PROSES PARAMETRELERİ VE ÇÖZELTİ ÖZELLİKLERİNİN KOAKSİYAL ELEKTROPÜSKÜRTME YÖNTEMİ İLE ELDE EDİLEN NANOPARTİKÜLLERİN MORFOLOJİK ÖZELLİKLERİ ÜZERİNE ETKİSİ
Year 2019,
, 534 - 551, 15.05.2019
Aylin Altan Mete
,
Elif Atay
Abstract
Elektropüskürtme yöntemi, gıda uygulamaları için nano
ölçekli partiküllerin üretilmesini sağlayan bir enkapsülasyon yöntemidir.
Proses parametreleri ve çözelti özelliklerinin değiştirilmesiyle farklı
morfolojilere sahip nanopartiküller elde edilebilmektedir. Bu çalışmada, çörek
otu yağı koaksiyal elektropüskürtme yöntemi kullanılarak enkapsüle edilmiştir.
Proses parametreleri (kabuk çözelti akış hızı, uygulanan voltaj, iğne ile
toplayıcı arasındaki mesafe) ile çözelti özelliklerinin (çözgen, kabuk ve
çekirdek çözelti konsantrasyonu, yüzey aktif madde) elde edilen partiküllerin
morfolojik yapıları üzerine etkilerinin belirlenmesi amaçlanmıştır. Çalışmadan
elde edilen sonuçlar, kabuk çözelti konsantrasyonu, uygulanan voltaj ve iğne
ile toplayıcı arasındaki mesafe değişimlerinin partikül morfolojisi üzerinde
önemli bir etkiye sahip olduğunu göstermiştir. Nanopartiküller, zein
konsantrasyonu %17.5 (a/h)’dan %21 (a/h)’e arttırıldığında küreselliğini
kaybetmiştir. İğne ile toplayıcı arasındaki mesafenin 10 cm’den 13.5 cm’e ve
uygulanan voltajın 14 kV’dan 15 kV’a artması küresel ve homojen partiküllerin
üretilmesini sağlamıştır. Koaksiyal elektropüskürtme yöntemi ile elde edilen
partiküllerin çekirdek-kabuk yapısı konfokal mikroskop görüntüsü ile
doğrulanmıştır.
Supporting Institution
Mersin Üniversitesi Bilimsel Araştırma Projeleri Birimi
Project Number
2017-2-TP2-2566
References
- Bhushani, A., Anandhararmakrishnan, C. (2014). Electrospinning and electrospraying techniques: Potantial food based applications. Trends in Food Science & Technology, 38, 21-33, doi.org/10.1016/j.tifs.2014.03.004.
- Bulca, S. (2014). Çörek otunun bileşenleri ve bu yağın ve diğer bazı uçucu yağların antioksidan olarak gıda teknolojisinde kullanımı. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 11(2), 29 – 36.
- Drosou, C., Krokida, M., Biliaderis, C. (2017). Encapsulation of bioactive compounds through electrospinning/electrospraying and spray drying: a comparative assessment of food-related applications. Drying Technology, Vol. 35, No. 2, 139–162, doi.org/10.1080/07373937.2016.1162797.
- Fathi, M., Martin, A., McClements D. (2014). Nanoencapsulation of food ingredients using carbohydrate based delivery Systems. Trends in Food Science & Technology, 18-39, doi.org/10.1016/j.tifs.2014.06.007.
- Fernandez, A., Torres-Giner, S., Lagaron, J. (2009).Novel route to stabilization of bioactive antioxidants by encapsulation in electrospun fibers of zein prolamine. Food Hydrocolloids, 23, 1427–1432, doi.org/10.1016/j.foodhyd.2008.10.011.
- Ganan-Calvo, A.M., Davila, J., Barrero, A. (1997). Current and droplet size in the electrospraying of liquids. Scaling laws. Journal of Aerosol Science, 28(2), 249–275, doi.org/10.1016/S0021-8502(96)00433-8.
- García-Moreno, P., Özdemir, N., Stephansen, K., Mateiu, R., Echegoyen, Y., Lagaron, J. M., Chronakis, I., Jacobsen, C. (2017). Development of carbohydrate-based nano-microstructures loaded with fish oil by using electrohydrodynamic processing. Food Hydrocolloids, 69, 273-285, doi.org/10.1016/j.foodhyd.2017.02.013.
