Research Article
BibTex RIS Cite

KİTİN İLE GÜÇLENDİRİLEN ELEKTROEĞRİLMİŞ NANOLİFLERİN AKTİF AMBALAJ MALZEMESİ OLARAK KULLANILABİLİRLİĞİNİN İNCELENMESİ

Year 2019, , 1237 - 1252, 06.10.2019
https://doi.org/10.15237/gida.GD19086

Abstract

Elektroeğirme, yüksek yüzey alanı/hacim oranına sahip
farklı boyutlarda liflerin üretimi için yenilikçi bir yöntemdir. Bu çalışmanın
amacı, nane uçucu yağı yüklü ve kitin lifleri/kitin mikro kristalleri ile
güçlendirilmiş zein bazlı nanobiyokompozit malzemelerin elektroeğirme yöntemi
ile üretilmesidir. Üretilen nanobiyokompozitlerin yüzey morfolojisi, mekanik
özellikleri ve antimikrobiyal aktiviteleri belirlenmiştir. Polimer çözeltisine
kitin liflerinin eklenmesi ile ortalama lif çapı artmıştır. Kitin mikro
kristalleri içeren malzemelerin mekanik özelliklerinin, kitin lifi içeren
malzemelere göre daha zayıf mekanik özelliklere sahip olduğu bulunmuştur. Kitin
lifleri ve nane uçucu yağı içeren malzemeler test mikroorganizmaları üzerinde
berrak zon oluşturmamıştır. Fakat kitin mikro kristalleri ile birlikte nane
uçucu yağı içeren malzemeler,
Staphylococcus aureus üzerinde Escherichia
coli’
den daha etkili olmuştur. Üretilen nanobiyokompozit malzemelerin
potansiyel aktif ambalajlama sistemlerinin geliştirilmesinde kullanılabileceği
düşünülmektedir.

Supporting Institution

Mersin Üniversitesi

Project Number

2018-1-TP2-2738

Thanks

Bu çalışma, Mersin Üniversitesi Bilimsel Araştırma Projeleri Birimince (BAP), 2018-1-TP2-2738 nolu proje ile desteklenmiştir. Çalışma kapsamında kullanılan nane uçucu yağını temin eden Çakıroğlu Yağ (Çakıroğlu Uçucu Yağ San. Tic. Ltd. Şti., Mersin) firmasına ve mavi yengeç kabuklarını temin eden Mezitli Balık Pazarı’na teşekkür ederiz.

