Research Article
BibTex RIS Cite

ŞEKER PANCARI BESİNSEL LİFİNİN FONKSİYONEL ÖZELLİKLERİ ÜZERİNE FARKLI EKSTRAKSİYON UYGULAMALARI VE MİKRONİZASYONUN ETKİLERİ

Year 2019, , 498 - 512, 15.05.2019
https://doi.org/10.15237/gida.GD19031

Abstract

Bu çalışmanın amacı besinsel lif elde etme ekstraksiyon
uygulamaları ve mikronizasyon işlemlerinin şeker pancarı besinsel lifinin
fonksiyonel özellikleri üzerine etkisini belirlemektir. Çözünmez besinsel lif
ekstraksiyonu su, etil alkol ve alkali çözelti kullanılarak
gerçekleştirilmiştir. Elde edilen toz yapının mikronize edilmesinde 100 MPa
basınçta çalışan yüksek basınç homojenizatörü (YBH) kullanılmıştır. Mikronize
ve liyofilize edilen besinsel lif örneklerinin fonksiyonel özellikleri
incelenmiştir. Ekstraksiyon uygulamaları ve mikronizasyon işleminin besinsel
lifin fonksiyonel özelliklerinde önemli farklılıklar oluşturduğu saptanmıştır (
P
˂ 0.05). Partikül iriliği bakımından en büyük YBH etkisi su
ile ekstrakte edilen örneklerin 5 kez yüksek basınç uygulamasından geçirilmesi
ile sağlanmıştır [d(0.9) değeri 1049’dan 156 µm’ye düşmüş ve spesifik yüzey
alanı 0.0318’den 0.149 m
2/g’a yükselmiştir]. Suyla ekstrakte edilen
ve YBH ile mikronize edilen örneğin şişme, su ve yağ tutma kapasiteleri diğer
uygulamalarla elde edilenlere kıyasla daha üstün bulunmuştur. Bu besinsel lif
örneklerinin düşük kalorili gıdalarda katkı maddesi olarak kullanılabilirliği
önerilebilir.

