Review
BibTex RIS Cite

PARAPROBİYOTİKLER VE POSTBİYOTİKLER: GIDA VE FARMAKOLOJİ UYGULAMALARI

Year 2024, , 641 - 655, 14.08.2024
https://doi.org/10.15237/gida.GD24054

Abstract

Son yıllarda tüketicilerin fonksiyonel ürünlere yönelik artan talepleriyle birlikte probiyotik ürün pazarı hızla gelişmeye başlamıştır. ‘Yeterli miktarda alındığında konakçı sağlığı üzerinde olumlu etkiler gösteren canlı mikroorganizmalar’ olarak tanımlanan probiyotikler, fonksiyonel gıda üretimi amacıyla yaygın olarak kullanılmaktadır. Yapılan çalışmalardan elde edilen veriler, probiyotik hücrelerin canlı olmadığı durumlarda da sağlık üzerinde yararlı etkiler sağlayabileceğini göstermiştir. Probiyotik kullanımına alternatif olarak, fonksiyonel gıda pazarında potansiyel bir fırsat sağlayan paraprobiyotik ve postbiyotik terimleri ortaya çıkmıştır. Paraprobiyotikler, yeterli miktarda uygulandığında konakçı sağlığı üzerinde fayda sağlayan, canlı olmayan mikrobiyal hücreler olarak tanımlanmaktadır. Paraprobiyotik eldesinde hücrenin sağlam yapısı korunarak canlı hücre inaktive edilmektedir. Postbiyotikler yararlı mikroorganizmalar tarafından salgılanan metabolik ürünler veya mikrobiyal hücre lizisi sonucu ortama salınan düşük molekül ağırlıklı çözünür bileşiklerdir. Antimikrobiyal, antienflamatuvar, antikarsinojenik, antiproliferatif ve immünomodülatör gibi yararlı özelliklere sahip olduğu bildirilen paraprobiyotik ve postbiyotikler, gıda ve farmakoloji endüstrisinde uygulanmaktadır. Bu çalışmada, paraprobiyotik ve postbiyotiklerin tanımı, gıda ve ilaç endüstrisinde kullanımları ve sağlık üzerine etkileri değerlendirilmiştir.

