Research Article
BibTex RIS Cite

DOĞAL MAYALARIN YAYGIN PATOJENLER ÜZERİNDEKİ İNHİBİTÖR ETKİLERİ

Year 2020, , 182 - 191, 01.12.2019
https://doi.org/10.15237/gida.GD19115

Abstract

Mayalar, bazı bakteri ve maya türleri üzerinde inhibitör etki göstermektedir. Bu mayaların, gıdalarda bozulma etmeni ve patojen mikroorganizmaların biyokontrolünde kullanılma olanakları araştırılmaktadır. Bu amaçla, mayaların elde edilebilmesi için çok sayıda doğal materyal ve fermente gıdadan izolasyon yapılmıştır. Ön taramalar sonucunda farklı 110 maya suşu izole edilerek saflaştırılmıştır. Elde edilen izolatların Escherichia coli, Micrococcus luteus ve Candida albicans üzerindeki inhibitör etkileri test edilmiştir. İzolatlardan 8 tanesi M. luteus, 2 tanesi E. coli ve 4 tanesi C. albicans üzerinde inhibitör etki göstermiştir. Bunlar üzerinde inhibitör etki gösteren suşlara Staphylococcus aureus, Listeria monocytogenes, Saccharomyces cerevisiae, Pseudomonas aeruginosa, E. coli O157 ve O157:H7, Bacillus subtilis, Salmonella enterica subsp. Typhimurium üzerinde de inhibisyon testleri uygulanmıştır. İnhibitör etkinin farklı patojenler üzerinde farklı derecelerde olduğu gözlenmiştir. Patojenlere karşı en fazla katil özellik gösteren izolatlar tanımlanmış ve bu izolatların Metschnikowia pulcherrima, Metschnikowia reukaufii ve Saccharomyces cerevisiae oldukları belirlenmiştir.

Supporting Institution

Süleyman Demirel Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

4848-D1-17

Thanks

Bu çalışma; Süleyman Demirel Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından 4848-D1-17 nolu proje ile desteklenmiştir.