References

  • AACC (1990). American Association of Cereal Chemists: Approved Methods of the AACC, 8th ed., The Association: St. Paul, MN.Abdul-Hamid A., Luan Y.S. (2000). Functional properties of dietary fibre prepared from defatted rice bran. Food Chem, 68(1), 15-19.
  • AOAC (1997). Association of Official Analytical Chemists. Methods of Analysis of the Association of Official Analytical Chemists, 16th ed.; AOAC: Washington, DC.Bertin C., Rouau X., Thibault J.F. (1988). Structure and properties of sugar beet fibres. J Sci Food Agric, 44, 15-29.
  • Cadden A. (1987). Comparative effects of particle size reduction on physical structure and water binding properties of several plant fibers. J Food Sci, 52(6), 1595-1599.
  • Chau C.-F., Wang Y.-T., Wen Y.-L. (2007). Different micronization methods significantly improve the functionality of carrot insoluble fibre. Food Chem, 100, 1402-1408.
  • Chau C.F., Wen Y.L., Wang Y.T. (2006). Effects of micronization on the characteristics and physicochemical properties of insoluble fibres. J Sci Food Agric, 86, 2380-2386.
  • Chen J., Gao D., Yang L., Gao Y. (2013). Effect of microfluidization process on the functional properties of insoluble dietary fiber. Food Res Int, 54, 1821-1827.
  • Chen T., Zhang M., Bhandari B., Yang Z. (2018). Micronization and nanosizing of particles for an enhanced quality of food: A review. Crit Rev Food Sci Nutr, 58(6), 993-1001.
  • Christiensen E.S. (1989). Characteristics of sugar beet fibre allow many food uses. Cereal Foods World, 34(7), 541-544.
  • Clarke A., Prescott T., Khan A., Olabi A.G. (2010). Causes of breakage and disruption in a homogeniser. Appl Energy, 87, 3680-3690.
  • Filipovic N., Djuric M., Gyura J. (2007). The effect of the type and quantity of sugar-beet fibers on bread characteristics. J Food Eng, 78, 1047-1053.
  • Frost J., Hegedus E.F., Glicksman M. (1984). Objective characterization of hydrocolloid organoleptic properties. Food Technol, 38, 118-122.
  • Fung W.-Y., Yuen K.-H., Liong M.-T. (2010). Characterization of fibrous residues from agrowastes and the production of nanofibers. J Agric. Food Chem, 58, 8077-8084.
  • Gómez M., Ronda F., Blanco C.A., Caballero P.A., Apesteguía A. (2003). Effect of dietary fibre on dough rheology and bread quality. Eur Food Res Technol, 216, 51-55.
  • Hu J.-L., Nie S.-P., Xie M.-Y. (2013). High pressure homogenization increases antioxidant capacity and short-chain fatty acid yield of polysaccharide from seeds of Plantago asiatica L. Food Chem, 138, 2338-2345.
  • Hu R., Zhang M., Adhikari B., Liu Y. (2015). Effect of homogenization and ultrasonication on the physical properties of insoluble wheat bran fibres. Int Agrophys., 29, 423-432.
  • Huang C.-C., Chen Y.-F., Wang C.-CR. (2010). Effects of micronization on the physicochemical properties of peels of three roots and tuber crops. J Sci Food Agric, 90,759-763.
  • Javidipour I., Vural H., Özboy-Özbaş Ö., Tekin A. (2005). Effects of interesterified vegetable oils and sugar beet fiber on the quality of Turkish-type salami. Int J Food Sci Technol, 40,177-185.
  • Jongaroontaprangsee S., Tritrong W., Chokanaporn W. (2007). Effects of drying temperature and particle size on hydration properties of dietary fiber powder from lime and cabbage by-products. Int J Food Prop, 10(4), 887-897.
  • Kuan Y.-H., Liong M.-T. (2008). Chemical and physicochemical characterization of agrowaste fibrous materials and residues. J Agric Food Chem, 56, 9252-9257.Larrauri J.A. (1999). New approaches in the preparation of high dietary fibre powders from fruit by-products. Trends Food Sci Technol, 10, 3-8.
  • Michel F., Thibault J.F., Barry J.L. (1988). Preparation and characterization of dietary fibre from sugar beet pulp. J Sci Food Agric, 4, 77-85.
  • Özboy Ö., Şahbaz F., Köksel H. (1998). Chemical and physical characterization of sugar beet fibre. Acta Aliment, 27, 137-138.
  • Rabetafika H.N., Bchir B., Aguedo M., Paquot M., Blecker C. (2014). Effects of processing on the compositions and physicochemical properties of fibre concentrate from cooked fruit pomaces. Food Bioproc Tech, 7, 749-760.
  • Raghavendra S.N., Rastogi N.K., Raghavarao K.S.M.S., Tharanathan R.N. (2004). Dietary fiber from coconut residue: Effects of different treatments and particle size on the hydration properties. Eur Food Res Technol, 218(6), 536-567.
  • Raghavendra S.N., Swamy R., Rastogi N.K., Raghavarao K.S.M.S., Kumar S., Tharanathan R.N. (2006). Grinding characteristics and hydration properties of coconut residue: A source of dietary fiber. J Food Eng, 72, 281-286.
  • Sakhare S.D., Prabhasankar P. (2017). Effect of roller mill processed fenugreek fiber addition on rheological and bread making properties of wheat flour doughs. J Food Process Pres, 41, e13012, 1-9.
  • Sangnark A., Noomhorm A. (2003). Effect of particle sizes on functional properties of dietary fibre prepared from sugarcane bagasse. Food Chem, 80(2), 221-229.
  • Soronja Simovic D., Maravic N., Seres Z., Misan A., Pajin B., Jevric L.D., Podunavac-Kuzmanovic S.O., Kovacevic S.Z. (2017). Antioxidant capacity of cookies with non-modified and modified sugar beet fibers: chemometric and statistical analysis. Eur Food Res Technol, 243, 239-246.
  • Thebaudin J.Y., Lefebvre A.C., Harrington M. Bourgeois C.M. (1997). Dietary fibres: nutritional and technological interest. Trends Food Sci Technol, 8, 41-48.
  • Türkşeker (2018). İstatistikler: Personel, Şeker Satış, Ekim ve Üretim. www.turkseker.gov.tr (Erişim tarihi: 10 Ocak 2019).
  • Ulbrich M., Flöter E. (2014). Impact of high pressure homogenization modification of a cellulose based fiber product on water binding properties. Food Hydrocoll, 41, 281-289.
  • Vural H., Javidipour I., Ozboy-Ozbas O. (2004). Effects of interesterified vegetable oils and sugar beet fiber on the quality of frankfurters. Meat Sci, 67, 65-72.
  • Wang T., Sun X., Raddatz J., Chen G. (2013). Effects of microfluidization on microstructure and physicochemical properties of corn bran. J Cereal Sci, 58, 355-361.
  • Wang T., Sun X., Zhou Z., Chen G. (2012). Effects of microfluidization process on physicochemical properties of wheat bran. Food Res Int, 48, 742-747.
  • Zhao X., Yang Z., Gai G., Yang Y. (2009). Effect of superfine grinding on properties of ginger powder. J Food Eng, 91, 217-222.
  • Zhu F., Du B., Li R., Li J. (2014). Effect of micronization technology on physicochemical and antioxidant properties of dietary fiber from buckwheat hulls. Biocatal Agric Biotechnol, 3(3), 30-34.
  • Zhu K., Huang S., Peng W., Qian H., Zhou H. (2010). Effect of ultrafine grinding on hydration and antioxidant properties of wheat bran dietary fiber. Food Res Int, 43, 943-948.