References

  • Ahn, J.E., Kim, H., Chung, D.K. (2019). Lipoteichoic acid isolated from Lactobacillus plantarum maintains inflammatory homeostasis through regulation of Th1-and Th2-induced cytokines. Journal of Microbiology and Biotechnology 29(1): 151-159. doi: 10.4014/jmb.1809.09001.
  • Akbar, A., Ali, I., Anal, A.K. (2016). Industrial perspectives of lactic acid bacteria for biopreservation and food safety. Journal Animal and Plant Sciences 26: 938-948.
  • Arai, S., Iwabuchi, N., Takahashi, S., Xiao, J.Z., Abe, F., Hachimura, S. (2018). Orally administered heat-killed Lactobacillus paracasei MCC1849 enhances antigen-specific Iga secretion and induces follicular helper T cells in mice. PloS one 13(6): 0199018. doi:10.1371/ journal.pone.0199018.
  • Arrioja-Bretón, D., Mani-López, E., Palou, E., López-Malo, A. (2020). Antimicrobial activity and storage stability of cell-free supernatants from lactic acid bacteria and their applications with fresh beef. Food Control 115: 107286. doi: 10.1016/j.foodcont.2020.107286
  • Barros, C.P., Guimaraes, J.T., Esmerino, E.A., Duarte, M.C.K., Silva, M.C., Silva, R., Ferreira, B.M., Sant’Ana, A.S., Freitas, M.Q., Cruz, A.G. (2020). Paraprobiotics and postbiotics: Concepts and potential applications in dairy products. Current Opinion in Food Science 32: 1-8. doi: 10.1016/j.cofs.2019.12.003.
  • Barros, C.P., Grom, L.C., Guimarães, J.T., Balthazar, C.F., Rocha, R.S., Silva, R., Almada, C. N., Pimentel, T.C., Venancio, E.L., Junior, I.C., Maciel, P.M.C., Freitas, M.Q., Esmerino, E.A., Silva, M.C., Duarte, M.C.K.H., Sant’Ana, A.S., Cruz, A.G. (2021). Paraprobiotic obtained by ohmic heating added in whey-grape juice drink is effective to control postprandial glycemia in healthy adults. Food Research International 140: 109905. doi: 10.1016/j.foodres.2020.109905.
  • Beimfohr, C. (2016). A review of research conducted with probiotic E. coli marketed as symbioflor. International Journal of Bacteriology 2016: 3535621. doi: 10.1155/2016/3535621.
  • Bengoa, A.A., Llamas, M.G., Iraporda, C., Dueñas, M.T., Abraham, A.G., Garrote, G.L. (2018). Impact of growth temperature on exopolysaccharide production and probiotic properties of Lactobacillus paracasei strains isolated from kefir grains. Food Microbiology 69: 212-218. doi: 10.1016/j.fm.2017.08.012.
  • Buckley, M., Lacey, S., Doolan, A., Goodbody, E., Seamans, K. (2018). The effect of Lactobacillus reuteri supplementation in Helicobacter pylori infection: a placebo-controlled, single-blind study. BMC Nutrition 4(1): 1-8. doi: 10.1186/s40795-018-0257-4.
  • Canfora, E.E., Jocken, J.W., Blaak, E.E. (2015). Short-chain fatty acids in control of body weight and insulin sensitivity. Nature Reviews Endocrinology 11(10): 577-591. doi: 10.1038/nrendo.2015.128.
  • Cicenia, A., Santangelo, F., Gambardella, L., Pallotta, L., Iebba, V., Scirocco, A., Marignani, M., Tellan, G., Carabotii, M., Corazziari, E.S., Schippa, S., Severi, C. (2016). Protective role of postbiotic mediators secreted by Lactobacillus rhamnosus GG versus lipopolysaccharide-induced damage in human colonic smooth muscle cells. Journal of Clinical Gastroenterology 50: 140-144. doi: 10.1097/MCG.0000000000000681.
  • Cuevas-González, P.F., Liceaga, A.M., Aguilar-Toalá, J.E. (2020). Postbiotics and paraprobiotics: From concepts to applications. Food Research International 136: 109502. doi: 10.1016/ j.foodres.2020.109502.
  • Dalié, D.K.D., Deschamps, A.M., Richard-Forget, F. (2010). Lactic acid bacteria-potential for control of mould growth and mycotoxins: A review. Food Control 21(4): 370-380. doi: 10.1016/j.foodcont.2009.07.011.
  • de Almada, C.N., Almada, C.N., Martinez, R., Sant'Ana, A. (2016). Paraprobiotics: Evidence on their ability to modify biological responses, inactivation methods and perspectives on their application in foods. Trends in Food Science & Technology 58: 96-114. doi: 10.1016/ j.tifs.2016.09.011.
  • Elham, N., Naheed, M., Elahe, M., Hossein, M.M., Majid, T. (2022). Selective cytotoxic effect of probiotic, paraprobiotic and postbiotics of L. casei strains against colorectal cancer cells: in vitro studies. Brazilian Journal of Pharmaceutical Sciences 58: e19400. doi: 10.1590/s2175-97902022e19400.
  • Fichera, G.A., Fichera, M., Milone, G. (2016). Antitumoural activity of a cytotoxic peptide of Lactobacillus casei peptidoglycan and its interaction with mitochondrial-bound hexokinase. Anti-Cancer Drugs 27(7): 609. doi: 10.1097/ CAD.0000000000000367.
  • Galvez, A., López, R.L., Pulido, R.P., Burgos, M.J.G. (2014). Natural antimicrobials for food biopreservation. Food Biopreservation, New York: Springer.
  • Gill, P.A., Van Zelm, M.C., Muir, J.G., Gibson, P.R. (2018). Short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders. Alimentary Pharmacology & Therapeutics 48(1): 15-34. doi: 10.1111/ apt.14689.
  • Gökırmaklı, Ç., Üçgül, B., Seydim, Z. (2021). Fonksiyonel gıda kavramına yeni bir bakış: Postbiyotikler. Gıda 46(4): 872-882. doi: 10.15237/gida.GD21035.
  • Hamad, G.M., Abdelmotilib, N.M., Darwish, A.M., Zeitoun, A.M. (2020). Commercial probiotic cell-free supernatants for inhibition of Clostridium perfringens poultry meat infection in Egypt. Anaerobe 62: 102181. doi: 10.1016/ j.anaerobe.2020.102181.
  • Hamad, G., Ombarak, R.A., Eskander, M., Mehany, T., Anees, F.R., Elfayoumy, R.A., Omar, S.A., Lorenzo, J.M., Abou-Alella, S.A.E. (2022). Detection and inhibition of Clostridium botulinum in some Egyptian fish products by probiotics cell-free supernatants as bio-preservation agents. LWT-Food Science and Technology 163: 113603. doi: 10.1016/j.lwt.2022.113603.
  • Huang, J., Li, J., Li, Q., Li, L., Zhu, N., Xiong, X., Li, G. (2020). Peptidoglycan derived from Lactobacillus rhamnosus MLGA up-regulates the expression of chicken β-defensin 9 without triggering an inflammatory response. Innate Immunity 26(8): 733-745. doi: 10.1177/ 1753425920949917.
  • İçier, S., Güzelcan, C., Hıdır, Ş., Türköz, B.K. (2022). Postbiyotikler ve gıda endüstrisinde kullanım alanları. Gıda 47(2): 252-265. doi: 10.15237/gida.GD21145.
  • İncili, G.K., Karatepe, P., Akgöl, M., Kaya, B., Kanmaz, H., Hayaloğlu, A.A. (2021). Characterization of Pediococcus acidilactici postbiotic and impact of postbiotic-fortified chitosan coating on the microbial and chemical quality of chicken breast fillets. International Journal of Biological Macromolecules 184: 429-437. doi: 10.1016/j.ijbiomac.2021.06.106.
  • İncili, G.K., Karatepe, P., Akgöl, M., Güngören, A., Koluman, A., İlhak, O.İ., Kanmaz, H., Kaya, B., Hayaloğlu, A.A. (2022). Characterization of lactic acid bacteria postbiotics, evaluation in-vitro antibacterial effect, microbial and chemical quality on chicken drumsticks. Food Microbiology 104: 104001. doi: 10.1016/j.fm.2022.104001.
  • İncili, G.K., Akgöl, M., Karatepe, P., Kanmaz, H., Kaya, B., Tekin, A., Hayaloğlu, A.A. (2023). Inhibitory effect of bioactive compounds derived from freeze-dried paraprobiotic of Pediococcus acidilactici against food-borne pathogens: In-vitro and food model studies. Food Research International 170: 113045. doi: 10.1016/ j.foodres.2023.113045.
  • Jo, D.M., Park, S.K., Khan, F., Kang, M.G., Lee, J.H., Kim, Y.M. (2021). An approach to extend the shelf life of ribbonfish fillet using lactic acid bacteria cell-free culture supernatant. Food Control 123: 107731. doi: 10.1016/ j.foodcont.2020.107731.
  • Kamilya, D., Baruah, A., Sangma, T., Chowdhury, S., Pal, P. (2015). Inactivated probiotic bacteria stimulate cellular immune responses of Catla, Catla catla (Hamilton) in vitro. Probiotics and Antimicrobial Proteins 7: 101-106. doi: 10.1007/ s12602-015-9191-9.
  • Kanmani, P., Yuvaraj, N., Paari, K.A., Pattukumar, V., Arul, V. (2011). Production and purification of a novel exopolysaccharide from lactic acid bacterium Streptococcus phocae PI80 and its functional characteristics activity in vitro. Bioresource Technology 102(7): 4827-4833. doi: 10.1016/j.biortech.2010.12.118.
  • Kanmani, P., Albarracin, L., Kobayashi, H., Iida, H., Komatsu, R., Kober, A.H., Ikeda-Ohtsubo, W., Suda, Y., Aso, H., Makino, S., Kano, H., Saito, T., Villena, J., Kitazawa, H. (2018). Exopolysaccharides from Lactobacillus delbrueckii OLL1073R-1 modulate innate antiviral immune response in porcine intestinal epithelial cells. Molecular Immunology 93: 253-265. doi: 10.1016/j.molimm.2017.07.009.
  • Kareem, K.Y., Hooi Ling, F., Teck Chwen, L., May Foong, O., Anjas Asmara, S. (2014). Inhibitory activity of postbiotic produced by strains of Lactobacillus plantarum using reconstituted media supplemented with inulin. Gut Pathogens 6(1): 1-7. doi: 10.1186/1757-4749-6-23.
  • Kawase, M., He, F., Miyazawa, K., Kubota, A., Yoda, K., Hiramatsu, M. (2012). Orally administered heat-killed Lactobacillus gasseri TMC0356 can upregulate cell-mediated immunity in senescence-accelerated mice. FEMS Microbiology Letters 326: 125-130. doi: 10.1111/ j.1574-6968.2011.02440.x.
  • Kaya, H.I., Simsek, O. (2019). Characterization of pathogen-specific bacteriocins from lactic acid bacteria and their application within cocktail against pathogens in milk. LWT-Food Science and Technology 115: 108464. doi: 10.1016/ j.lwt.2019.108464.
  • Kim, A.R., Ahn, K.B., Yun, C.H., Park, O.J., Perinpanayagam, H., Yoo, Y.J., Kum, K.Y., Han, S.H. (2019). Lactobacillus plantarum lipoteichoic acid inhibits oral multispecies biofilm. Journal of Endodontics 45(3): 310-315. doi: 10.1016/ j.joen.2018.12.007.
  • Kırma, İ. (2016). Gıda kaynaklı laktik asit bakterileri kullanılarak ekzopolisakkarit üretimi. İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, İstanbul, Türkiye, 105 s.
  • Koscik, R.J., Reid, G., Kim, S.O., Li, W., Challis, J.R., Bocking, A.D. (2018). Effect of Lactobacillus rhamnosus GR-1 Supernatant on cytokine and chemokine output from human amnion cells treated with lipoteichoic acid and lipopolysaccharide. Reproductive Sciences 25(2): 239-245. doi: 10.1177/1933719117711259.