References

  • Altuntaş, E.G., Özçelik, F. (2007). Killer Özellikli Mayaların Etki Mekanizmaları ve Endüstride Yol Açtıkları Sorunlar. GIDA, 32 (4), 205-212.
  • Arendrup, M.C., Cuenca-Estrella, M., Lass-Flörl, C., Hope, W. (2014). The Subcommittee on Antifungal Susceptibility Testing (AFST) of the ESCMID European Committee for Antimicrobial Susceptibility Testing (EUCAST). Mayalar için Antifungal İlaçların Sıvı Dilüsyonla Minimum İnhibitör Konsantrasyonlarını Belirleme Yöntemi. Danimarka.
  • Aydın, M. (2004). Candida cinsi mantarlar (Candida albicans). Ed. Cengiz, Mısırlıgil, Aydın. Tıp ve diş hekimliğinde genel ve özel Mikrobiyoloji. 133:1109-1118. Güneş yayınevi, Ankara.
  • Baeza, M.E., Sanhueza, M.A., Cifuentes, V.H. (2008). Occurrence of killer yeast strains in industrial and clinical yeast isolates. Biol Res 41: 173-182.
  • Carreiro, S.C., Pagnocca, F.C., Bacci, M., Bueno, O.C., Hebling, M.J.A., Middelhoven, W.F. (2002). Occurrence of Killer Yeasts in Leaf-Cutting Ant Nests. Folia Microbiol, 47(3): 259-262.
  • Chen, W.B., Han, Y.F., Jong, S.C., Chang, S.C. (2000). Isolation purification and characterization of a killer protein from Schwanniomyces occidentalis. Appl Environ Microbiol, 66: 1029-1035.
  • Chen, Y., Aorigele, C., Wang, C., Simujide, H., Yang, S. (2015). Screening and extracting mycocin secreted by yeast isolated from Koumiss and their antibacterial effect. J Food Nutr Res, 3(1): 52-56.
  • Çerikcioğlu, N. (2003). Maya Öldürücü Toksinin Tıbbi Önemi. Mikrobiyal Bült. 37: 215-221.
  • Dabhole, M.P., Joishy, K.N. (2005). Production and Effect of Killer Toxin by Saccharomyces cerevisiae and Pichia kluyveri on Sensitive Yeasts and Fungal Pathogens. Indian J Biotechnol, 4: 290-292.
  • Farris, G.A., Mannazzu, I., Budroni, M. (1991). Identification of killer factor in the yeast genus Metschnikowia. Biotechnol Letter, 13, 297–298.
  • Golubev, W. I. (2006). Antagonistic interactions among yeasts, in Bio-diversity and Ecophysiology of Yeasts, eds. G. Péter and C. Rosa (Berlin: Springer),197-219.
  • Gulbiniene, G., Kondratiene, L., Jokantaite, T., Serviene, E., Melvydas, V., Petkuniene, G. (2004). Occurence of Killer Yeast Strains in Fruit and Berry Wine Yeast Populations. Food Technol. Biotechnol. 42(3): 159-163.
  • Halkman, K. (2011). Almanya’daki EHEC Salgını ve düşündürdükleri. Labmedya, köşe yazarları, 01 Temmuz 2011, Cum.
  • Hayduck, F., (1909).Uber einen Hefengiftstoff in Hefe. Wochenschr. Brau. 26: 677-679. (In German)
  • Hodgson, V.J., Button, D., Walker, G.M. (1995). Anticandida activity of a novel killer toxin from the yeast Williopsis mrakii. Microbiol, 141: 2003-2012.
  • Hou, F., Li, J., Pan, P., Xua, J., Liua, L., Liua, W., Songa, B, Li, N., Wana, J., Gaoa, H. (2011). Isolation and characterisation of a new antimicrobial peptide from the skin of Xenopus laevis. Int J Antimicrob Agents, 38: 510-515.
  • Izgü, F., Altinbay, D. (2004). Isolation and characterization of the K5-type yeast killer protein and its homology with an exo-β-1,3-glucanase. Biosci. Biotechnol. Biochem, 68: 685-693.
  • Janisiewicz, W.J., Tworkoski, T.J., Kurtzman, C.P. (2001). Biocontrol potential of Metchnikowia pulcherrima strains against blue mold of apple, Phytopatholog, 91: 1098-1108.
  • Klassen, R., Meinhardt, F. (2005). Induction of DNA damage and apoptosis in Saccharomyces cerevisiae by a yeast killer toxin. Cell Microbiol. 7: 393-401.
  • Kuleaşan, H., Çakmakçı, M.L. (2003). Bakteriyosinlerin Özellikleri, Gıda Mikrobiyolojisinde Kullanım Alanları ve İleri Dönemlerdeki Kullanım Potansiyelleri. GIDA, 28: 123-129.