- Davarcı, F. (2012). Effects of some physical parameters on penetration, size and shape in alginate gel microencapsulation. İstanbul Üniversitesi, Gıda Mühendisliği Bölümü, İstanbul.
- Gomez-Mascaraque, L., Morfin, R., Perez-Masia, R., Sanchez, G., Lopez-Rubio, A. (2016). Optimization of electrospraying conditions for the microencapsulation of probiotics and evaluation of their resistance during storage and in-vitro digestion. Food Science and Technology 69. 438-446, doi.org/10.1016/j.lwt.2016.01.071.
- Gómez-Mascaraque, L., Ambrosio-Martín, J., Perez-Masiá, R., Lopez-Rubio, A. (2017). Impact of acetic acid on the survival of l. plantarum upon microencapsulation by coaxial electrospraying. Journal of Healthcare Engineering, Article ID 4698079,6 pages, doi.org/10.1155/2017/4698079.Kepekçi, D. B. (2011). Elektroeğirme yöntemiyle Lnp Nanoliflerin Üretimi ve Karakterizasyonu. Afyon Kocatepe Üniversitesi, Fen Bilimleri Enstitüsi, Malzeme Bilimi ve Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi, Ankara.
- Kriegel, C., Arrechi, A., Kit, K.M., McClements, D.J., Weiss, J. (2008). Fabrication, functionalization and application of electrospun biopolymer nanofibers. Critical Reviews in Food Science and Nutrition, 48 (8), 775–797, doi: 10.1080/10408390802241325.
- López-Rubio, A., Lagaron, J.M. (2012). Whey protein capsules obtained through electrospraying for the encapsulation of bioactives. Innovative Food Science and Emerging Technologies, 13, 200–206, doi.org/10.1016/j.ifset.2011.10.012.
- Mazzoli, A., Favoni, O. (2012). Particle size, size distribution and morphological evaluation of airborne dust particles. Powder Technology, 225, 65-71, doi.org/10.1016/j.powtec.2012.03.033.
- Nabil Mohammed, K., Nuthalapati, V., Chidambaram, R. (2014). Anti-oxidant activity assessment ofnanoencapsulated commercial black cumin seed oil. International Journal of Pharma Research &Review, 3(5):1-7.
- Niu, H., Wang, X., Lin, T. (2011). Needleless electrospinning: developments and performances. Nanofibers-Production, properties and functional applications, InTech, Croatia. pp 17-35.
- Pérez-Masiá, R., Lagaron, L.J., López-Rubio, A. (2014). Development and optimization of novel encapsulation structures of ınterest in functional foods through electrospraying. Food Bioprocess Technology, 7, 3236–3245.
- Pérez-Masiá, R., Lagaron, L.J., López-Rubio, A. (2014). Surfactant-aided electrospraying of low molecular weightcarbohydrate polymers from aqueous solutions. Carbohydrate Polymers 101, 249– 255, doi: 10.1016/j.carbpol.2013.09.032.
- Sakin, M., Koç, M., Kaymak-Ertekin, F. (2010). Mikroenkapsülasyon ve gıda teknolojisinde kullanımı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, Cilt 16, Sayı 1, 2010, Sayfa 77-86.
- Sakuldao, S., Yoovidhya, T., Wongsasulak, S. (2011). Coaxial electrospinning and sustained release properties of gelatin-cellulose acetate core-shell ultrafine fibres. Science Asia 37: 335–343, doi: 10.2306/scienceasia1513-1874.2011.37.335.
- Salata, O.V. (2005). Tools of nanotechnology: electrospray. Current Nanoscience, 1(1), 25-33. doi: 10.2174/1573413052953192.
- Smeets, A., Clasen, A., Mooter, G. (2017). Electrospraying of polymer solutions: Study of formulation and process parameters. European Journal of Pharmaceutics and Biopharmaceutics. 119, 114–124, doi.org/10.1016/j.ejpb.2017.06.010.
- Süngüç, C. (2013). Encapsulation of sarcopoterım spinosum extract in zein particle by using electrospray method. İzmir İleri teknoloji Enstitüsü, Yüksek Lisans Tezi, İzmir.