References

  • Aydoğdu, A., Sumnu, G., Sahin, S. (2019). Fabrication of gallic acid loaded Hydroxypropyl methylcellulose nanofibers by electrospinning technique as active packaging material. Carbohydr Polym 208: 241–250.
  • Barrosa, A., Moraisa, S.M., Ferreiraa, P.A.T., Vieirab, I.G.P., Craveiroc, A.A., Fontenelled, R., Jane Menezesa, E., Silvaa, F., Sousa, H. (2015). Chemical composition and functional properties of essential oils from Mentha species. Ind Crops Prod 76: 557-564.
  • Dursun, S., Erkan, N., Yeşiltaş, M. (2010). Doğal biyopolimer bazlı (biyobozunur) nanokompozit filmler ve su ürünlerindeki uygulamaları. J Fisheries Sci 4: 50-77.
  • Evren, M. ve Tekgüler, B. (2011). Uçucu yağların antimikrobiyal özellikleri, Elektronik Mikrobiyol Derg 9: 28-40.
  • Junkasem, J., Rujiravanit, R., ve Supaphol, P. (2006). Fabrication Of α-Chitin Whisker-Reinforced Poly(Vinyl Alcohol) Nanocomposite Nanofibres By Electrospinning. Nanotechnol 17:4519-4528.
  • Kara, H., Xiao, H., Sarker, M., Jin, T., Sousa, A., Liu, C., Tomasulu, P.M. (2016). Antivacterial poly (lactic acid) (PLA) film grafted with electrospun pla/allyl isothiocyanete fibers for food packacing. J Appl Polym Sci 10: 1-8.
  • Lan, W., Liang, X., Lan, W., Ahmed, S., Liu, Y., Qin, W. (2019). Electrospun polyvinyl alcohol/d-limonene fibers prepared by ultrasonic processing for antibacterial active packaging material. Molecules 24: 767.
  • Liakos I, Abdellatif, M., Innocenti, C., Scarpellini, A., Carzino, R., Brunetti, V., Marras, S., Brescia, R., Drago, F., Pompa, P. (2016). Antimicrobial Lemongrass Essential Oil—Copper Ferrite Cellulose Acetate Nanocapsules. Molecules 21: 520, doi:10.3390/molecules21040520.
  • Liakos, I., Holban, A., Carzino, R., Lauciello, S., Grumezescu, A. (2017). Electrospun Fiber Pads of Cellulose Acetate and Essential Oils with Antimicrobial Activity. Nanomater 7:84, doi:10.3390/nano7040084.
  • Liakosa, I., Rizzello, L., Scurr, D., Pompa, P., Bayer, I., Athanassiou, A. (2013). All-natural composite wound dressing films of essential oils encapsulated in sodium alginate with antimicrobial properties. Int J Pharm, doi:10.1016/j.ijpharm.2013.10.046.
  • Liu, H., Liu, W., Luo, B., Wen, W., Liu, M., Wang, X. (2016). Electrospun composite nanofiber membrane of poly(l-lactide) andsurface grafted chitin whiskers: Fabrication, mechanical propertiesand cytocompatibility. Carbohydr Polym 147: 216–225.
  • Mincea, M., Negrulescu, A., Ostafe, V. (2012). Preparation, modification and applications of chitin nanowhiskers: A Rev Adv Mater Sci 30: 225-242.
  • Paillet, M. ve Dufresne, A. (2001). Chitin whisker reinforced thermoplastic nanocomposites. Macromolecules 34: 6527-6530.
  • Pereira de Abreu, D. A., J. M. Cruz, P. P. Losada. (2012). Active and intelligent packaging for the food industry. Food Rev Int 28: 146–187.
  • Realini, E.C. ve Marcos, B. (2014). Active and intelligent packaging systems for a modern society. Meat Sci 98: 404–419.
  • Rieger, K., Schiffman, J. (2014). Electrospinning an essential oil: Cinnamaldehyde enhances theantimicrobial efficacy of chitosan/poly(ethylene oxide) nanofibers. Carbohydr Polym 113: 561–568.
  • Schmatz, D., Costa, J., Greque de Morais, M. (2019). A novel nanocomposite for food packaging developed by electrospinning and electrospraying. Food Packaging Shelf Life 20-100314.
  • Silva de Farias, B., Junior, T., Pinto, L. (2019). Chitosan-functionalized nanofibers: A comprehensive review on challenges and prospects for food applications. Int J Biol Macromol 123: 210–220.
  • Tiryakioğlu, B. (2004). Euphorbia seguieriana bitkisinden hazırlanan özütlerin antibakteriyel etkilerinin incelenmesi, Çanakkale On Sekiz Mart Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Çanakkale, Türkiye.
  • Torres-Giner, S. (2011). Electrospun nanofibers for food packaging applications. Multifunctional Nanoreinforced Polym Food Packaging 108-125, doi.org/10.1533/9780857092786.1.108
  • Vermeiren, L., Devlieghere, F., Beest, VM., Kruijf, N., De¬bevere, J. (1999). Developments in the active packaging of foods. Trends Food Sci Technol 10(3): 77-86.
  • Wen, P., Zhu, D., Feng, K., Liu, F., Lou, W., Li, N., Zong, M., Wu, H. (2016). Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/β-cyclodextrin inclusion complex for antimicrobial packaging. Food Chem 196: 996-1004.
  • Wen, Q., Lan, W., Zhang, R., Whang, S., Liu, Y. (2017). Development of poly(lactic acid)/chitosan fibers loaded with essential oil for antimicrobial applications. Nanomaterials 7: 194-207.
  • Zeng, J-B., He, Y., Li, S., Wang Y. (2012). Chitin Whiskers: An overview. Biomacromolecules 13: 1−11.
  • Zhang, Ll., Yongshang, L,, and Weng, L. (2004). Morphology and properties of soy protein ısolate thermoplastics reinforced with chitin whiskers. Biomacromolecules 5: 1046-1051.
  • Zivanovic, S., Li, J., Davidson, P. M., Ki, K. (2007). Physical, mechanical, and antibacterial properties of chitosan/peo blend films. Biomacromolecules 47: 1505-1510.
  • Yang, Z., Li, X., Si, J., Cui, Z., & Peng, K. (2019). Morphological, Mechanical and Thermal Properties of Poly (lactic acid)(PLA)/Cellulose Nanofibrils (CNF) Composites Nanofiber for Tissue Engineering. J Wuhan Univ Technol Mater Sci Ed 34(1), 207-215.
  • Zhang, W., Huang, C., Kusmartseva, O., Thomas, N. L., & Mele, E. (2017). Electrospinning of polylactic acid fibres containing tea tree and manuka oil. Reactive Functional Polym 117, 106-111.