  • Lim, S.L., Tay, S.T. (2011). Diversity and Killer Activity Of Yeasts İn Malaysian Fermented Food Samples. Trop Biomed, 28(2): 438-443.
  • Liu, G.L., Chi, Z., Wang, G.Y., Wang, Z.P., Li, Y., Chi, Z.M. (2013). Yeast killer toxins, molecular mechanisms of their action and their Applications. Crit Rev Biotechnol, 35(2): 222-234.
  • Lopes, C.A., Sangorrin, M.P. (2010). Optimization of Killer Assays for Yeast Selection Protocols. Revista Argentina de Microbiol, 42: 298-306.
  • Magliani, W., Conti, S., Gerloni, M., Bertolotti, D., Polonelli, L. (1997). Yeast killer systems. Clin Microbiol Rev, 10: 369-400.
  • Marquina, D., Santos, A., Peinado, J.M. (2002). Biology of Killer Yeast. Int. Microbial, 5: 65-71.
  • McCullough, M.J., Ross, B.C., Reade, P.C. (1996). Candida albicans: a review of its history, taxonomy, epidemiology, virulence attributes, and methods of strain differentiation. Int J Oral Maxillofacial Surgery, 25(2): 136-144.
  • McFarland J. (1907). Nephelometer: an instrument for media used for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. J Am Med Assoc, 14: 1176-1178.
  • Ochigava, I., Collier, P.J., Walker, G.M., Hakenbeck R. (2011). Willipsis Saturnus Yeast Killer Toxin Does Not Kill Streptococcus pneumoniae. Antonie van Leeuwenhoek 99: 559-566.
  • O’Leary, E.C. (1987). A Study Of Kıller Yeast Actıvıty Agaınst The Opportunıstıc Pathogen Candida albicans. Thesis Presented for the Degree of Master of Science. School of Biological Sciences National Institute for Higher Education, Dublin, Ireland.
  • Oro, L., Ciani, M., Comitini, F. (2014). Antimicrobial activity of Metschnikowia pulcherrima on wine yeasts. J Appl Microbiol, 116: 1209-1217.
  • Polonelli, L., Archibusacci, C., Sestito, M., Morace, G. (1983). Killer System: a Simple Method for Differentiating Candida albicans Strains. J Clin Microbiol, 17(5): 774-780.
  • Polonelli, L., Morace, G. (1986). Reevaluation of the Yeast Killer Phenomenon. J Clin Microbiol, 24(5): 866-869.
  • Roostita, L.B., Fleet, G.H., Wendry, S.P., Apon, Z.M., Gemilang, L.U. (2011). Determination of Yeasts Antimicrobial Activity in Milk and Meat Products. Adv J Food Sci Technol, 3(6): 442-445.
  • Russell, I. (1986). Killer yeast identification. J. Am. Soc. Brew. Chem., 44(3): 123-125.
  • Schmitt, M.J., Breinig, F. (2002). The viral killer system in yeast: from molecular biology to application. FEMS Microbiol, 26: 257–276.
  • Seifert, H., Kaltheuner, M., Perdreau-Remıngton, F. (1995). Micrococcus luteus endocarditis: case report and review of the literatüre. Zentralbl Bakteriol, 282: 431-5.
  • Suzuki, C., Ando, Y., Machida, S. (2001). Interaction of SMKT, a killer toxin produced by Pichia farinosa, with the yeast cell membranes. Yeast, 18(16): 1471-1478.
  • Vadkertiova, R., Slavikova, E. (2007). Killer Activity of Yeasts Isolated from Natural Environments against Some Medically Important Candida Species. Polish J Microbiol, 56 (1): 39-43.
  • Yang, R., Johnson, M.C., Ray, B. (1992). Novel Method to Extract Large Amounts of Bacteriocins from Lactic Asid Bacteria. Appl. and Envr. Microb., 3355-3359.
  • Young, T. W., Yagiu, M. (1978). A comparison of the killer character in different yeasts and its classification. Antonie van Leeuwenhoek 44(1): 59-77.
  • Wieser, M., Denner, E.B., Kämpfer, P., Schumann, P., Tindall, B., Steiner, U., Vybiral, D., Lubitz, W., Maszenan, A.M., Patel, B.K., Seviour, R.J., Radax, C., Busse, H.J. (2002). Emended descriptions of the genus Micrococcus, Micrococcus luteus (Cohn 1872) and Micrococcus lylae (Kloos et al. 1974). Int J Syst Evol Microbiol. 52(2): 629-637.

