, 59(3), 960–968. https://doi.org/ 10.1021/jf1040977
  • Ye, M., Dewi, L., Liao, Y.C., Nicholls, A., Huang, C.Y., Kuo, C.H. (2023). DNA oxidation after exercise: a systematic review and meta-analysis. Frontiers in Physiology, 14, 1275867. https://doi.org/10.3389/FPHYS.2023.1275867/BIBTEX
  • Zhang, Y., Wu, S., Qin, Y., Liu, J., Liu, J., Wang, Q., Ren, F., Zhang, H. (2018). Interaction of phenolic acids and their derivatives with human serum albumin: Structure–affinity relationships and effects on antioxidant activity. Food Chemistry, 240, 1072–1080. https://doi.org/ 10.1016/j.foodchem.2017.07.100

SEÇİLMİŞ FENOLİK BİLEŞİKLERİN (GALLİK ASİT, ROSMARİNİK ASİT ve KAFEİK ASİT) SİNERJİSTİK ANTİOKSİDAN ETKİSİNİN OPTİMİZASYONU VE DNA BAZ HASARI OLUŞUMUNU ÖNLEME YETENEKLERİNİN ARAŞTIRILMASI

Year 2024, , 777 - 790, 10.10.2024
https://doi.org/10.15237/gida.GD24012

Abstract

Fenolik bileşiklerin kullanım alanları düşünüldüğünde, sinerjik ve antagonistik etkileşim gösterdikleri konsantrasyonların belirlenmesi, çeşitli sistemlere entegrasyonları ve doğru kullanımları için önemlidir. Bu çalışmada, rosmarinik asit, gallik asit ve kafeik asidin sinerjik etkileşim konsantrasyonu Folin–Ciocalteu ve FRAP yöntemleri ile belirlenmiştir. Sinerjik etkileşim için optimum konsantrasyonu belirlemek üzere merkezi kompozit dizayn–yanıt yüzeyi metodolojisi kullanılmıştır. Optimizasyon sonucunda kafeik asit, rosmarinik asit ve gallik asit Folin–Ciocalteu yöntemi için sırasıyla 7.87 μM, 6.75 μM ve 9.42 μM konsantrasyonlarında; FRAP yöntemi için 8.03 μM, 9,34 μM ve 6.00 μM konsantrasyonlarında sinerjik etkileşim göstermiştir. Fenolik bileşiklerin DNA baz hasarı ürünlerinin oluşumunu önleme kapasitesi GC–MS/MS ile değerlendirilmiştir. Sonuç olarak, üç fenoliğin sinerjik konsantrasyonu DNA hasar ürünlerini %37.17 (FOLIN) ve %40.17 (FRAP) oranında azaltmaktadır.

