KURU ÜZÜM TÜKETİMİNİN KUERSETİN BİYOYARARLANIMI ÜZERİNDEKİ ETKİSİ: IN VIVO YAKLAŞIM
Year 2024,
, 741 - 750, 14.08.2024
Ebru Aydın
Abstract
Kuru üzüm yüksek oranda diyet lifi, antioksidan ve ağırlıklı olarak kuersetin glikozitleri formunda bulunan kuersetin de dahil olmak üzere farklı biyoaktif bileşikler içermektedir. İçerdiği bu bileşiklerden dolayı sağlık üzerine yararlı etkileri olduğu bilinmektedir. Bu çalışmada, kuru üzüm tüketimini takiben idrardaki kuersetin atılımı analiz edilerek diyet matrisinin kuersetinin biyoyararlanımı üzerindeki etkisi araştırılmıştır. Çalışmada gelişmiş LC/MS teknikleri kullanılarak, diyetteki gıdaların, polifenol emilimine ve metabolizmasına etki derecesini tespit etmek için idrardaki kuersetin ve metabolitlerinin miktarları belirlemiştir. Kuru üzüm tükettikten sonra idrarla kuersetin atılımında önemli bir artış olduğunu ve konsantrasyonların 21.8 µg/ml ile 238.8 µg/ml arasında değiştiğini göstermiştir. Çalışma, kuersetinin biyoyararlanımını arttırmada gıda matrisinin rolünün önemini belirterek, kuru üzüm gibi işlenmemiş gıdalardaki karmaşık etkileşimlerin, kuersetinin çözünürlüğünü, stabilitesini ve emilimini önemli ölçüde etkileyebileceğini göstermektedir.
Ethical Statement
University of Leeds, MEEC Faculty Research Ethics Committee reference number MEEC 09-019.
Supporting Institution
This work is supported by Ministry of Turkish Education.
Thanks
This publication is part of the MSc thesis of Ebru Aydin, conducted under the supervision of Professor Gary Williamson at the University of Leeds. I acknowledge Professor Williamson for granting permission to publish this article without his name as an author. A consent letter has been provided and submitted to the journal, indicating that this article is published with his consent. The author would like to express gratitude to Professor Williamson and his team for their invaluable support and the resources they provided, which significantly contributed to this research.
References
- Aghababaei, F., Hadidi, M. (2023). Recent advances in potential health benefits of quercetin. Pharmaceuticals, 16(7), 1020. https://doi.org/ 10.3390/ph16071020.
- Alara, O. R., Abdurahman, N. H., Ukaegbu, C. I. (2021). Extraction of phenolic compounds: A review. Current research in food science, 4, 200-214. https://doi.org/10.1016/j.crfs.2021.03.011.
- Aydin, E. (2023) Phytochemicals from Phillyrea latifolia L. leaves and fruit extracted with various solvents: Their identification and quantification by LC-MS and antihyperglycemic effects. Folia Horticulturae, 35(1), 233-242. https://doi.org/ 10.2478/fhort-2023-0018.
Chanioti, S., Katsouli, M., Tzia, C. (2021). Novel processes for the extraction of phenolic compounds from olive pomace and their protection by encapsulation. Molecules, 26(6), 1781. https://doi.org/10.3390/ molecules26061781.
- Chen, L., Cao, H., Huang, Q., Xiao, J., Teng, H. (2022). Absorption, metabolism and bioavailability of flavonoids: A review. Critical reviews in food science and nutrition, 62(28), 7730-7742. https://doi.org/10.1080/10408398.2021.1917508.
- Dabeek, W. M., Marra, M. V. (2019). Dietary quercetin and kaempferol: Bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients, 11(10), 2288. https://doi.org/ 10.3390/nu11102288.
- Dhanya, R. (2022). Quercetin for managing type 2 diabetes and its complications, an insight into multitarget therapy. Biomedicine Pharmacotherapy, 146, 112560. https://doi.org/10.1016/ j.biopha.2021.112560.
- Di Pede, G., Bresciani, L., Calani, L., Petrangolini, G., Riva, A., Allegrini, P., Mena, P. (2020). The human microbial metabolism of quercetin in different formulations: An in vitro evaluation. Foods, 9(8), 1121. https://doi.org/10.3390/ foods9081121.