INVESTIGATION OF ELECTROSPUN NANOFIBERS STRENGTHENED WITH CHITIN AS ACTIVE PACKAGING MATERIAL

Year 2019, , 1237 - 1252, 06.10.2019
https://doi.org/10.15237/gida.GD19086

Abstract

Electrospinning is an innovative method for the
production of fibers with different sizes having a high surface area/volume
ratio. The aim of this study was to produce zein based nanobiocomposite active
packaging materials loaded with mint essential oil and strengthened by chitin
fibers/chitin microcrystals using electrospinning. Surface morphologies,
mechanical properties and antimicrobial activities of the produced
nanobiocomposites were determined. The average fiber diameter increased with
the addition of chitin fibers into polymer solution. It was found that the
mechanical properties of materials containing chitin microcrystals were weaker
than the materials containing chitin fibers. The composite materials containing
chitin fibers and mint essential oil did not form a clear zone on the test
microorganisms. However, materials containing chitin microcrystals with mint
essential oil were more effective on
Staphylococcus aureus than Escherichia
coli
. It is considered that nanobiocomposites produced can be used in the
development of potential active packaging systems.

Project Number

2018-1-TP2-2738

References

  • Aydoğdu, A., Sumnu, G., Sahin, S. (2019). Fabrication of gallic acid loaded Hydroxypropyl methylcellulose nanofibers by electrospinning technique as active packaging material. Carbohydr Polym 208: 241–250.
  • Barrosa, A., Moraisa, S.M., Ferreiraa, P.A.T., Vieirab, I.G.P., Craveiroc, A.A., Fontenelled, R., Jane Menezesa, E., Silvaa, F., Sousa, H. (2015). Chemical composition and functional properties of essential oils from Mentha species. Ind Crops Prod 76: 557-564.
  • Dursun, S., Erkan, N., Yeşiltaş, M. (2010). Doğal biyopolimer bazlı (biyobozunur) nanokompozit filmler ve su ürünlerindeki uygulamaları. J Fisheries Sci 4: 50-77.
  • Evren, M. ve Tekgüler, B. (2011). Uçucu yağların antimikrobiyal özellikleri, Elektronik Mikrobiyol Derg 9: 28-40.
  • Junkasem, J., Rujiravanit, R., ve Supaphol, P. (2006). Fabrication Of α-Chitin Whisker-Reinforced Poly(Vinyl Alcohol) Nanocomposite Nanofibres By Electrospinning. Nanotechnol 17:4519-4528.
  • Kara, H., Xiao, H., Sarker, M., Jin, T., Sousa, A., Liu, C., Tomasulu, P.M. (2016). Antivacterial poly (lactic acid) (PLA) film grafted with electrospun pla/allyl isothiocyanete fibers for food packacing. J Appl Polym Sci 10: 1-8.
  • Lan, W., Liang, X., Lan, W., Ahmed, S., Liu, Y., Qin, W. (2019). Electrospun polyvinyl alcohol/d-limonene fibers prepared by ultrasonic processing for antibacterial active packaging material. Molecules 24: 767.
  • Liakos I, Abdellatif, M., Innocenti, C., Scarpellini, A., Carzino, R., Brunetti, V., Marras, S., Brescia, R., Drago, F., Pompa, P. (2016). Antimicrobial Lemongrass Essential Oil—Copper Ferrite Cellulose Acetate Nanocapsules. Molecules 21: 520, doi:10.3390/molecules21040520.
  • Liakos, I., Holban, A., Carzino, R., Lauciello, S., Grumezescu, A. (2017). Electrospun Fiber Pads of Cellulose Acetate and Essential Oils with Antimicrobial Activity. Nanomater 7:84, doi:10.3390/nano7040084.
  • Liakosa, I., Rizzello, L., Scurr, D., Pompa, P., Bayer, I., Athanassiou, A. (2013). All-natural composite wound dressing films of essential oils encapsulated in sodium alginate with antimicrobial properties. Int J Pharm, doi:10.1016/j.ijpharm.2013.10.046.