  • Kye, Y.J., Lee, S.Y., Kim, H.R., Lee, B.H., Park, J.H., Park, M.S., Ji, G.E., Sung, M.K. (2022). Lactobacillus acidophilus PIN7 paraprobiotic supplementation ameliorates DSS‐induced colitis through anti‐inflammatory and immune regulatory effects. Journal of Applied Microbiology 132(4): 3189-3200. doi: 10.1111/ jam.15406.
  • Lee, K.J., Park, H.W., Choi, E.J., Chun, H.H. (2016). Effects of CFSs produced by lactic acid bacteria in combination with grape seed extract on the microbial quality of ready-to-eat baby leaf vegetables. Cogent Food & Agriculture 2(1): 1268742. doi: 10.1080/23311932.2016.1268742.
  • Lew, L.C., Gan, C.Y., Liong, M.T. (2013). Dermal bioactives from lactobacilli and bifidobacterial. Annals of Microbiology 63(3): 1047-1055. doi: 10.1007/s13213-012-0561-1.
  • Li, Q., Cao, L., Tian, Y., Zhang, P., Ding, C., Lu, W., Wang, D., Ye, H., Hao, H. (2018). Butyrate suppresses the proliferation of colorectal cancer cells via targeting pyruvate kinase M2 and metabolic reprogramming. Molecular & Cellular Proteomics 17(8): 1531-1545. doi: 10.1074/ mcp.RA118.000752.
  • Liévin-Le Moal, V., Sarrazin-Davila, L.E., Servin, A.L. (2007). An experimental study and a randomized, double-blind, placebo-controlled clinical trial to evaluate the antisecretory activity of Lactobacillus acidophilus strain LB against nonrotavirus diarrhea. Pediatrics 120(4): e795-e803. doi: 10.1542/peds.2006-2930.
  • Lindström, C., Holst, O., Nilsson, L., Öste, R., Andersson, K.E. (2012). Effects of Pediococcus parvulus 2.6 and its exopolysaccharide on plasma cholesterol levels and inflammatory markers in mice. AMB Express 2(1): 1-9. doi: 10.1186/2191-0855-2-66.
  • Liu, C., Qi, X., Li, D., Zhao, L., Li, Q., Mao, K., Shen, G., Ma, Y., Wang, R. (2023). Limosilactobacillus fermentum HF06‐derived paraprobiotic and postbiotic alleviate intestinal barrier damage and gut microbiota disruption in mice with ulcerative colitis. Journal of the Science of Food and Agriculture 104(3): 1702-1712. doi: 10.1002/jsfa.13057.
  • Lynch, K.M., Zannini, E., Coffey, A., Arendt, E.K. (2018). Lactic acid bacteria exopolysaccharides in foods and beverages: Isolation, properties, characterization, and health benefits. Annual Review of Food Science and Technology 9: 155-176. doi: 10.1146/annurev-food-030117-012537.
  • Maghsood, F., Johari, B., Rohani, M., Madanchi, H., Saltanatpour, Z., Kadivar, M. (2020). Antiproliferative and anti-metastatic potential of high molecular weight secretory molecules from probiotic Lactobacillus reuteri cell-free supernatant against human colon cancer stem-like cells (ht29-she). International Journal of Peptide Research and Therapeutics 26: 2619-2631. doi: 10.1007/s10989-020-10049-z.
  • Mehling, H., Busjahn, A. (2013). Non-viable Lactobacillus reuteri DSMZ 17648 (Pylopass™) as a new approach to Helicobacter pylori control in humans. Nutrients 5(8): 3062-3073. doi: 1010.3390/nu5083062.
  • Mehta, J.P., Ayakar, S., Singhal, R.S. (2023). The potential of paraprobiotics and postbiotics to modulate the immune system: A Review. Microbiological Research 127449.
  • Merghni, A., Dallel, I., Noumi, E., Kadmi, Y., Hentati, H., Tobji, S., Amor, A.B., Mastouri, M. (2017). Antioxidant and antiproliferative potential of biosurfactants isolated from Lactobacillus casei and their anti-biofilm effect in oral Staphylococcus aureus strains. Microbial Pathogenesis 104: 84-89. doi: 10.1016/j.micpath.2017.01.017.
  • Moradi, M., Tajik, H., Mardani, K., Ezati, P. (2019). Efficacy of lyophilized cell-free supernatant of Lactobacillus salivarius (Ls-BU2) on Escherichia coli and shelf life of ground beef. Veterinary Research Forum 10(3): 193-198. doi: 10.30466/vrf.2019.101419.2417.
  • Moradi, M., Molaei, R., Guimarães, J.T. (2021). A review on preparation and chemical analysis of postbiotics from lactic acid bacteria. Enzyme and Microbial Technology 143: 109722. doi: 10.1016/j.enzmictec.2020.109722.
  • Morais, I.M.C., Cordeiro, A.L., Teixeira, G.S., Domingues, V.S., Nardi, R.M.D., Monteiro, A.S., Alves, R.J., Siqueira, E.P., Santos, V.L. (2017). Biological and physicochemical properties of biosurfactants produced by Lactobacillus jensenii P 6A and Lactobacillus gasseri P 65. Microbial Cell Factories 16: 1-15. doi: 10.1186/s12934-017-0769-7.
  • Nagpal, R., Wang, S., Ahmadi, S., Hayes, J., Gagliano, J., Subashchandrabose, S., Kitzman, D. W., Becton, T., Read, R., Yadav, H. (2018). Human-origin probiotic cocktail increases short-chain fatty acid production via modulation of mice and human gut microbiome. Scientific Reports 8(1): 12649. doi: 10.1038/s41598-018-30114-4.
  • Nurko, E., Nakilcioğlu, E. (2023). Gıda endüstrisinde simbiyotikler, postbiyotikler ve paraprobiyotikler. Gıda 48(1): 144-159. doi: 10.15237/gida.GD22089.
  • Nataraj, B.H., Ali, S.A., Behare, P.V., Yadav, H. (2020). Postbiotics-parabiotics: The new horizons in microbial biotherapy and functional foods. Microbial Cell Factories 19(1): 1-22. doi: 10.1186/s12934-020-01426-w.
  • Parvarei, M.M., Khorshidian, N., Fazeli, M.R., Mortazavian, A.M., Nezhad, S.S., Mortazavi, A.S. (2021). Comparative effect of probiotic and paraprobiotic addition on physicochemical, chemometric and microstructural properties of yogurt. LWT- Food Science and Technology 144: 111177. doi: 10.1016/j.lwt.2021.111177.
  • Patil, S., Sawant, S., Hauff, K., Hampp, G. (2019). Validated postbiotic screening confirms presence of physiologically-active metabolites, such as short-chain fatty acids, amino acids and vitamins in Hylak® Forte. Probiotics and Antimicrobial Proteins 11: 1124-1131. doi: 10.1007/s12602-018-9497-5.
  • Ray, S., Sherlock, A., Wilken, T., Woods, T. (2010). Cell wall lysed probiotic tincture decreases immune response to pathogenic enteric bacteria and improves symptoms in autistic and immune compromised children. Explore 19(1): 1-5.
  • Reis, J.A., Paula, A.T., Casarotti, S.N., Penna, A.L.B. (2012). Lactic acid bacteria antimicrobial compounds: characteristics and applications. Food Engineering Reviews 4: 124-140. doi: 10.1007/ s12393-012-9051-2.
  • Rincon-Delgadillo, M.I., Lopez-Hernandez, A., Wijaya, I., Rankin, S.A. (2012). Diacetyl levels and volatile profiles of commercial starter distillates and selected dairy foods. Journal of Dairy Science 95(3): 1128-1139. doi: 10.3168/jds.2011-4834.
  • Shao, L.I., Wu, Z., Zhang, H., Chen, W., Ai, L., Guo, B. (2014). Partial characterization and immunostimulatory activity of exopolysaccharides from Lactobacillus rhamnosus KF5. Carbohydrate Polymers 107: 51-56. doi: 10.1016/j.carbpol.2014.02.037.
  • Siciliano, R.A., Reale, A., Mazzeo, M.F., Morandi, S., Silvetti, T., Brasca, M. (2021). Paraprobiotics: A new perspective for functional foods and nutraceuticals. Nutrients 13(4): 1225. doi: 10.3390/nu13041225.
  • Singh, R.P., Shukla, M.K., Mishra, A., Kumari, P., Reddy, C.R.K., Jha, B. (2011). Isolation and characterization of exopolysaccharides from seaweed associated bacteria Bacillus licheniformis. Carbohydrate Polymers 84(3): 1019-1026. doi: 10.1016/j.carbpol.2010.12.061.
  • Singh, V.P. (2018). Recent approaches in food bio-preservation-a review. Open Veterinary Journal 8(1): 104-111. doi: 10.4314/ovj.v8i1.16.
  • Stoyanova, L.G., Ustyugova, E.A., Netrusov, A.I. (2012). Antibacterial metabolites of lactic acid bacteria: their diversity and properties. Applied Biochemistry and Microbiology 48: 229-243. doi: 10.1134/S0003683812030143.
  • Tenea, G.N., Barrigas, A. (2018). The efficacy of bacteriocin-containing cell-free supernatant from Lactobacillus plantarum Cys5-4 to control pathogenic bacteria growth in artisanal beverages. International Food Research Journal 25(5): 2031-2037.
  • Uğur, E., Öner, Z., Bektas, A., Ulusoy, M. (2021). Paraprobiyotikler, postbiyotikler ve sağlık üzerine etkileri. Gıda 46(2): 428-442. doi: 10.15237/ gida.GD20141.
  • Valerio, F., Bavaro, A.R., Di Biase, M., Lonigro, S.L., Logrieco, A.F., Lavermicocca, P. (2020). Effect of amaranth and quinoa flours on exopolysaccharide production and protein profile of liquid sourdough fermented by Weissella cibaria and Lactobacillus plantarum. Frontiers in Microbiology 11: 967. doi: 10.3389/fmicb.2020.00967.
  • Vieco-Saiz, N., Belguesmia, Y., Raspoet, R., Auclair, E., Gancel, F., Kempf, I., Drider, D. (2019). Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Frontiers in Microbiology 10: 57. doi: 10.3389/fmicb.2019.00057.
  • Wang, S., Han, X., Zhang, L., Zhang, Y., Li, H., Jiao, Y. (2018). Whole peptidoglycan extracts from the Lactobacillus paracasei subsp. paracasei M5 strain exert anticancer activity in vitro. BioMed Research International 2018: 2871710. doi: 10.1155/2018/2871710.
  • Wang, K., Niu, M., Song, D., Song, X., Zhao, J., Wu, Y., Lu, B., Niu, G. (2020). Preparation, partial characterization and biological activity of exopolysaccharides produced from Lactobacillus fermentum S1. Journal of Bioscience and Bioengineering 129(2): 206-214. doi: 10.1016/ j.jbiosc.2019.07.009.
  • Welk, A., Patjek, S., Gärtner, M., Baguhl, R., Schwahn, C., Below, H. (2021). Antibacterial and antiplaque efficacy of a lactoperoxidase-thiocyanate-hydrogen-peroxide-system-containing lozenge. BMC Microbiology 21: 1-12. doi: 10.1186/s12866-021-02333-9.
  • Xiao, S.D., De Zhang, Z., Lu, H., Jiang, S.H., Liu, H.Y., Wang, G.S., Xu, G.M., Zhang, Z.B., Lin, G.J., Wang, G.L. (2003). Multicenter, randomized, controlled trial of heat-killed Lactobacillus acidophilus LB in patients with chronic diarrhea. Advances in Therapy 20: 253-260. doi: 10.1007/BF02849854.
  • Xu, R., Aruhan, Xiu, L., Sheng, S., Liang, Y., Zhang, H., Liu, Y., Tong, H., Du, R., Wang, X. (2019). Exopolysaccharides from Lactobacillus buchneri TCP016 attenuate LPS-and d-GalN-induced liver injury by modulating the gut microbiota. Journal of Agricultural and Food Chemistry 67(42): 11627-11637.
  • Yi, L., Qi, T., Ma, J., Zeng, K. (2020). Genome and metabolites analysis reveal insights into control of foodborne pathogens in fresh-cut fruits by Lactobacillus pentosus MS031 isolated from Chinese Sichuan Paocai. Postharvest Biology and Technology 164: 111150. doi: 10.1016/ j.postharvbio.2020.111150.