- Weiss, J., Takhistov, P., McClements, D. J. (2006). Functional materials in food Nanotechnology. Journal of Food Science, 71(9), R107–R116, doi.org/10.1111/j.1750-3841.2006.00195.x.
- Zhang, S., Kawakami, K. (2010). One-step preparation of chitosan solid nanoparticles by electrospray deposition. International Journal of Pharmaceutics 397. 211–217, doi.org/10.1016/j.ijpharm.2010.07.007.
THE EFFECT OF PROCESS PARAMETERS AND SOLUTION PROPERTIES ON MORPHOLOGICAL CHARACTERISTICS OF NANOPARTICLES OBTAINED BY COAXIAL ELECTROSPRAYING
Year 2019,
, 534 - 551, 15.05.2019
Aylin Altan Mete
,
Elif Atay
Abstract
Electrospraying method is an encapsulation method that
allows to produce nanoscale particles for food applications. Nanoparticles with
different morphologies can be obtained by changing process parameters and
solution properties. In this study, black seed oil was encapsulated using
coaxial electrospraying method. The aim of this study was to determine the
effects of process parameters (flow rate of shell solution, voltage, distance
between the spinneret tip and the collector) and solution properties (solvent
type, polymer concentration of shell and core solution, surfactant) on
morphological properties of zein-black seed oil nanoparticles. The results
showed that the change in the concentration of shell solution, the applied
voltage and the distance between the needle and the collector had a significant
effect on the particle morphology. Nanoparticles lost their sphericity when the
zein concentration was increased from 17.5% to 21% (w/v). The increase in distance between the needle and the
collector and the applied voltage resulted in the production of spherical and
homogeneous particles. The core-shell structure of the particles
obtained by the coaxial electrospraying method was confirmed by the confocal
microscope image.
Project Number
2017-2-TP2-2566
References
- Bhushani, A., Anandhararmakrishnan, C. (2014). Electrospinning and electrospraying techniques: Potantial food based applications. Trends in Food Science & Technology, 38, 21-33, doi.org/10.1016/j.tifs.2014.03.004.
- Bulca, S. (2014). Çörek otunun bileşenleri ve bu yağın ve diğer bazı uçucu yağların antioksidan olarak gıda teknolojisinde kullanımı. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 11(2), 29 – 36.
- Drosou, C., Krokida, M., Biliaderis, C. (2017). Encapsulation of bioactive compounds through electrospinning/electrospraying and spray drying: a comparative assessment of food-related applications. Drying Technology, Vol. 35, No. 2, 139–162, doi.org/10.1080/07373937.2016.1162797.
- Fathi, M., Martin, A., McClements D. (2014). Nanoencapsulation of food ingredients using carbohydrate based delivery Systems. Trends in Food Science & Technology, 18-39, doi.org/10.1016/j.tifs.2014.06.007.
- Fernandez, A., Torres-Giner, S., Lagaron, J. (2009).Novel route to stabilization of bioactive antioxidants by encapsulation in electrospun fibers of zein prolamine. Food Hydrocolloids, 23, 1427–1432, doi.org/10.1016/j.foodhyd.2008.10.011.
- Ganan-Calvo, A.M., Davila, J., Barrero, A. (1997). Current and droplet size in the electrospraying of liquids. Scaling laws. Journal of Aerosol Science, 28(2), 249–275, doi.org/10.1016/S0021-8502(96)00433-8.
- García-Moreno, P., Özdemir, N., Stephansen, K., Mateiu, R., Echegoyen, Y., Lagaron, J. M., Chronakis, I., Jacobsen, C. (2017). Development of carbohydrate-based nano-microstructures loaded with fish oil by using electrohydrodynamic processing. Food Hydrocolloids, 69, 273-285, doi.org/10.1016/j.foodhyd.2017.02.013.
- Davarcı, F. (2012). Effects of some physical parameters on penetration, size and shape in alginate gel microencapsulation. İstanbul Üniversitesi, Gıda Mühendisliği Bölümü, İstanbul.