  • Liu, H., Liu, W., Luo, B., Wen, W., Liu, M., Wang, X. (2016). Electrospun composite nanofiber membrane of poly(l-lactide) andsurface grafted chitin whiskers: Fabrication, mechanical propertiesand cytocompatibility. Carbohydr Polym 147: 216–225.
  • Mincea, M., Negrulescu, A., Ostafe, V. (2012). Preparation, modification and applications of chitin nanowhiskers: A Rev Adv Mater Sci 30: 225-242.
  • Paillet, M. ve Dufresne, A. (2001). Chitin whisker reinforced thermoplastic nanocomposites. Macromolecules 34: 6527-6530.
  • Pereira de Abreu, D. A., J. M. Cruz, P. P. Losada. (2012). Active and intelligent packaging for the food industry. Food Rev Int 28: 146–187.
  • Realini, E.C. ve Marcos, B. (2014). Active and intelligent packaging systems for a modern society. Meat Sci 98: 404–419.
  • Rieger, K., Schiffman, J. (2014). Electrospinning an essential oil: Cinnamaldehyde enhances theantimicrobial efficacy of chitosan/poly(ethylene oxide) nanofibers. Carbohydr Polym 113: 561–568.
  • Schmatz, D., Costa, J., Greque de Morais, M. (2019). A novel nanocomposite for food packaging developed by electrospinning and electrospraying. Food Packaging Shelf Life 20-100314.
  • Silva de Farias, B., Junior, T., Pinto, L. (2019). Chitosan-functionalized nanofibers: A comprehensive review on challenges and prospects for food applications. Int J Biol Macromol 123: 210–220.
  • Tiryakioğlu, B. (2004). Euphorbia seguieriana bitkisinden hazırlanan özütlerin antibakteriyel etkilerinin incelenmesi, Çanakkale On Sekiz Mart Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Çanakkale, Türkiye.
  • Torres-Giner, S. (2011). Electrospun nanofibers for food packaging applications. Multifunctional Nanoreinforced Polym Food Packaging 108-125, doi.org/10.1533/9780857092786.1.108
  • Vermeiren, L., Devlieghere, F., Beest, VM., Kruijf, N., De¬bevere, J. (1999). Developments in the active packaging of foods. Trends Food Sci Technol 10(3): 77-86.
  • Wen, P., Zhu, D., Feng, K., Liu, F., Lou, W., Li, N., Zong, M., Wu, H. (2016). Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/β-cyclodextrin inclusion complex for antimicrobial packaging. Food Chem 196: 996-1004.
  • Wen, Q., Lan, W., Zhang, R., Whang, S., Liu, Y. (2017). Development of poly(lactic acid)/chitosan fibers loaded with essential oil for antimicrobial applications. Nanomaterials 7: 194-207.
  • Zeng, J-B., He, Y., Li, S., Wang Y. (2012). Chitin Whiskers: An overview. Biomacromolecules 13: 1−11.
  • Zhang, Ll., Yongshang, L,, and Weng, L. (2004). Morphology and properties of soy protein ısolate thermoplastics reinforced with chitin whiskers. Biomacromolecules 5: 1046-1051.
  • Zivanovic, S., Li, J., Davidson, P. M., Ki, K. (2007). Physical, mechanical, and antibacterial properties of chitosan/peo blend films. Biomacromolecules 47: 1505-1510.
  • Yang, Z., Li, X., Si, J., Cui, Z., & Peng, K. (2019). Morphological, Mechanical and Thermal Properties of Poly (lactic acid)(PLA)/Cellulose Nanofibrils (CNF) Composites Nanofiber for Tissue Engineering. J Wuhan Univ Technol Mater Sci Ed 34(1), 207-215.
  • Zhang, W., Huang, C., Kusmartseva, O., Thomas, N. L., & Mele, E. (2017). Electrospinning of polylactic acid fibres containing tea tree and manuka oil. Reactive Functional Polym 117, 106-111.
There are 28 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Mine Karabulut This is me