EFFECTS OF DIFFERENT EXTRACTION TREATMENTS AND MICRONIZATION ON THE FUNCTIONAL PROPERTIES OF SUGAR BEET DIETARY FIBRE

Year 2019, , 498 - 512, 15.05.2019
https://doi.org/10.15237/gida.GD19031

Abstract

The aim of this
study is to determine the effect of dietary fibre (DF) extraction treatments
and micronization on functional properties of sugar beet DF. Extraction of the
insoluble DF fraction was performed with distilled water, ethyl alcohol (95%)
and alkali solution. High pressure homogenizer (HPH) working at 100 MPa
pressure was used to micronize the powder structure. Functional properties of
micronized and lyophilized dietary fiber samples were investigated. The
extraction treatments and micronization process were found to have significant
differences on the functional properties of dietary fiber
(P˂ 0.05). The greatest HPH effect was observed in water
extracted sample after 5 cycles in terms of particle size [d(0.9) value
decreased from 1049 (pulp) to 156 µm and specific surface area increased from
0.0318 to 0.149 m2/g]. The swelling,
water and oil retention capacities of the water extracted and HPH micronized
sample were superior to those obtained with other applications. It can be
suggested that this dietary fiber sample can be used as an additive in
low-calorie foods.

References

  • AACC (1990). American Association of Cereal Chemists: Approved Methods of the AACC, 8th ed., The Association: St. Paul, MN.Abdul-Hamid A., Luan Y.S. (2000). Functional properties of dietary fibre prepared from defatted rice bran. Food Chem, 68(1), 15-19.
  • AOAC (1997). Association of Official Analytical Chemists. Methods of Analysis of the Association of Official Analytical Chemists, 16th ed.; AOAC: Washington, DC.Bertin C., Rouau X., Thibault J.F. (1988). Structure and properties of sugar beet fibres. J Sci Food Agric, 44, 15-29.
  • Cadden A. (1987). Comparative effects of particle size reduction on physical structure and water binding properties of several plant fibers. J Food Sci, 52(6), 1595-1599.
  • Chau C.-F., Wang Y.-T., Wen Y.-L. (2007). Different micronization methods significantly improve the functionality of carrot insoluble fibre. Food Chem, 100, 1402-1408.
  • Chau C.F., Wen Y.L., Wang Y.T. (2006). Effects of micronization on the characteristics and physicochemical properties of insoluble fibres. J Sci Food Agric, 86, 2380-2386.
  • Chen J., Gao D., Yang L., Gao Y. (2013). Effect of microfluidization process on the functional properties of insoluble dietary fiber. Food Res Int, 54, 1821-1827.
  • Chen T., Zhang M., Bhandari B., Yang Z. (2018). Micronization and nanosizing of particles for an enhanced quality of food: A review. Crit Rev Food Sci Nutr, 58(6), 993-1001.
  • Christiensen E.S. (1989). Characteristics of sugar beet fibre allow many food uses. Cereal Foods World, 34(7), 541-544.
  • Clarke A., Prescott T., Khan A., Olabi A.G. (2010). Causes of breakage and disruption in a homogeniser. Appl Energy, 87, 3680-3690.
  • Filipovic N., Djuric M., Gyura J. (2007). The effect of the type and quantity of sugar-beet fibers on bread characteristics. J Food Eng, 78, 1047-1053.
  • Frost J., Hegedus E.F., Glicksman M. (1984). Objective characterization of hydrocolloid organoleptic properties. Food Technol, 38, 118-122.
  • Fung W.-Y., Yuen K.-H., Liong M.-T. (2010). Characterization of fibrous residues from agrowastes and the production of nanofibers. J Agric. Food Chem, 58, 8077-8084.
  • Gómez M., Ronda F., Blanco C.A., Caballero P.A., Apesteguía A. (2003). Effect of dietary fibre on dough rheology and bread quality. Eur Food Res Technol, 216, 51-55.
  • Hu J.-L., Nie S.-P., Xie M.-Y. (2013). High pressure homogenization increases antioxidant capacity and short-chain fatty acid yield of polysaccharide from seeds of Plantago asiatica L. Food Chem, 138, 2338-2345.
  • Hu R., Zhang M., Adhikari B., Liu Y. (2015). Effect of homogenization and ultrasonication on the physical properties of insoluble wheat bran fibres. Int Agrophys., 29, 423-432.