References

  • Aklan, A., Aybastıer, Ö. (2024). Characterization of Cichorium intybus L. extract in preventing oxidative DNA base damage using Gas Chromatography–Tandem Mass Spectrometry (GC–MS/MS). Analytical Letters, 1–10. https://doi.org/10.1080/00032719.2024.2372675
  • Andrés, C.M.C., Pérez de la Lastra, J.M., Juan, C.A., Plou, F.J., Pérez-Lebeña, E. (2023). Polyphenols as Antioxidant/Pro-Oxidant compounds and donors of reducing species: Relationship with human antioxidant metabolism. Processes, 2023, 11(9), 2771. https://doi.org/ 10.3390/PR11092771
  • Aybastıer, Ö., Demir, C. (2021). Optimization and validation of ultrasensitive GC–MS/MS method to measure oxidatively induced DNA damage products and role of antioxidants in oxidation mechanism. Journal of Pharmaceutical and Biomedical Analysis, 200, 114068. https://doi.org/ 10.1016/J.JPBA.2021.114068
  • Berker, K.I., Güçlü, K., Demirata, B., Apak, R. (2010). A novel antioxidant assay of ferric reducing capacity measurement using ferrozine as the colour forming complexation reagent. Analytical Methods, 2(11), 1770–1778. https://doi.org/10.1039/C0AY00245C
  • Buonocore, G., Perrone, S., Tataranno, M.L. (2010). Oxygen toxicity: Chemistry and biology of reactive oxygen species. Seminars in Fetal and Neonatal Medicine, 15(4), 186–190. https://doi.org/10.1016/j.siny.2010.04.003
  • Ceylan, D., Tuna, G., Kirkali, G., Tunca, Z., Can, G., Arat, H.E., Kant, M., Dizdaroglu, M., Özerdem, A. (2018). Oxidatively-induced DNA damage and base excision repair in euthymic patients with bipolar disorder. DNA Repair, 65, 64–72. https://doi.org/10.1016/ J.DNAREP.2018.03.006
  • Chandrasekara, A., Shahidi, F. (2012). Bioaccessibility and antioxidant potential of millet grain phenolics as affected by simulated in vitro digestion and microbial fermentation. Journal of Functional Foods, 4(1), 226–237. https://doi.org/ 10.1016/j.jff.2011.11.001
  • Dawbaa, S., Aybastıer, Ö., Demir, C. (2017). Ultrasensitive determination of DNA oxidation products by gas chromatography–tandem mass spectrometry and the role of antioxidants in the prevention of oxidative damage. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1051, 84–91. https://doi.org/10.1016/j.jchromb.2017.03.014
  • De Guzman, R., Tang, H., Salley, S., Ng, K.Y.S. (2009). Synergistic effects of antioxidants on the oxidative stability of soybean oil- and poultry fat-based biodiesel. JAOCS, Journal of the American Oil Chemists’ Society, 86(5), 459–467. https://doi.org/ 10.1007/s11746-009-1373-8
  • Dizdaroglu, M., Jaruga, P., Birincioglu, M., Rodriguez, H. (2002). Free radical-induced damage to DNA: Mechanisms and measurement. Free Radical Biology and Medicine, 32(11), 1102–1115. https://doi.org/10.1016/S0891-5849(02)00826-2
  • Dreher, D., Junod, A.F. (1996). Role of oxygen free radicals in cancer development. European Journal of Cancer, 32(1), 30–38. https://doi.org/10.1016/0959-8049(95)00531-5
  • Ferguson, L.R. (2001). Role of plant polyphenols in genomic stability. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 475(1–2), 89–111.
  • Hajimehdipoor, H., Shahrestani, R., Shekarchi, M. (2014). Investigating the synergistic antioxidant effects of some flavonoid and phenolic compounds. Research Journal of Pharmacognosy, 1(3), 35–40.
  • Halliwell, B. (2006). Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiology, 141(2), 312–322. https://doi.org/10.1104/pp.106.077073
  • Irwandi, J., Che Man, Y.B., Kitts, D.D., Bakar, J., Jinap, S. (2000). Synergies between plant antioxidant blends in preventing peroxidation reactions in model and food oil systems. Journal of the American Oil Chemists' Society, 77, 945–951.
  • Jiang, D., Rusling, J.F. (2019). Oxidation chemistry of DNA and p53 tumor suppressor gene. ChemistryOpen, 8(3), 252. https://doi.org/ 10.1002/OPEN.201800292
  • Karkar, B., Şahin, S. (2022). Determination of phenolic compounds profiles and antioxidant properties of oleaster (Elaeagnus angustifolia L.) grown in Turkey. European Food Research and Technology, 248(1), 219–241. https://doi.org/ 10.1007/s00217-021-03875-y
  • Kaur, C., Kapoor, H.C. (2001). Antioxidants in fruits and vegetables – the millennium’s health. International Journal of Food Science & Technology, 36(7), 703–725. https://doi.org/10.1111/J.1365-2621.2001.00513.X