INHIBITORY EFFECTS OF NATURAL YEASTS ON COMMON PATHOGENS

Year 2020, , 182 - 191, 01.12.2019
https://doi.org/10.15237/gida.GD19115

Abstract

Yeasts have an inhibitory effects on certain bacterial and yeast species. The possible use of these yeasts on biocontrol of food-spoilage and pathogenic microorganisms was investigated. In order to obtain yeast isolates, various natural materials and fermented foods were used. As a result of preliminary screening, 110 different yeast strains were isolated. The inhibitory effects of the isolates on Escherichia coli, Micrococcus luteus and Candida albicans were tested. Eight of the isolates on M. luteus, 2 of them on E. coli and 4 of the isolates on C. albicans showed inhibitory effect. Strains which exhibit inhibitory effects on these 3 indicator microorganisms were also tested against Staphylococcus aureus, Listeria monocytogenes, Saccharomyces cerevisiae, Pseudomonas aeruginosa, Escherichia coli O157 and O157: H7, Bacillus subtilis, Salmonella enterica subsp. Typhimurium. Isolates which have greatest killer feature and these were determined as Metschnikowia pulcherrima, Metschnikowia reukaufii and Saccharomyces cerevisiae.

Project Number

4848-D1-17

References

  • Altuntaş, E.G., Özçelik, F. (2007). Killer Özellikli Mayaların Etki Mekanizmaları ve Endüstride Yol Açtıkları Sorunlar. GIDA, 32 (4), 205-212.
  • Arendrup, M.C., Cuenca-Estrella, M., Lass-Flörl, C., Hope, W. (2014). The Subcommittee on Antifungal Susceptibility Testing (AFST) of the ESCMID European Committee for Antimicrobial Susceptibility Testing (EUCAST). Mayalar için Antifungal İlaçların Sıvı Dilüsyonla Minimum İnhibitör Konsantrasyonlarını Belirleme Yöntemi. Danimarka.
  • Aydın, M. (2004). Candida cinsi mantarlar (Candida albicans). Ed. Cengiz, Mısırlıgil, Aydın. Tıp ve diş hekimliğinde genel ve özel Mikrobiyoloji. 133:1109-1118. Güneş yayınevi, Ankara.
  • Baeza, M.E., Sanhueza, M.A., Cifuentes, V.H. (2008). Occurrence of killer yeast strains in industrial and clinical yeast isolates. Biol Res 41: 173-182.
  • Carreiro, S.C., Pagnocca, F.C., Bacci, M., Bueno, O.C., Hebling, M.J.A., Middelhoven, W.F. (2002). Occurrence of Killer Yeasts in Leaf-Cutting Ant Nests. Folia Microbiol, 47(3): 259-262.
  • Chen, W.B., Han, Y.F., Jong, S.C., Chang, S.C. (2000). Isolation purification and characterization of a killer protein from Schwanniomyces occidentalis. Appl Environ Microbiol, 66: 1029-1035.
  • Chen, Y., Aorigele, C., Wang, C., Simujide, H., Yang, S. (2015). Screening and extracting mycocin secreted by yeast isolated from Koumiss and their antibacterial effect. J Food Nutr Res, 3(1): 52-56.
  • Çerikcioğlu, N. (2003). Maya Öldürücü Toksinin Tıbbi Önemi. Mikrobiyal Bült. 37: 215-221.
  • Dabhole, M.P., Joishy, K.N. (2005). Production and Effect of Killer Toxin by Saccharomyces cerevisiae and Pichia kluyveri on Sensitive Yeasts and Fungal Pathogens. Indian J Biotechnol, 4: 290-292.
  • Farris, G.A., Mannazzu, I., Budroni, M. (1991). Identification of killer factor in the yeast genus Metschnikowia. Biotechnol Letter, 13, 297–298.
  • Golubev, W. I. (2006). Antagonistic interactions among yeasts, in Bio-diversity and Ecophysiology of Yeasts, eds. G. Péter and C. Rosa (Berlin: Springer),197-219.
  • Gulbiniene, G., Kondratiene, L., Jokantaite, T., Serviene, E., Melvydas, V., Petkuniene, G. (2004). Occurence of Killer Yeast Strains in Fruit and Berry Wine Yeast Populations. Food Technol. Biotechnol. 42(3): 159-163.
  • Halkman, K. (2011). Almanya’daki EHEC Salgını ve düşündürdükleri. Labmedya, köşe yazarları, 01 Temmuz 2011, Cum.
  • Hayduck, F., (1909).Uber einen Hefengiftstoff in Hefe. Wochenschr. Brau. 26: 677-679. (In German)
  • Hodgson, V.J., Button, D., Walker, G.M. (1995). Anticandida activity of a novel killer toxin from the yeast Williopsis mrakii. Microbiol, 141: 2003-2012.
  • Hou, F., Li, J., Pan, P., Xua, J., Liua, L., Liua, W., Songa, B, Li, N., Wana, J., Gaoa, H. (2011). Isolation and characterisation of a new antimicrobial peptide from the skin of Xenopus laevis. Int J Antimicrob Agents, 38: 510-515.
  • Izgü, F., Altinbay, D. (2004). Isolation and characterization of the K5-type yeast killer protein and its homology with an exo-β-1,3-glucanase. Biosci. Biotechnol. Biochem, 68: 685-693.