- Ed Nignpense, B., Francis, N., Blanchard, C., Santhakumar, A. B. (2021). Bioaccessibility and bioactivity of cereal polyphenols: A review. Foods, 10(7), 1595. https://doi.org/10.3390/ foods10071595
- Elizalde-Romero, C. A., Montoya-Inzunza, L. A., Contreras-Angulo, L. A., Heredia, J. B., Gutiérrez-Grijalva, E. P. (2021). Solanum fruits: phytochemicals, bioaccessibility and bioavailability, and their relationship with their health-promoting effects. Frontiers in nutrition, 8, 790582. https://doi.org/10.3389/ fnut.2021.790582.
- García-Villalba, R., Selma, M. V., Espín, J. C., Tomás-Barberán, F. A. (2019). Identification of novel urolithin metabolites in human feces and urine after the intake of a pomegranate extract. Journal of Agricultural and Food Chemistry, 67(40), 11099-11107. https://doi.org/10.1021/ acs.jafc.9b04435.
- Gil-Martín, E., Forbes-Hernández, T., Romero, A., Cianciosi, D., Giampieri, F., Battino, M. (2022). Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chemistry, 378, 131918. https://doi.org/10.1016/ j.foodchem.2021.131918.
- Hollman, P. C. H. Katan, M. B. (1999). Dietary flavonoids: intake, health effects and bioavailability. Food and Chemical Toxicology, 37, 937-42. https://doi.org/10.1016/s0278-6915(99)00079-4.
- Ishii, K., Furuta, T. Kasuya, Y. (2003). High-performance liquid chromatographic determination of quercetin in human plasma and urine utilizing solid-phase extraction and ultraviolet detection. Journal of Chromatogrophy B, 794, 49-56. https://doi.org/10.1016/S1570-0232(03)00398-2.
- Michala, A. S., Pritsa, A. (2022). Quercetin: a molecule of great biochemical and clinical value and its beneficial effect on diabetes and cancer. Diseases, 10(3), 37. https://doi.org/10.3390/ diseases10030037.
- Muñoz-Reyes, D., Morales, A. I., Prieto, M. (2021). Transit and metabolic pathways of quercetin in tubular cells: involvement of its antioxidant properties in the kidney. Antioxidants, 10(6), 909. https://doi.org/10.3390/ antiox10060909.
- Nazari-Khanamiri, F., Ghasemnejad-Berenji, M. (2023). Quercetin and Heart Health: From Molecular Pathways to Clinical Findings. Journal of Food Biochemistry, 2023. https://doi.org/ 10.1155/2023/8459095.
- Praticò, G., Gao, Q., Manach, C., Dragsted, L. O. (2018). Biomarkers of food intake for Allium vegetables. Genes nutrition, 13, 1-12. https://doi.org/10.1186/s12263-018-0624-4.
- Riva, A., Ronchi, M., Petrangolini, G., Bosisio, S., Allegrini, P. (2019). Improved oral absorption of quercetin from quercetin phytosome®, a new delivery system based on food grade lecithin. European journal of drug metabolism and pharmacokinetics, 44, 169-177. https://doi.org/ 10.1007/s13318-018-0517-3.
- Shi, L., Zhao, W., Yang, Z., Subbiah, V., Suleria, H. A. R. (2022). Extraction and characterization of phenolic compounds and their potential antioxidant activities. Environmental Science and Pollution Research, 29(54), 81112-81129. https://doi.org/10.1007/s11356-022-23337-6.
- Tomou, E. M., Papakyriakopoulou, P., Saitani, E. M., Valsami, G., Pippa, N., Skaltsa, H. (2023). Recent advances in nanoformulations for quercetin delivery. Pharmaceutics, 15(6), 1656. https://doi.org/10.3390/pharmaceutics15061656.
- Ulusoy, H. G., Sanlier, N. (2020). A minireview of quercetin: From its metabolism to possible mechanisms of its biological activities. Critical Reviews in Food Science and Nutrition, 60(19), 3290-3303. https://doi.org/10.1080/ 10408398.2019.1683810.