PARAPROBIOTICS AND POSTBIOTICS: APPLICATIONS IN FOOD AND PHARMACOLOGY

Year 2024, , 641 - 655, 14.08.2024
https://doi.org/10.15237/gida.GD24054

Abstract

In recent years, the probiotic product market has experienced rapid growth driven by the increasing consumer demand for functional products. Probiotics, defined as 'live microorganisms that have positive effects on host health when taken in sufficient amounts' are widely used in the production of functional foods. Studies have demonstrated that probiotic cells can provide beneficial health effects even when they are not active. The terms paraprobiotic and postbiotic have emerged as alternatives to probiotics, offering potential opportunities in the functional food market. Paraprobiotics are defined as non-living microbial cells that confer health benefits on the host when administered in sufficient quantities. To obtain paraprobiotics, the living cell must be inactivated while preserving its intact structure. Postbiotics are metabolic products secreted by beneficial microorganisms or low molecular weight soluble compounds released into the environment because of microbial cell lysis. Paraprobiotics and postbiotics, which are reported to possess beneficial properties such as antimicrobial, anti-inflammatory, anticarcinogenic, antiproliferative, and immunomodulatory effects, are applied in the food and pharmacology industries. This study evaluates the definitions of paraprobiotics and postbiotics, their uses in the food and pharmaceutical industries, and their effects on health.