  • Janisiewicz, W.J., Tworkoski, T.J., Kurtzman, C.P. (2001). Biocontrol potential of Metchnikowia pulcherrima strains against blue mold of apple, Phytopatholog, 91: 1098-1108.
  • Klassen, R., Meinhardt, F. (2005). Induction of DNA damage and apoptosis in Saccharomyces cerevisiae by a yeast killer toxin. Cell Microbiol. 7: 393-401.
  • Kuleaşan, H., Çakmakçı, M.L. (2003). Bakteriyosinlerin Özellikleri, Gıda Mikrobiyolojisinde Kullanım Alanları ve İleri Dönemlerdeki Kullanım Potansiyelleri. GIDA, 28: 123-129.
  • Lim, S.L., Tay, S.T. (2011). Diversity and Killer Activity Of Yeasts İn Malaysian Fermented Food Samples. Trop Biomed, 28(2): 438-443.
  • Liu, G.L., Chi, Z., Wang, G.Y., Wang, Z.P., Li, Y., Chi, Z.M. (2013). Yeast killer toxins, molecular mechanisms of their action and their Applications. Crit Rev Biotechnol, 35(2): 222-234.
  • Lopes, C.A., Sangorrin, M.P. (2010). Optimization of Killer Assays for Yeast Selection Protocols. Revista Argentina de Microbiol, 42: 298-306.
  • Magliani, W., Conti, S., Gerloni, M., Bertolotti, D., Polonelli, L. (1997). Yeast killer systems. Clin Microbiol Rev, 10: 369-400.
  • Marquina, D., Santos, A., Peinado, J.M. (2002). Biology of Killer Yeast. Int. Microbial, 5: 65-71.
  • McCullough, M.J., Ross, B.C., Reade, P.C. (1996). Candida albicans: a review of its history, taxonomy, epidemiology, virulence attributes, and methods of strain differentiation. Int J Oral Maxillofacial Surgery, 25(2): 136-144.
  • McFarland J. (1907). Nephelometer: an instrument for media used for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. J Am Med Assoc, 14: 1176-1178.
  • Ochigava, I., Collier, P.J., Walker, G.M., Hakenbeck R. (2011). Willipsis Saturnus Yeast Killer Toxin Does Not Kill Streptococcus pneumoniae. Antonie van Leeuwenhoek 99: 559-566.
  • O’Leary, E.C. (1987). A Study Of Kıller Yeast Actıvıty Agaınst The Opportunıstıc Pathogen Candida albicans. Thesis Presented for the Degree of Master of Science. School of Biological Sciences National Institute for Higher Education, Dublin, Ireland.
  • Oro, L., Ciani, M., Comitini, F. (2014). Antimicrobial activity of Metschnikowia pulcherrima on wine yeasts. J Appl Microbiol, 116: 1209-1217.
  • Polonelli, L., Archibusacci, C., Sestito, M., Morace, G. (1983). Killer System: a Simple Method for Differentiating Candida albicans Strains. J Clin Microbiol, 17(5): 774-780.
  • Polonelli, L., Morace, G. (1986). Reevaluation of the Yeast Killer Phenomenon. J Clin Microbiol, 24(5): 866-869.
  • Roostita, L.B., Fleet, G.H., Wendry, S.P., Apon, Z.M., Gemilang, L.U. (2011). Determination of Yeasts Antimicrobial Activity in Milk and Meat Products. Adv J Food Sci Technol, 3(6): 442-445.
  • Russell, I. (1986). Killer yeast identification. J. Am. Soc. Brew. Chem., 44(3): 123-125.
  • Schmitt, M.J., Breinig, F. (2002). The viral killer system in yeast: from molecular biology to application. FEMS Microbiol, 26: 257–276.
  • Seifert, H., Kaltheuner, M., Perdreau-Remıngton, F. (1995). Micrococcus luteus endocarditis: case report and review of the literatüre. Zentralbl Bakteriol, 282: 431-5.
  • Suzuki, C., Ando, Y., Machida, S. (2001). Interaction of SMKT, a killer toxin produced by Pichia farinosa, with the yeast cell membranes. Yeast, 18(16): 1471-1478.
  • Vadkertiova, R., Slavikova, E. (2007). Killer Activity of Yeasts Isolated from Natural Environments against Some Medically Important Candida Species. Polish J Microbiol, 56 (1): 39-43.
  • Yang, R., Johnson, M.C., Ray, B. (1992). Novel Method to Extract Large Amounts of Bacteriocins from Lactic Asid Bacteria. Appl. and Envr. Microb., 3355-3359.
  • Young, T. W., Yagiu, M. (1978). A comparison of the killer character in different yeasts and its classification. Antonie van Leeuwenhoek 44(1): 59-77.
  • Wieser, M., Denner, E.B., Kämpfer, P., Schumann, P., Tindall, B., Steiner, U., Vybiral, D., Lubitz, W., Maszenan, A.M., Patel, B.K., Seviour, R.J., Radax, C., Busse, H.J. (2002). Emended descriptions of the genus Micrococcus, Micrococcus luteus (Cohn 1872) and Micrococcus lylae (Kloos et al. 1974). Int J Syst Evol Microbiol. 52(2): 629-637.
There are 41 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Tuba Büyüksırıt Bedir 0000-0001-8615-4075