- Vardakas, A. T., Shikov, V. T., Dinkova, R. H., Mihalev, K. M. (2021). Optimisation of the enzyme-assisted extraction of polyphenols from saffron (Crocus sativus L.) tepals. Acta Scientiarum Polonorum. Technologia Alimentaria, 20(3). https://doi.org/10.17306/J.AFS.0954.
- Zhao, B. and Hall III, C. A. (2008). Composition and antioxidant activity of raisin extracts obtained from various solvents. Food Chemistry, 108, 511-518. https://doi.org/10.1016/ j.foodchem.2007.11.003.
THE IMPACT OF RAISIN CONSUMPTION ON QUERCETIN BIOAVAILABILITY: AN IN VIVO APPROACH IN VIVO
Year 2024,
, 741 - 750, 14.08.2024
Ebru Aydın
Abstract
Raisins are a nutrient-dense food known for their high content of dietary fiber, antioxidants, and bioactive compounds, including quercetin, which exists predominantly in the form of quercetin glycosides, enhancing their potential health benefits. This study investigates the impact of dietary matrix on quercetin bioavailability by analyzing urinary excretion following consumption of raisins. Employing advanced LC/MS techniques, the study quantified quercetin and its metabolites to evaluate how whole foods influence the absorption and metabolic processing of dietary polyphenols. Initial results indicated a significant increase in urinary quercetin excretion, with concentrations ranging from 21.8 µg/ml to 238.8 µg/ml among participants after consuming raisins. The study showed the role of the food matrix in enhancing quercetin bioavailability, suggesting that the complex interactions within whole foods like raisins could significantly influence the solubility, stability, and absorption of quercetin.
References
- Aghababaei, F., Hadidi, M. (2023). Recent advances in potential health benefits of quercetin. Pharmaceuticals, 16(7), 1020. https://doi.org/ 10.3390/ph16071020.
- Alara, O. R., Abdurahman, N. H., Ukaegbu, C. I. (2021). Extraction of phenolic compounds: A review. Current research in food science, 4, 200-214. https://doi.org/10.1016/j.crfs.2021.03.011.
- Aydin, E. (2023) Phytochemicals from Phillyrea latifolia L. leaves and fruit extracted with various solvents: Their identification and quantification by LC-MS and antihyperglycemic effects. Folia Horticulturae, 35(1), 233-242. https://doi.org/ 10.2478/fhort-2023-0018.
Chanioti, S., Katsouli, M., Tzia, C. (2021). Novel processes for the extraction of phenolic compounds from olive pomace and their protection by encapsulation. Molecules, 26(6), 1781. https://doi.org/10.3390/ molecules26061781.
- Chen, L., Cao, H., Huang, Q., Xiao, J., Teng, H. (2022). Absorption, metabolism and bioavailability of flavonoids: A review. Critical reviews in food science and nutrition, 62(28), 7730-7742. https://doi.org/10.1080/10408398.2021.1917508.
- Dabeek, W. M., Marra, M. V. (2019). Dietary quercetin and kaempferol: Bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients, 11(10), 2288. https://doi.org/ 10.3390/nu11102288.
- Dhanya, R. (2022). Quercetin for managing type 2 diabetes and its complications, an insight into multitarget therapy. Biomedicine Pharmacotherapy, 146, 112560. https://doi.org/10.1016/ j.biopha.2021.112560.
- Di Pede, G., Bresciani, L., Calani, L., Petrangolini, G., Riva, A., Allegrini, P., Mena, P. (2020). The human microbial metabolism of quercetin in different formulations: An in vitro evaluation. Foods, 9(8), 1121. https://doi.org/10.3390/ foods9081121.
- Ed Nignpense, B., Francis, N., Blanchard, C., Santhakumar, A. B. (2021). Bioaccessibility and bioactivity of cereal polyphenols: A review. Foods, 10(7), 1595. https://doi.org/10.3390/ foods10071595
- Elizalde-Romero, C. A., Montoya-Inzunza, L. A., Contreras-Angulo, L. A., Heredia, J. B., Gutiérrez-Grijalva, E. P. (2021). Solanum fruits: phytochemicals, bioaccessibility and bioavailability, and their relationship with their health-promoting effects. Frontiers in nutrition, 8, 790582. https://doi.org/10.3389/ fnut.2021.790582.