References

  • Ahn, J.E., Kim, H., Chung, D.K. (2019). Lipoteichoic acid isolated from Lactobacillus plantarum maintains inflammatory homeostasis through regulation of Th1-and Th2-induced cytokines. Journal of Microbiology and Biotechnology 29(1): 151-159. doi: 10.4014/jmb.1809.09001.
  • Akbar, A., Ali, I., Anal, A.K. (2016). Industrial perspectives of lactic acid bacteria for biopreservation and food safety. Journal Animal and Plant Sciences 26: 938-948.
  • Arai, S., Iwabuchi, N., Takahashi, S., Xiao, J.Z., Abe, F., Hachimura, S. (2018). Orally administered heat-killed Lactobacillus paracasei MCC1849 enhances antigen-specific Iga secretion and induces follicular helper T cells in mice. PloS one 13(6): 0199018. doi:10.1371/ journal.pone.0199018.
  • Arrioja-Bretón, D., Mani-López, E., Palou, E., López-Malo, A. (2020). Antimicrobial activity and storage stability of cell-free supernatants from lactic acid bacteria and their applications with fresh beef. Food Control 115: 107286. doi: 10.1016/j.foodcont.2020.107286
  • Barros, C.P., Guimaraes, J.T., Esmerino, E.A., Duarte, M.C.K., Silva, M.C., Silva, R., Ferreira, B.M., Sant’Ana, A.S., Freitas, M.Q., Cruz, A.G. (2020). Paraprobiotics and postbiotics: Concepts and potential applications in dairy products. Current Opinion in Food Science 32: 1-8. doi: 10.1016/j.cofs.2019.12.003.
  • Barros, C.P., Grom, L.C., Guimarães, J.T., Balthazar, C.F., Rocha, R.S., Silva, R., Almada, C. N., Pimentel, T.C., Venancio, E.L., Junior, I.C., Maciel, P.M.C., Freitas, M.Q., Esmerino, E.A., Silva, M.C., Duarte, M.C.K.H., Sant’Ana, A.S., Cruz, A.G. (2021). Paraprobiotic obtained by ohmic heating added in whey-grape juice drink is effective to control postprandial glycemia in healthy adults. Food Research International 140: 109905. doi: 10.1016/j.foodres.2020.109905.
  • Beimfohr, C. (2016). A review of research conducted with probiotic E. coli marketed as symbioflor. International Journal of Bacteriology 2016: 3535621. doi: 10.1155/2016/3535621.
  • Bengoa, A.A., Llamas, M.G., Iraporda, C., Dueñas, M.T., Abraham, A.G., Garrote, G.L. (2018). Impact of growth temperature on exopolysaccharide production and probiotic properties of Lactobacillus paracasei strains isolated from kefir grains. Food Microbiology 69: 212-218. doi: 10.1016/j.fm.2017.08.012.
  • Buckley, M., Lacey, S., Doolan, A., Goodbody, E., Seamans, K. (2018). The effect of Lactobacillus reuteri supplementation in Helicobacter pylori infection: a placebo-controlled, single-blind study. BMC Nutrition 4(1): 1-8. doi: 10.1186/s40795-018-0257-4.
  • Canfora, E.E., Jocken, J.W., Blaak, E.E. (2015). Short-chain fatty acids in control of body weight and insulin sensitivity. Nature Reviews Endocrinology 11(10): 577-591. doi: 10.1038/nrendo.2015.128.
  • Cicenia, A., Santangelo, F., Gambardella, L., Pallotta, L., Iebba, V., Scirocco, A., Marignani, M., Tellan, G., Carabotii, M., Corazziari, E.S., Schippa, S., Severi, C. (2016). Protective role of postbiotic mediators secreted by Lactobacillus rhamnosus GG versus lipopolysaccharide-induced damage in human colonic smooth muscle cells. Journal of Clinical Gastroenterology 50: 140-144. doi: 10.1097/MCG.0000000000000681.
  • Cuevas-González, P.F., Liceaga, A.M., Aguilar-Toalá, J.E. (2020). Postbiotics and paraprobiotics: From concepts to applications. Food Research International 136: 109502. doi: 10.1016/ j.foodres.2020.109502.
  • Dalié, D.K.D., Deschamps, A.M., Richard-Forget, F. (2010). Lactic acid bacteria-potential for control of mould growth and mycotoxins: A review. Food Control 21(4): 370-380. doi: 10.1016/j.foodcont.2009.07.011.
  • de Almada, C.N., Almada, C.N., Martinez, R., Sant'Ana, A. (2016). Paraprobiotics: Evidence on their ability to modify biological responses, inactivation methods and perspectives on their application in foods. Trends in Food Science & Technology 58: 96-114. doi: 10.1016/ j.tifs.2016.09.011.
  • Elham, N., Naheed, M., Elahe, M., Hossein, M.M., Majid, T. (2022). Selective cytotoxic effect of probiotic, paraprobiotic and postbiotics of L. casei strains against colorectal cancer cells: in vitro studies. Brazilian Journal of Pharmaceutical Sciences 58: e19400. doi: 10.1590/s2175-97902022e19400.
  • Fichera, G.A., Fichera, M., Milone, G. (2016). Antitumoural activity of a cytotoxic peptide of Lactobacillus casei peptidoglycan and its interaction with mitochondrial-bound hexokinase. Anti-Cancer Drugs 27(7): 609. doi: 10.1097/ CAD.0000000000000367.
  • Galvez, A., López, R.L., Pulido, R.P., Burgos, M.J.G. (2014). Natural antimicrobials for food biopreservation. Food Biopreservation, New York: Springer.
  • Gill, P.A., Van Zelm, M.C., Muir, J.G., Gibson, P.R. (2018). Short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders. Alimentary Pharmacology & Therapeutics 48(1): 15-34. doi: 10.1111/ apt.14689.
  • Gökırmaklı, Ç., Üçgül, B., Seydim, Z. (2021). Fonksiyonel gıda kavramına yeni bir bakış: Postbiyotikler. Gıda 46(4): 872-882. doi: 10.15237/gida.GD21035.
  • Hamad, G.M., Abdelmotilib, N.M., Darwish, A.M., Zeitoun, A.M. (2020). Commercial probiotic cell-free supernatants for inhibition of Clostridium perfringens poultry meat infection in Egypt. Anaerobe 62: 102181. doi: 10.1016/ j.anaerobe.2020.102181.
  • Hamad, G., Ombarak, R.A., Eskander, M., Mehany, T., Anees, F.R., Elfayoumy, R.A., Omar, S.A., Lorenzo, J.M., Abou-Alella, S.A.E. (2022). Detection and inhibition of Clostridium botulinum in some Egyptian fish products by probiotics cell-free supernatants as bio-preservation agents. LWT-Food Science and Technology 163: 113603. doi: 10.1016/j.lwt.2022.113603.
  • Huang, J., Li, J., Li, Q., Li, L., Zhu, N., Xiong, X., Li, G. (2020). Peptidoglycan derived from Lactobacillus rhamnosus MLGA up-regulates the expression of chicken β-defensin 9 without triggering an inflammatory response. Innate Immunity 26(8): 733-745. doi: 10.1177/ 1753425920949917.
  • İçier, S., Güzelcan, C., Hıdır, Ş., Türköz, B.K. (2022). Postbiyotikler ve gıda endüstrisinde kullanım alanları. Gıda 47(2): 252-265. doi: 10.15237/gida.GD21145.
  • İncili, G.K., Karatepe, P., Akgöl, M., Kaya, B., Kanmaz, H., Hayaloğlu, A.A. (2021). Characterization of Pediococcus acidilactici postbiotic and impact of postbiotic-fortified chitosan coating on the microbial and chemical quality of chicken breast fillets. International Journal of Biological Macromolecules 184: 429-437. doi: 10.1016/j.ijbiomac.2021.06.106.
  • İncili, G.K., Karatepe, P., Akgöl, M., Güngören, A., Koluman, A., İlhak, O.İ., Kanmaz, H., Kaya, B., Hayaloğlu, A.A. (2022). Characterization of lactic acid bacteria postbiotics, evaluation in-vitro antibacterial effect, microbial and chemical quality on chicken drumsticks. Food Microbiology 104: 104001. doi: 10.1016/j.fm.2022.104001.