Elif Atay

Aylin Altan Mete

Project Number 2018-1-TP2-2738
Publication Date October 6, 2019
Published in Issue Year 2019

Cite

APA Karabulut, M., Atay, E., & Altan Mete, A. (2019). KİTİN İLE GÜÇLENDİRİLEN ELEKTROEĞRİLMİŞ NANOLİFLERİN AKTİF AMBALAJ MALZEMESİ OLARAK KULLANILABİLİRLİĞİNİN İNCELENMESİ. Gıda, 44(6), 1237-1252. https://doi.org/10.15237/gida.GD19086
AMA Karabulut M, Atay E, Altan Mete A. KİTİN İLE GÜÇLENDİRİLEN ELEKTROEĞRİLMİŞ NANOLİFLERİN AKTİF AMBALAJ MALZEMESİ OLARAK KULLANILABİLİRLİĞİNİN İNCELENMESİ. GIDA. October 2019;44(6):1237-1252. doi:10.15237/gida.GD19086
Chicago Karabulut, Mine, Elif Atay, and Aylin Altan Mete. “KİTİN İLE GÜÇLENDİRİLEN ELEKTROEĞRİLMİŞ NANOLİFLERİN AKTİF AMBALAJ MALZEMESİ OLARAK KULLANILABİLİRLİĞİNİN İNCELENMESİ”. Gıda 44, no. 6 (October 2019): 1237-52. https://doi.org/10.15237/gida.GD19086.
EndNote Karabulut M, Atay E, Altan Mete A (October 1, 2019) KİTİN İLE GÜÇLENDİRİLEN ELEKTROEĞRİLMİŞ NANOLİFLERİN AKTİF AMBALAJ MALZEMESİ OLARAK KULLANILABİLİRLİĞİNİN İNCELENMESİ. Gıda 44 6 1237–1252.
IEEE M. Karabulut, E. Atay, and A. Altan Mete, “KİTİN İLE GÜÇLENDİRİLEN ELEKTROEĞRİLMİŞ NANOLİFLERİN AKTİF AMBALAJ MALZEMESİ OLARAK KULLANILABİLİRLİĞİNİN İNCELENMESİ”, GIDA, vol. 44, no. 6, pp. 1237–1252, 2019, doi: 10.15237/gida.GD19086.
ISNAD Karabulut, Mine et al. “KİTİN İLE GÜÇLENDİRİLEN ELEKTROEĞRİLMİŞ NANOLİFLERİN AKTİF AMBALAJ MALZEMESİ OLARAK KULLANILABİLİRLİĞİNİN İNCELENMESİ”. Gıda 44/6 (October 2019), 1237-1252. https://doi.org/10.15237/gida.GD19086.
JAMA Karabulut M, Atay E, Altan Mete A. KİTİN İLE GÜÇLENDİRİLEN ELEKTROEĞRİLMİŞ NANOLİFLERİN AKTİF AMBALAJ MALZEMESİ OLARAK KULLANILABİLİRLİĞİNİN İNCELENMESİ. GIDA. 2019;44:1237–1252.
MLA Karabulut, Mine et al. “KİTİN İLE GÜÇLENDİRİLEN ELEKTROEĞRİLMİŞ NANOLİFLERİN AKTİF AMBALAJ MALZEMESİ OLARAK KULLANILABİLİRLİĞİNİN İNCELENMESİ”. Gıda, vol. 44, no. 6, 2019, pp. 1237-52, doi:10.15237/gida.GD19086.
Vancouver Karabulut M, Atay E, Altan Mete A. KİTİN İLE GÜÇLENDİRİLEN ELEKTROEĞRİLMİŞ NANOLİFLERİN AKTİF AMBALAJ MALZEMESİ OLARAK KULLANILABİLİRLİĞİNİN İNCELENMESİ. GIDA. 2019;44(6):1237-52.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/