  • Huang C.-C., Chen Y.-F., Wang C.-CR. (2010). Effects of micronization on the physicochemical properties of peels of three roots and tuber crops. J Sci Food Agric, 90,759-763.
  • Javidipour I., Vural H., Özboy-Özbaş Ö., Tekin A. (2005). Effects of interesterified vegetable oils and sugar beet fiber on the quality of Turkish-type salami. Int J Food Sci Technol, 40,177-185.
  • Jongaroontaprangsee S., Tritrong W., Chokanaporn W. (2007). Effects of drying temperature and particle size on hydration properties of dietary fiber powder from lime and cabbage by-products. Int J Food Prop, 10(4), 887-897.
  • Kuan Y.-H., Liong M.-T. (2008). Chemical and physicochemical characterization of agrowaste fibrous materials and residues. J Agric Food Chem, 56, 9252-9257.Larrauri J.A. (1999). New approaches in the preparation of high dietary fibre powders from fruit by-products. Trends Food Sci Technol, 10, 3-8.
  • Michel F., Thibault J.F., Barry J.L. (1988). Preparation and characterization of dietary fibre from sugar beet pulp. J Sci Food Agric, 4, 77-85.
  • Özboy Ö., Şahbaz F., Köksel H. (1998). Chemical and physical characterization of sugar beet fibre. Acta Aliment, 27, 137-138.
  • Rabetafika H.N., Bchir B., Aguedo M., Paquot M., Blecker C. (2014). Effects of processing on the compositions and physicochemical properties of fibre concentrate from cooked fruit pomaces. Food Bioproc Tech, 7, 749-760.
  • Raghavendra S.N., Rastogi N.K., Raghavarao K.S.M.S., Tharanathan R.N. (2004). Dietary fiber from coconut residue: Effects of different treatments and particle size on the hydration properties. Eur Food Res Technol, 218(6), 536-567.
  • Raghavendra S.N., Swamy R., Rastogi N.K., Raghavarao K.S.M.S., Kumar S., Tharanathan R.N. (2006). Grinding characteristics and hydration properties of coconut residue: A source of dietary fiber. J Food Eng, 72, 281-286.
  • Sakhare S.D., Prabhasankar P. (2017). Effect of roller mill processed fenugreek fiber addition on rheological and bread making properties of wheat flour doughs. J Food Process Pres, 41, e13012, 1-9.
  • Sangnark A., Noomhorm A. (2003). Effect of particle sizes on functional properties of dietary fibre prepared from sugarcane bagasse. Food Chem, 80(2), 221-229.
  • Soronja Simovic D., Maravic N., Seres Z., Misan A., Pajin B., Jevric L.D., Podunavac-Kuzmanovic S.O., Kovacevic S.Z. (2017). Antioxidant capacity of cookies with non-modified and modified sugar beet fibers: chemometric and statistical analysis. Eur Food Res Technol, 243, 239-246.
  • Thebaudin J.Y., Lefebvre A.C., Harrington M. Bourgeois C.M. (1997). Dietary fibres: nutritional and technological interest. Trends Food Sci Technol, 8, 41-48.
  • Türkşeker (2018). İstatistikler: Personel, Şeker Satış, Ekim ve Üretim. www.turkseker.gov.tr (Erişim tarihi: 10 Ocak 2019).
  • Ulbrich M., Flöter E. (2014). Impact of high pressure homogenization modification of a cellulose based fiber product on water binding properties. Food Hydrocoll, 41, 281-289.
  • Vural H., Javidipour I., Ozboy-Ozbas O. (2004). Effects of interesterified vegetable oils and sugar beet fiber on the quality of frankfurters. Meat Sci, 67, 65-72.
  • Wang T., Sun X., Raddatz J., Chen G. (2013). Effects of microfluidization on microstructure and physicochemical properties of corn bran. J Cereal Sci, 58, 355-361.
  • Wang T., Sun X., Zhou Z., Chen G. (2012). Effects of microfluidization process on physicochemical properties of wheat bran. Food Res Int, 48, 742-747.
  • Zhao X., Yang Z., Gai G., Yang Y. (2009). Effect of superfine grinding on properties of ginger powder. J Food Eng, 91, 217-222.
  • Zhu F., Du B., Li R., Li J. (2014). Effect of micronization technology on physicochemical and antioxidant properties of dietary fiber from buckwheat hulls. Biocatal Agric Biotechnol, 3(3), 30-34.
  • Zhu K., Huang S., Peng W., Qian H., Zhou H. (2010). Effect of ultrafine grinding on hydration and antioxidant properties of wheat bran dietary fiber. Food Res Int, 43, 943-948.
There are 36 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