- García-Villalba, R., Selma, M. V., Espín, J. C., Tomás-Barberán, F. A. (2019). Identification of novel urolithin metabolites in human feces and urine after the intake of a pomegranate extract. Journal of Agricultural and Food Chemistry, 67(40), 11099-11107. https://doi.org/10.1021/ acs.jafc.9b04435.
- Gil-Martín, E., Forbes-Hernández, T., Romero, A., Cianciosi, D., Giampieri, F., Battino, M. (2022). Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chemistry, 378, 131918. https://doi.org/10.1016/ j.foodchem.2021.131918.
- Hollman, P. C. H. Katan, M. B. (1999). Dietary flavonoids: intake, health effects and bioavailability. Food and Chemical Toxicology, 37, 937-42. https://doi.org/10.1016/s0278-6915(99)00079-4.
- Ishii, K., Furuta, T. Kasuya, Y. (2003). High-performance liquid chromatographic determination of quercetin in human plasma and urine utilizing solid-phase extraction and ultraviolet detection. Journal of Chromatogrophy B, 794, 49-56. https://doi.org/10.1016/S1570-0232(03)00398-2.
- Michala, A. S., Pritsa, A. (2022). Quercetin: a molecule of great biochemical and clinical value and its beneficial effect on diabetes and cancer. Diseases, 10(3), 37. https://doi.org/10.3390/ diseases10030037.
- Muñoz-Reyes, D., Morales, A. I., Prieto, M. (2021). Transit and metabolic pathways of quercetin in tubular cells: involvement of its antioxidant properties in the kidney. Antioxidants, 10(6), 909. https://doi.org/10.3390/ antiox10060909.
- Nazari-Khanamiri, F., Ghasemnejad-Berenji, M. (2023). Quercetin and Heart Health: From Molecular Pathways to Clinical Findings. Journal of Food Biochemistry, 2023. https://doi.org/ 10.1155/2023/8459095.
- Praticò, G., Gao, Q., Manach, C., Dragsted, L. O. (2018). Biomarkers of food intake for Allium vegetables. Genes nutrition, 13, 1-12. https://doi.org/10.1186/s12263-018-0624-4.
- Riva, A., Ronchi, M., Petrangolini, G., Bosisio, S., Allegrini, P. (2019). Improved oral absorption of quercetin from quercetin phytosome®, a new delivery system based on food grade lecithin. European journal of drug metabolism and pharmacokinetics, 44, 169-177. https://doi.org/ 10.1007/s13318-018-0517-3.
- Shi, L., Zhao, W., Yang, Z., Subbiah, V., Suleria, H. A. R. (2022). Extraction and characterization of phenolic compounds and their potential antioxidant activities. Environmental Science and Pollution Research, 29(54), 81112-81129. https://doi.org/10.1007/s11356-022-23337-6.
- Tomou, E. M., Papakyriakopoulou, P., Saitani, E. M., Valsami, G., Pippa, N., Skaltsa, H. (2023). Recent advances in nanoformulations for quercetin delivery. Pharmaceutics, 15(6), 1656. https://doi.org/10.3390/pharmaceutics15061656.
- Ulusoy, H. G., Sanlier, N. (2020). A minireview of quercetin: From its metabolism to possible mechanisms of its biological activities. Critical Reviews in Food Science and Nutrition, 60(19), 3290-3303. https://doi.org/10.1080/ 10408398.2019.1683810.
- Vardakas, A. T., Shikov, V. T., Dinkova, R. H., Mihalev, K. M. (2021). Optimisation of the enzyme-assisted extraction of polyphenols from saffron (Crocus sativus L.) tepals. Acta Scientiarum Polonorum. Technologia Alimentaria, 20(3). https://doi.org/10.17306/J.AFS.0954.
- Zhao, B. and Hall III, C. A. (2008). Composition and antioxidant activity of raisin extracts obtained from various solvents. Food Chemistry, 108, 511-518. https://doi.org/10.1016/ j.foodchem.2007.11.003.