  • İncili, G.K., Akgöl, M., Karatepe, P., Kanmaz, H., Kaya, B., Tekin, A., Hayaloğlu, A.A. (2023). Inhibitory effect of bioactive compounds derived from freeze-dried paraprobiotic of Pediococcus acidilactici against food-borne pathogens: In-vitro and food model studies. Food Research International 170: 113045. doi: 10.1016/ j.foodres.2023.113045.
  • Jo, D.M., Park, S.K., Khan, F., Kang, M.G., Lee, J.H., Kim, Y.M. (2021). An approach to extend the shelf life of ribbonfish fillet using lactic acid bacteria cell-free culture supernatant. Food Control 123: 107731. doi: 10.1016/ j.foodcont.2020.107731.
  • Kamilya, D., Baruah, A., Sangma, T., Chowdhury, S., Pal, P. (2015). Inactivated probiotic bacteria stimulate cellular immune responses of Catla, Catla catla (Hamilton) in vitro. Probiotics and Antimicrobial Proteins 7: 101-106. doi: 10.1007/ s12602-015-9191-9.
  • Kanmani, P., Yuvaraj, N., Paari, K.A., Pattukumar, V., Arul, V. (2011). Production and purification of a novel exopolysaccharide from lactic acid bacterium Streptococcus phocae PI80 and its functional characteristics activity in vitro. Bioresource Technology 102(7): 4827-4833. doi: 10.1016/j.biortech.2010.12.118.
  • Kanmani, P., Albarracin, L., Kobayashi, H., Iida, H., Komatsu, R., Kober, A.H., Ikeda-Ohtsubo, W., Suda, Y., Aso, H., Makino, S., Kano, H., Saito, T., Villena, J., Kitazawa, H. (2018). Exopolysaccharides from Lactobacillus delbrueckii OLL1073R-1 modulate innate antiviral immune response in porcine intestinal epithelial cells. Molecular Immunology 93: 253-265. doi: 10.1016/j.molimm.2017.07.009.
  • Kareem, K.Y., Hooi Ling, F., Teck Chwen, L., May Foong, O., Anjas Asmara, S. (2014). Inhibitory activity of postbiotic produced by strains of Lactobacillus plantarum using reconstituted media supplemented with inulin. Gut Pathogens 6(1): 1-7. doi: 10.1186/1757-4749-6-23.
  • Kawase, M., He, F., Miyazawa, K., Kubota, A., Yoda, K., Hiramatsu, M. (2012). Orally administered heat-killed Lactobacillus gasseri TMC0356 can upregulate cell-mediated immunity in senescence-accelerated mice. FEMS Microbiology Letters 326: 125-130. doi: 10.1111/ j.1574-6968.2011.02440.x.
  • Kaya, H.I., Simsek, O. (2019). Characterization of pathogen-specific bacteriocins from lactic acid bacteria and their application within cocktail against pathogens in milk. LWT-Food Science and Technology 115: 108464. doi: 10.1016/ j.lwt.2019.108464.
  • Kim, A.R., Ahn, K.B., Yun, C.H., Park, O.J., Perinpanayagam, H., Yoo, Y.J., Kum, K.Y., Han, S.H. (2019). Lactobacillus plantarum lipoteichoic acid inhibits oral multispecies biofilm. Journal of Endodontics 45(3): 310-315. doi: 10.1016/ j.joen.2018.12.007.
  • Kırma, İ. (2016). Gıda kaynaklı laktik asit bakterileri kullanılarak ekzopolisakkarit üretimi. İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, İstanbul, Türkiye, 105 s.
  • Koscik, R.J., Reid, G., Kim, S.O., Li, W., Challis, J.R., Bocking, A.D. (2018). Effect of Lactobacillus rhamnosus GR-1 Supernatant on cytokine and chemokine output from human amnion cells treated with lipoteichoic acid and lipopolysaccharide. Reproductive Sciences 25(2): 239-245. doi: 10.1177/1933719117711259.
  • Kye, Y.J., Lee, S.Y., Kim, H.R., Lee, B.H., Park, J.H., Park, M.S., Ji, G.E., Sung, M.K. (2022). Lactobacillus acidophilus PIN7 paraprobiotic supplementation ameliorates DSS‐induced colitis through anti‐inflammatory and immune regulatory effects. Journal of Applied Microbiology 132(4): 3189-3200. doi: 10.1111/ jam.15406.
  • Lee, K.J., Park, H.W., Choi, E.J., Chun, H.H. (2016). Effects of CFSs produced by lactic acid bacteria in combination with grape seed extract on the microbial quality of ready-to-eat baby leaf vegetables. Cogent Food & Agriculture 2(1): 1268742. doi: 10.1080/23311932.2016.1268742.
  • Lew, L.C., Gan, C.Y., Liong, M.T. (2013). Dermal bioactives from lactobacilli and bifidobacterial. Annals of Microbiology 63(3): 1047-1055. doi: 10.1007/s13213-012-0561-1.
  • Li, Q., Cao, L., Tian, Y., Zhang, P., Ding, C., Lu, W., Wang, D., Ye, H., Hao, H. (2018). Butyrate suppresses the proliferation of colorectal cancer cells via targeting pyruvate kinase M2 and metabolic reprogramming. Molecular & Cellular Proteomics 17(8): 1531-1545. doi: 10.1074/ mcp.RA118.000752.
  • Liévin-Le Moal, V., Sarrazin-Davila, L.E., Servin, A.L. (2007). An experimental study and a randomized, double-blind, placebo-controlled clinical trial to evaluate the antisecretory activity of Lactobacillus acidophilus strain LB against nonrotavirus diarrhea. Pediatrics 120(4): e795-e803. doi: 10.1542/peds.2006-2930.
  • Lindström, C., Holst, O., Nilsson, L., Öste, R., Andersson, K.E. (2012). Effects of Pediococcus parvulus 2.6 and its exopolysaccharide on plasma cholesterol levels and inflammatory markers in mice. AMB Express 2(1): 1-9. doi: 10.1186/2191-0855-2-66.
  • Liu, C., Qi, X., Li, D., Zhao, L., Li, Q., Mao, K., Shen, G., Ma, Y., Wang, R. (2023). Limosilactobacillus fermentum HF06‐derived paraprobiotic and postbiotic alleviate intestinal barrier damage and gut microbiota disruption in mice with ulcerative colitis. Journal of the Science of Food and Agriculture 104(3): 1702-1712. doi: 10.1002/jsfa.13057.
  • Lynch, K.M., Zannini, E., Coffey, A., Arendt, E.K. (2018). Lactic acid bacteria exopolysaccharides in foods and beverages: Isolation, properties, characterization, and health benefits. Annual Review of Food Science and Technology 9: 155-176. doi: 10.1146/annurev-food-030117-012537.
  • Maghsood, F., Johari, B., Rohani, M., Madanchi, H., Saltanatpour, Z., Kadivar, M. (2020). Antiproliferative and anti-metastatic potential of high molecular weight secretory molecules from probiotic Lactobacillus reuteri cell-free supernatant against human colon cancer stem-like cells (ht29-she). International Journal of Peptide Research and Therapeutics 26: 2619-2631. doi: 10.1007/s10989-020-10049-z.
  • Mehling, H., Busjahn, A. (2013). Non-viable Lactobacillus reuteri DSMZ 17648 (Pylopass™) as a new approach to Helicobacter pylori control in humans. Nutrients 5(8): 3062-3073. doi: 1010.3390/nu5083062.
  • Mehta, J.P., Ayakar, S., Singhal, R.S. (2023). The potential of paraprobiotics and postbiotics to modulate the immune system: A Review. Microbiological Research 127449.
  • Merghni, A., Dallel, I., Noumi, E., Kadmi, Y., Hentati, H., Tobji, S., Amor, A.B., Mastouri, M. (2017). Antioxidant and antiproliferative potential of biosurfactants isolated from Lactobacillus casei and their anti-biofilm effect in oral Staphylococcus aureus strains. Microbial Pathogenesis 104: 84-89. doi: 10.1016/j.micpath.2017.01.017.