İhsan Karabulut

Ayla Hançer This is me

Publication Date May 15, 2019
Published in Issue Year 2019

Cite

APA Karabulut, İ., & Hançer, A. (2019). ŞEKER PANCARI BESİNSEL LİFİNİN FONKSİYONEL ÖZELLİKLERİ ÜZERİNE FARKLI EKSTRAKSİYON UYGULAMALARI VE MİKRONİZASYONUN ETKİLERİ. Gıda, 44(3), 498-512. https://doi.org/10.15237/gida.GD19031
AMA Karabulut İ, Hançer A. ŞEKER PANCARI BESİNSEL LİFİNİN FONKSİYONEL ÖZELLİKLERİ ÜZERİNE FARKLI EKSTRAKSİYON UYGULAMALARI VE MİKRONİZASYONUN ETKİLERİ. GIDA. May 2019;44(3):498-512. doi:10.15237/gida.GD19031
Chicago Karabulut, İhsan, and Ayla Hançer. “ŞEKER PANCARI BESİNSEL LİFİNİN FONKSİYONEL ÖZELLİKLERİ ÜZERİNE FARKLI EKSTRAKSİYON UYGULAMALARI VE MİKRONİZASYONUN ETKİLERİ”. Gıda 44, no. 3 (May 2019): 498-512. https://doi.org/10.15237/gida.GD19031.
EndNote Karabulut İ, Hançer A (May 1, 2019) ŞEKER PANCARI BESİNSEL LİFİNİN FONKSİYONEL ÖZELLİKLERİ ÜZERİNE FARKLI EKSTRAKSİYON UYGULAMALARI VE MİKRONİZASYONUN ETKİLERİ. Gıda 44 3 498–512.
IEEE İ. Karabulut and A. Hançer, “ŞEKER PANCARI BESİNSEL LİFİNİN FONKSİYONEL ÖZELLİKLERİ ÜZERİNE FARKLI EKSTRAKSİYON UYGULAMALARI VE MİKRONİZASYONUN ETKİLERİ”, GIDA, vol. 44, no. 3, pp. 498–512, 2019, doi: 10.15237/gida.GD19031.
ISNAD Karabulut, İhsan - Hançer, Ayla. “ŞEKER PANCARI BESİNSEL LİFİNİN FONKSİYONEL ÖZELLİKLERİ ÜZERİNE FARKLI EKSTRAKSİYON UYGULAMALARI VE MİKRONİZASYONUN ETKİLERİ”. Gıda 44/3 (May 2019), 498-512. https://doi.org/10.15237/gida.GD19031.
JAMA Karabulut İ, Hançer A. ŞEKER PANCARI BESİNSEL LİFİNİN FONKSİYONEL ÖZELLİKLERİ ÜZERİNE FARKLI EKSTRAKSİYON UYGULAMALARI VE MİKRONİZASYONUN ETKİLERİ. GIDA. 2019;44:498–512.
MLA Karabulut, İhsan and Ayla Hançer. “ŞEKER PANCARI BESİNSEL LİFİNİN FONKSİYONEL ÖZELLİKLERİ ÜZERİNE FARKLI EKSTRAKSİYON UYGULAMALARI VE MİKRONİZASYONUN ETKİLERİ”. Gıda, vol. 44, no. 3, 2019, pp. 498-12, doi:10.15237/gida.GD19031.
Vancouver Karabulut İ, Hançer A. ŞEKER PANCARI BESİNSEL LİFİNİN FONKSİYONEL ÖZELLİKLERİ ÜZERİNE FARKLI EKSTRAKSİYON UYGULAMALARI VE MİKRONİZASYONUN ETKİLERİ. GIDA. 2019;44(3):498-512.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/