Hakan Kuleaşan 0000-0002-0893-0689

Project Number 4848-D1-17
Publication Date December 1, 2019
Published in Issue Year 2020

Cite

APA Büyüksırıt Bedir, T., & Kuleaşan, H. (2019). DOĞAL MAYALARIN YAYGIN PATOJENLER ÜZERİNDEKİ İNHİBİTÖR ETKİLERİ. Gıda, 45(1), 182-191. https://doi.org/10.15237/gida.GD19115
AMA Büyüksırıt Bedir T, Kuleaşan H. DOĞAL MAYALARIN YAYGIN PATOJENLER ÜZERİNDEKİ İNHİBİTÖR ETKİLERİ. GIDA. December 2019;45(1):182-191. doi:10.15237/gida.GD19115
Chicago Büyüksırıt Bedir, Tuba, and Hakan Kuleaşan. “DOĞAL MAYALARIN YAYGIN PATOJENLER ÜZERİNDEKİ İNHİBİTÖR ETKİLERİ”. Gıda 45, no. 1 (December 2019): 182-91. https://doi.org/10.15237/gida.GD19115.
EndNote Büyüksırıt Bedir T, Kuleaşan H (December 1, 2019) DOĞAL MAYALARIN YAYGIN PATOJENLER ÜZERİNDEKİ İNHİBİTÖR ETKİLERİ. Gıda 45 1 182–191.
IEEE T. Büyüksırıt Bedir and H. Kuleaşan, “DOĞAL MAYALARIN YAYGIN PATOJENLER ÜZERİNDEKİ İNHİBİTÖR ETKİLERİ”, GIDA, vol. 45, no. 1, pp. 182–191, 2019, doi: 10.15237/gida.GD19115.
ISNAD Büyüksırıt Bedir, Tuba - Kuleaşan, Hakan. “DOĞAL MAYALARIN YAYGIN PATOJENLER ÜZERİNDEKİ İNHİBİTÖR ETKİLERİ”. Gıda 45/1 (December 2019), 182-191. https://doi.org/10.15237/gida.GD19115.
JAMA Büyüksırıt Bedir T, Kuleaşan H. DOĞAL MAYALARIN YAYGIN PATOJENLER ÜZERİNDEKİ İNHİBİTÖR ETKİLERİ. GIDA. 2019;45:182–191.
MLA Büyüksırıt Bedir, Tuba and Hakan Kuleaşan. “DOĞAL MAYALARIN YAYGIN PATOJENLER ÜZERİNDEKİ İNHİBİTÖR ETKİLERİ”. Gıda, vol. 45, no. 1, 2019, pp. 182-91, doi:10.15237/gida.GD19115.
Vancouver Büyüksırıt Bedir T, Kuleaşan H. DOĞAL MAYALARIN YAYGIN PATOJENLER ÜZERİNDEKİ İNHİBİTÖR ETKİLERİ. GIDA. 2019;45(1):182-91.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/