  • Moradi, M., Tajik, H., Mardani, K., Ezati, P. (2019). Efficacy of lyophilized cell-free supernatant of Lactobacillus salivarius (Ls-BU2) on Escherichia coli and shelf life of ground beef. Veterinary Research Forum 10(3): 193-198. doi: 10.30466/vrf.2019.101419.2417.
  • Moradi, M., Molaei, R., Guimarães, J.T. (2021). A review on preparation and chemical analysis of postbiotics from lactic acid bacteria. Enzyme and Microbial Technology 143: 109722. doi: 10.1016/j.enzmictec.2020.109722.
  • Morais, I.M.C., Cordeiro, A.L., Teixeira, G.S., Domingues, V.S., Nardi, R.M.D., Monteiro, A.S., Alves, R.J., Siqueira, E.P., Santos, V.L. (2017). Biological and physicochemical properties of biosurfactants produced by Lactobacillus jensenii P 6A and Lactobacillus gasseri P 65. Microbial Cell Factories 16: 1-15. doi: 10.1186/s12934-017-0769-7.
  • Nagpal, R., Wang, S., Ahmadi, S., Hayes, J., Gagliano, J., Subashchandrabose, S., Kitzman, D. W., Becton, T., Read, R., Yadav, H. (2018). Human-origin probiotic cocktail increases short-chain fatty acid production via modulation of mice and human gut microbiome. Scientific Reports 8(1): 12649. doi: 10.1038/s41598-018-30114-4.
  • Nurko, E., Nakilcioğlu, E. (2023). Gıda endüstrisinde simbiyotikler, postbiyotikler ve paraprobiyotikler. Gıda 48(1): 144-159. doi: 10.15237/gida.GD22089.
  • Nataraj, B.H., Ali, S.A., Behare, P.V., Yadav, H. (2020). Postbiotics-parabiotics: The new horizons in microbial biotherapy and functional foods. Microbial Cell Factories 19(1): 1-22. doi: 10.1186/s12934-020-01426-w.
  • Parvarei, M.M., Khorshidian, N., Fazeli, M.R., Mortazavian, A.M., Nezhad, S.S., Mortazavi, A.S. (2021). Comparative effect of probiotic and paraprobiotic addition on physicochemical, chemometric and microstructural properties of yogurt. LWT- Food Science and Technology 144: 111177. doi: 10.1016/j.lwt.2021.111177.
  • Patil, S., Sawant, S., Hauff, K., Hampp, G. (2019). Validated postbiotic screening confirms presence of physiologically-active metabolites, such as short-chain fatty acids, amino acids and vitamins in Hylak® Forte. Probiotics and Antimicrobial Proteins 11: 1124-1131. doi: 10.1007/s12602-018-9497-5.
  • Ray, S., Sherlock, A., Wilken, T., Woods, T. (2010). Cell wall lysed probiotic tincture decreases immune response to pathogenic enteric bacteria and improves symptoms in autistic and immune compromised children. Explore 19(1): 1-5.
  • Reis, J.A., Paula, A.T., Casarotti, S.N., Penna, A.L.B. (2012). Lactic acid bacteria antimicrobial compounds: characteristics and applications. Food Engineering Reviews 4: 124-140. doi: 10.1007/ s12393-012-9051-2.
  • Rincon-Delgadillo, M.I., Lopez-Hernandez, A., Wijaya, I., Rankin, S.A. (2012). Diacetyl levels and volatile profiles of commercial starter distillates and selected dairy foods. Journal of Dairy Science 95(3): 1128-1139. doi: 10.3168/jds.2011-4834.
  • Shao, L.I., Wu, Z., Zhang, H., Chen, W., Ai, L., Guo, B. (2014). Partial characterization and immunostimulatory activity of exopolysaccharides from Lactobacillus rhamnosus KF5. Carbohydrate Polymers 107: 51-56. doi: 10.1016/j.carbpol.2014.02.037.
  • Siciliano, R.A., Reale, A., Mazzeo, M.F., Morandi, S., Silvetti, T., Brasca, M. (2021). Paraprobiotics: A new perspective for functional foods and nutraceuticals. Nutrients 13(4): 1225. doi: 10.3390/nu13041225.
  • Singh, R.P., Shukla, M.K., Mishra, A., Kumari, P., Reddy, C.R.K., Jha, B. (2011). Isolation and characterization of exopolysaccharides from seaweed associated bacteria Bacillus licheniformis. Carbohydrate Polymers 84(3): 1019-1026. doi: 10.1016/j.carbpol.2010.12.061.
  • Singh, V.P. (2018). Recent approaches in food bio-preservation-a review. Open Veterinary Journal 8(1): 104-111. doi: 10.4314/ovj.v8i1.16.
  • Stoyanova, L.G., Ustyugova, E.A., Netrusov, A.I. (2012). Antibacterial metabolites of lactic acid bacteria: their diversity and properties. Applied Biochemistry and Microbiology 48: 229-243. doi: 10.1134/S0003683812030143.
  • Tenea, G.N., Barrigas, A. (2018). The efficacy of bacteriocin-containing cell-free supernatant from Lactobacillus plantarum Cys5-4 to control pathogenic bacteria growth in artisanal beverages. International Food Research Journal 25(5): 2031-2037.
  • Uğur, E., Öner, Z., Bektas, A., Ulusoy, M. (2021). Paraprobiyotikler, postbiyotikler ve sağlık üzerine etkileri. Gıda 46(2): 428-442. doi: 10.15237/ gida.GD20141.
  • Valerio, F., Bavaro, A.R., Di Biase, M., Lonigro, S.L., Logrieco, A.F., Lavermicocca, P. (2020). Effect of amaranth and quinoa flours on exopolysaccharide production and protein profile of liquid sourdough fermented by Weissella cibaria and Lactobacillus plantarum. Frontiers in Microbiology 11: 967. doi: 10.3389/fmicb.2020.00967.
  • Vieco-Saiz, N., Belguesmia, Y., Raspoet, R., Auclair, E., Gancel, F., Kempf, I., Drider, D. (2019). Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Frontiers in Microbiology 10: 57. doi: 10.3389/fmicb.2019.00057.
  • Wang, S., Han, X., Zhang, L., Zhang, Y., Li, H., Jiao, Y. (2018). Whole peptidoglycan extracts from the Lactobacillus paracasei subsp. paracasei M5 strain exert anticancer activity in vitro. BioMed Research International 2018: 2871710. doi: 10.1155/2018/2871710.
  • Wang, K., Niu, M., Song, D., Song, X., Zhao, J., Wu, Y., Lu, B., Niu, G. (2020). Preparation, partial characterization and biological activity of exopolysaccharides produced from Lactobacillus fermentum S1. Journal of Bioscience and Bioengineering 129(2): 206-214. doi: 10.1016/ j.jbiosc.2019.07.009.
  • Welk, A., Patjek, S., Gärtner, M., Baguhl, R., Schwahn, C., Below, H. (2021). Antibacterial and antiplaque efficacy of a lactoperoxidase-thiocyanate-hydrogen-peroxide-system-containing lozenge. BMC Microbiology 21: 1-12. doi: 10.1186/s12866-021-02333-9.
  • Xiao, S.D., De Zhang, Z., Lu, H., Jiang, S.H., Liu, H.Y., Wang, G.S., Xu, G.M., Zhang, Z.B., Lin, G.J., Wang, G.L. (2003). Multicenter, randomized, controlled trial of heat-killed Lactobacillus acidophilus LB in patients with chronic diarrhea. Advances in Therapy 20: 253-260. doi: 10.1007/BF02849854.
  • Xu, R., Aruhan, Xiu, L., Sheng, S., Liang, Y., Zhang, H., Liu, Y., Tong, H., Du, R., Wang, X. (2019). Exopolysaccharides from Lactobacillus buchneri TCP016 attenuate LPS-and d-GalN-induced liver injury by modulating the gut microbiota. Journal of Agricultural and Food Chemistry 67(42): 11627-11637.
  • Yi, L., Qi, T., Ma, J., Zeng, K. (2020). Genome and metabolites analysis reveal insights into control of foodborne pathogens in fresh-cut fruits by Lactobacillus pentosus MS031 isolated from Chinese Sichuan Paocai. Postharvest Biology and Technology 164: 111150. doi: 10.1016/ j.postharvbio.2020.111150.
There are 74 citations in total.