  • Kaur, P., Dhull, S.B., Sandhu, K.S., Salar, R.K., Purewal, S.S. (2018). Tulsi (Ocimum tenuiflorum) seeds: in vitro DNA damage protection, bioactive compounds and antioxidant potential. Journal of Food Measurement and Characterization, 12(3), 1530–1538. https://doi.org/10.1007/s11694-018-9768-6
  • Kaur, P., Purewal, S.S., Sandhu, K.S., Kaur, M. (2019). DNA damage protection: an excellent application of bioactive compounds. Bioresources and Bioprocessing, 6, 1–11. https://doi.org/ 10.1186/s40643-019-0237-9
  • Mohamed, H.M.A. (2011). Antioxidant synergy effect of rosemary aqueous extract and green tea flavanol-rich concentrate for superior protection of buffalo meatloaves. Seria Zootehnie, 56, 242–52.
  • Munteanu, I.G., Apetrei, C. (2021). Analytical methods used in determining antioxidant activity: A review. International Journal of Molecular Sciences, 22(7), 3380. https://doi.org/10.3390/ IJMS22073380
  • Nile, S.H., Park, S.W. (2014). Edible berries: Bioactive components and their effect on human health. Nutrition, 30(2), 134–144. https://doi.org/10.1016/j.nut.2013.04.007
  • Şahin, S., Karkar, B. (2019). The antioxidant properties of the chestnut bee pollen extract and its preventive action against oxidatively induced damage in DNA bases. Journal of Food Biochemistry, 43(7), e12888. https://doi.org/10.1111/ JFBC.12888
  • Salar, R.K., Purewal, S.S. (2017). Phenolic content, antioxidant potential and DNA damage protection of pearl millet (Pennisetum glaucum) cultivars of North Indian region. Journal of Food Measurement and Characterization, 11(1), 126–133. https://doi.org/10.1007/s11694-016-9379-z
  • Saucier, C.T., Waterhouse, A.L. (1999). Synergetic activity of catechin and other antioxidants. Journal of Agricultural and Food Chemistry, 47(11), 4491–4494. https://doi.org/10.1021/jf990352t
  • Seal, T., Chaudhuri, K., Pillai, B., Chakrabarti, S., Mondal, T., Auddy, B. (2020). Evaluation of antioxidant activities, toxicity studies and the DNA damage protective effect of various solvent extracts of Litsea cubeba fruits. Heliyon, 6(3). https://doi.org/10.1016/j.heliyon.2020.e03637
  • Skroza, D., Šimat, V., Vrdoljak, L., Jolić, N., Skelin, A., Čagalj, M., Frleta, R., Generalić Mekinić, I. (2022). Investigation of antioxidant synergisms and antagonisms among phenolic acids in the model matrices using FRAP and ORAC methods. Antioxidants, 11(9), 1784. https://doi.org/10.3390/antiox11091784
  • Srinivas, U.S., Tan, B.W.Q., Vellayappan, B.A., Jeyasekharan, A.D. (2019). ROS and the DNA damage response in cancer. Redox Biology, 25, 101084. https://doi.org/10.1016/ j.redox.2018.101084
  • Sudha, M.L., Dharmesh, S.M., Pynam, H., Bhimangouder, S.V., Eipson, S.W., Somasundaram, R., Nanjarajurs, S.M. (2016). Antioxidant and cyto/DNA protective properties of apple pomace enriched bakery products. Journal of Food Science and Technology, 53(4), 1909–1918. https://doi.org/10.1007/s13197-015-2151-2
  • Tsao, R. (2010). Chemistry and biochemistry of dietary polyphenols. Nutrients, 2(12), 1231–1246. https://doi.org/10.3390/nu2121231
  • Tsao, R. (2015). Synergistic interactions between antioxidants used in food preservation. In Handbook of Antioxidants for Food Preservation (pp.335–347). Woodhead Publishing. https://doi.org/10.1016/B978-1-78242-089-7.00013-0
  • Wang, S., Meckling, K.A., Marcone, M.F., Kakuda, Y., Tsao, R. (2011). Synergistic, additive, and antagonistic effects of food mixtures on total antioxidant capacities. Journal of Agricultural and Food Chemistry, 59(3), 960–968. https://doi.org/ 10.1021/jf1040977
  • Ye, M., Dewi, L., Liao, Y.C., Nicholls, A., Huang, C.Y., Kuo, C.H. (2023). DNA oxidation after exercise: a systematic review and meta-analysis. Frontiers in Physiology, 14, 1275867. https://doi.org/10.3389/FPHYS.2023.1275867/BIBTEX
  • Zhang, Y., Wu, S., Qin, Y., Liu, J., Liu, J., Wang, Q., Ren, F., Zhang, H. (2018). Interaction of phenolic acids and their derivatives with human serum albumin: Structure–affinity relationships and effects on antioxidant activity. Food Chemistry, 240, 1072–1080. https://doi.org/ 10.1016/j.foodchem.2017.07.100
There are 35 citations in total.