- Gomez-Mascaraque, L., Morfin, R., Perez-Masia, R., Sanchez, G., Lopez-Rubio, A. (2016). Optimization of electrospraying conditions for the microencapsulation of probiotics and evaluation of their resistance during storage and in-vitro digestion. Food Science and Technology 69. 438-446, doi.org/10.1016/j.lwt.2016.01.071.
- Gómez-Mascaraque, L., Ambrosio-Martín, J., Perez-Masiá, R., Lopez-Rubio, A. (2017). Impact of acetic acid on the survival of l. plantarum upon microencapsulation by coaxial electrospraying. Journal of Healthcare Engineering, Article ID 4698079,6 pages, doi.org/10.1155/2017/4698079.Kepekçi, D. B. (2011). Elektroeğirme yöntemiyle Lnp Nanoliflerin Üretimi ve Karakterizasyonu. Afyon Kocatepe Üniversitesi, Fen Bilimleri Enstitüsi, Malzeme Bilimi ve Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi, Ankara.
- Kriegel, C., Arrechi, A., Kit, K.M., McClements, D.J., Weiss, J. (2008). Fabrication, functionalization and application of electrospun biopolymer nanofibers. Critical Reviews in Food Science and Nutrition, 48 (8), 775–797, doi: 10.1080/10408390802241325.
- López-Rubio, A., Lagaron, J.M. (2012). Whey protein capsules obtained through electrospraying for the encapsulation of bioactives. Innovative Food Science and Emerging Technologies, 13, 200–206, doi.org/10.1016/j.ifset.2011.10.012.
- Mazzoli, A., Favoni, O. (2012). Particle size, size distribution and morphological evaluation of airborne dust particles. Powder Technology, 225, 65-71, doi.org/10.1016/j.powtec.2012.03.033.
- Nabil Mohammed, K., Nuthalapati, V., Chidambaram, R. (2014). Anti-oxidant activity assessment ofnanoencapsulated commercial black cumin seed oil. International Journal of Pharma Research &Review, 3(5):1-7.
- Niu, H., Wang, X., Lin, T. (2011). Needleless electrospinning: developments and performances. Nanofibers-Production, properties and functional applications, InTech, Croatia. pp 17-35.
- Pérez-Masiá, R., Lagaron, L.J., López-Rubio, A. (2014). Development and optimization of novel encapsulation structures of ınterest in functional foods through electrospraying. Food Bioprocess Technology, 7, 3236–3245.
- Pérez-Masiá, R., Lagaron, L.J., López-Rubio, A. (2014). Surfactant-aided electrospraying of low molecular weightcarbohydrate polymers from aqueous solutions. Carbohydrate Polymers 101, 249– 255, doi: 10.1016/j.carbpol.2013.09.032.
- Sakin, M., Koç, M., Kaymak-Ertekin, F. (2010). Mikroenkapsülasyon ve gıda teknolojisinde kullanımı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, Cilt 16, Sayı 1, 2010, Sayfa 77-86.
- Sakuldao, S., Yoovidhya, T., Wongsasulak, S. (2011). Coaxial electrospinning and sustained release properties of gelatin-cellulose acetate core-shell ultrafine fibres. Science Asia 37: 335–343, doi: 10.2306/scienceasia1513-1874.2011.37.335.
- Salata, O.V. (2005). Tools of nanotechnology: electrospray. Current Nanoscience, 1(1), 25-33. doi: 10.2174/1573413052953192.
- Smeets, A., Clasen, A., Mooter, G. (2017). Electrospraying of polymer solutions: Study of formulation and process parameters. European Journal of Pharmaceutics and Biopharmaceutics. 119, 114–124, doi.org/10.1016/j.ejpb.2017.06.010.
- Süngüç, C. (2013). Encapsulation of sarcopoterım spinosum extract in zein particle by using electrospray method. İzmir İleri teknoloji Enstitüsü, Yüksek Lisans Tezi, İzmir.
- Weiss, J., Takhistov, P., McClements, D. J. (2006). Functional materials in food Nanotechnology. Journal of Food Science, 71(9), R107–R116, doi.org/10.1111/j.1750-3841.2006.00195.x.
- Zhang, S., Kawakami, K. (2010). One-step preparation of chitosan solid nanoparticles by electrospray deposition. International Journal of Pharmaceutics 397. 211–217, doi.org/10.1016/j.ijpharm.2010.07.007.