Details

Primary Language Turkish
Subjects Food Microbiology, Food Sciences (Other)
Journal Section Articles
Authors

Berna Öztürk 0000-0003-1104-1863

Gülce Sulak 0009-0003-0436-1006

Selin Eker 0009-0007-0841-3781

İlkin Yücel Şengün 0000-0001-6940-2129

Publication Date August 14, 2024
Submission Date May 13, 2024
Acceptance Date June 28, 2024
Published in Issue Year 2024

Cite

APA Öztürk, B., Sulak, G., Eker, S., Yücel Şengün, İ. (2024). PARAPROBİYOTİKLER VE POSTBİYOTİKLER: GIDA VE FARMAKOLOJİ UYGULAMALARI. Gıda, 49(4), 641-655. https://doi.org/10.15237/gida.GD24054
AMA Öztürk B, Sulak G, Eker S, Yücel Şengün İ. PARAPROBİYOTİKLER VE POSTBİYOTİKLER: GIDA VE FARMAKOLOJİ UYGULAMALARI. GIDA. August 2024;49(4):641-655. doi:10.15237/gida.GD24054
Chicago Öztürk, Berna, Gülce Sulak, Selin Eker, and İlkin Yücel Şengün. “PARAPROBİYOTİKLER VE POSTBİYOTİKLER: GIDA VE FARMAKOLOJİ UYGULAMALARI”. Gıda 49, no. 4 (August 2024): 641-55. https://doi.org/10.15237/gida.GD24054.
EndNote Öztürk B, Sulak G, Eker S, Yücel Şengün İ (August 1, 2024) PARAPROBİYOTİKLER VE POSTBİYOTİKLER: GIDA VE FARMAKOLOJİ UYGULAMALARI. Gıda 49 4 641–655.
IEEE B. Öztürk, G. Sulak, S. Eker, and İ. Yücel Şengün, “PARAPROBİYOTİKLER VE POSTBİYOTİKLER: GIDA VE FARMAKOLOJİ UYGULAMALARI”, GIDA, vol. 49, no. 4, pp. 641–655, 2024, doi: 10.15237/gida.GD24054.
ISNAD Öztürk, Berna et al. “PARAPROBİYOTİKLER VE POSTBİYOTİKLER: GIDA VE FARMAKOLOJİ UYGULAMALARI”. Gıda 49/4 (August 2024), 641-655. https://doi.org/10.15237/gida.GD24054.
JAMA Öztürk B, Sulak G, Eker S, Yücel Şengün İ. PARAPROBİYOTİKLER VE POSTBİYOTİKLER: GIDA VE FARMAKOLOJİ UYGULAMALARI. GIDA. 2024;49:641–655.
MLA Öztürk, Berna et al. “PARAPROBİYOTİKLER VE POSTBİYOTİKLER: GIDA VE FARMAKOLOJİ UYGULAMALARI”. Gıda, vol. 49, no. 4, 2024, pp. 641-55, doi:10.15237/gida.GD24054.
Vancouver Öztürk B, Sulak G, Eker S, Yücel Şengün İ. PARAPROBİYOTİKLER VE POSTBİYOTİKLER: GIDA VE FARMAKOLOJİ UYGULAMALARI. GIDA. 2024;49(4):641-55.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/