Details

Primary Language English
Subjects Food Biotechnology
Journal Section Articles
Authors

Gizem Bayaçlı 0000-0001-9676-5531

İlkyaz Patır 0000-0002-3503-2550

Büşra Karkar 0000-0001-6547-5558

Saliha Şahin 0000-0003-2887-5688

Publication Date October 10, 2024
Submission Date January 9, 2024
Acceptance Date August 5, 2024
Published in Issue Year 2024

Cite

APA Bayaçlı, G., Patır, İ., Karkar, B., Şahin, S. (2024). OPTIMIZATION OF THE SYNERGISTIC ANTIOXIDANT EFFECT OF SELECTED PHENOLIC COMPOUNDS (GALLIC ACID, ROSMARINIC ACID and CAFFEIC ACID) AND INVESTIGATION OF THEIR ABILITY TO PREVENT FORMATION OF DNA BASE DAMAGE. Gıda, 49(5), 777-790. https://doi.org/10.15237/gida.GD24012
AMA Bayaçlı G, Patır İ, Karkar B, Şahin S. OPTIMIZATION OF THE SYNERGISTIC ANTIOXIDANT EFFECT OF SELECTED PHENOLIC COMPOUNDS (GALLIC ACID, ROSMARINIC ACID and CAFFEIC ACID) AND INVESTIGATION OF THEIR ABILITY TO PREVENT FORMATION OF DNA BASE DAMAGE. GIDA. October 2024;49(5):777-790. doi:10.15237/gida.GD24012
Chicago Bayaçlı, Gizem, İlkyaz Patır, Büşra Karkar, and Saliha Şahin. “OPTIMIZATION OF THE SYNERGISTIC ANTIOXIDANT EFFECT OF SELECTED PHENOLIC COMPOUNDS (GALLIC ACID, ROSMARINIC ACID and CAFFEIC ACID) AND INVESTIGATION OF THEIR ABILITY TO PREVENT FORMATION OF DNA BASE DAMAGE”. Gıda 49, no. 5 (October 2024): 777-90. https://doi.org/10.15237/gida.GD24012.
EndNote Bayaçlı G, Patır İ, Karkar B, Şahin S (October 1, 2024) OPTIMIZATION OF THE SYNERGISTIC ANTIOXIDANT EFFECT OF SELECTED PHENOLIC COMPOUNDS (GALLIC ACID, ROSMARINIC ACID and CAFFEIC ACID) AND INVESTIGATION OF THEIR ABILITY TO PREVENT FORMATION OF DNA BASE DAMAGE. Gıda 49 5 777–790.
IEEE G. Bayaçlı, İ. Patır, B. Karkar, and S. Şahin, “OPTIMIZATION OF THE SYNERGISTIC ANTIOXIDANT EFFECT OF SELECTED PHENOLIC COMPOUNDS (GALLIC ACID, ROSMARINIC ACID and CAFFEIC ACID) AND INVESTIGATION OF THEIR ABILITY TO PREVENT FORMATION OF DNA BASE DAMAGE”, GIDA, vol. 49, no. 5, pp. 777–790, 2024, doi: 10.15237/gida.GD24012.
ISNAD Bayaçlı, Gizem et al. “OPTIMIZATION OF THE SYNERGISTIC ANTIOXIDANT EFFECT OF SELECTED PHENOLIC COMPOUNDS (GALLIC ACID, ROSMARINIC ACID and CAFFEIC ACID) AND INVESTIGATION OF THEIR ABILITY TO PREVENT FORMATION OF DNA BASE DAMAGE”. Gıda 49/5 (October 2024), 777-790. https://doi.org/10.15237/gida.GD24012.
JAMA Bayaçlı G, Patır İ, Karkar B, Şahin S. OPTIMIZATION OF THE SYNERGISTIC ANTIOXIDANT EFFECT OF SELECTED PHENOLIC COMPOUNDS (GALLIC ACID, ROSMARINIC ACID and CAFFEIC ACID) AND INVESTIGATION OF THEIR ABILITY TO PREVENT FORMATION OF DNA BASE DAMAGE. GIDA. 2024;49:777–790.
MLA Bayaçlı, Gizem et al. “OPTIMIZATION OF THE SYNERGISTIC ANTIOXIDANT EFFECT OF SELECTED PHENOLIC COMPOUNDS (GALLIC ACID, ROSMARINIC ACID and CAFFEIC ACID) AND INVESTIGATION OF THEIR ABILITY TO PREVENT FORMATION OF DNA BASE DAMAGE”. Gıda, vol. 49, no. 5, 2024, pp. 777-90, doi:10.15237/gida.GD24012.
Vancouver Bayaçlı G, Patır İ, Karkar B, Şahin S. OPTIMIZATION OF THE SYNERGISTIC ANTIOXIDANT EFFECT OF SELECTED PHENOLIC COMPOUNDS (GALLIC ACID, ROSMARINIC ACID and CAFFEIC ACID) AND INVESTIGATION OF THEIR ABILITY TO PREVENT FORMATION OF DNA BASE DAMAGE. GIDA. 2024;49(5):777-90.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/