Research Article
BibTex RIS Cite

MİKRODALGA KOŞULLARINDA MUZUN KÖPÜK KURUTMA ÖZELLİKLERİNİN MODELLENMESİ

Year 2020, , 1134 - 1142, 12.10.2020
https://doi.org/10.15237/gida.GD20088

Abstract

Bu çalışmada, muzun mikrodalga destekli köpük kurutma ile kurutulması ve kurutma davranışının belirlenmesi amaçlanmıştır. Muz köpüğü, 100, 180, 300, 450 ve 600 W mikrodalga güçlerinde köpük kurutma yöntemi ile kurutulmuştur. Aktif nem difüzyon katsayıları, 5.9536 x 10-9 ve 3.5692 x 10-8 m2 s-1 aralığında bulunmuştur. Mikrodalga ile kurutulan muz köpüğünün aktivasyon enerjisi 10.80 W g-1 olarak hesaplanmıştır. Bunun yanında, deneysel nem oranı datalarına en iyi uyan modeli bulabilmek için, ince tabaka kurutma modelleri; Page, Wang ve Singh, Midilli ve diğerleri, Silva ve diğerleri, two-term ve Peleg, uygulanmıştır. Sonuç olarak, Midilli ve diğerleri modeli en yüksek R2, en düşük RMSE, RSS and χ2 değerleri ile diğer modellere göre daha iyi uyum sağlamıştır.

References

  • Branco, I. G., Kikuchi, T. T., Argandona, E. J. S., Moraes, I. C. F., Haminiuk, C. W. I. (2016). Drying kinetics and quality of uvaia (Hexachlamys edulis (O. Berg)) powder obtained by foam-mat drying. Int J Food Sci Tech, 51(7): 1703-1710. doi:10.1111/ijfs.13145
  • Chakraborty, S., Mazumder, S., Banerjee, S. (2017). Changes in Thermal Properties and Colour Attributes of Potato (Chandramukhi Variety) during Foam Mat and Thin Layer Drying. J Microb Biotec Food, 6(5): 1121-1126. doi:10.15414/jmbfs.2017.6.5.1121-1126
  • Chayjan, R. A., Kaveh, M. (2014). Physical Parameters and Kinetic Modeling of Fix and Fluid Bed Drying of Terebinth Seeds. J. Food Process Preserv., 38(3): 1307-1320. doi:10.1111/jfpp.12092
  • Chayjan, R. A., Kaveh, M., Khayati, S. (2015). Modeling Drying Characteristics of Hawthorn Fruit under Microwave-Convective Conditions. J. Food Process Preserv., 39(3): 239-253. doi:10.1111/jfpp.12226
  • Crank, J. (1975). Mathematic of Diffusion (2nd ed.). London: Oxford University Press.
  • da Silva, W. P., Rodrigues, A. F., Silva, C. M. D. P. S. E., de Castro, D. S., Gomes, J. P. (2015). Comparison between continuous and intermittent drying of whole bananas using empirical and diffusion models to describe the processes. J Food Eng, 166: 230-236. doi:10.1016/j.jfoodeng.2015.06.018
  • Dadali, G., Demirhan, E., Ozbek, B. (2007). Microwave heat treatment of spinach: Drying kinetics and effective moisture diffusivity. Dry. Technol., 25(10): 1703-1712. doi:10.1080/07373930701590954
  • Demirhan, E., Ozbek, B. (2010a). Drying kinetics and effective moisture diffusivity of purslane undergoing microwave heat treatment. Korean J Chem Eng, 27(5): 1377-1383. doi:10.1007/s11814-010-0251-2
  • Demirhan, E., Ozbek, B. (2010b). Microwave-Drying Characteristics of Basil. J. Food Process Preserv., 34(3): 476-494. doi:10.1111/j.1745-4549.2008.00352.x
  • Ertekin, C., Yaldiz, O. (2004). Drying of eggplant and selection of a suitable thin layer drying model. J Food Eng, 63(3): 349-359. doi:10.1016/j.jfoodeng.2003.08.007
  • Falade, K. O., Okocha, J. O. (2012). Foam-Mat Drying of Plantain and Cooking Banana (Musa spp.). Food Bioprocess Tech, 5(4): 1173-1180. doi:10.1007/s11947-010-0354-0
  • Guimaraes, M. K. A., De Figueiredo, R. M. F., Queiroz, A. J. D. (2017). Foam-Mat Drying Kinetics of Keitt Mango Pulp. Rev Caatinga, 30(1): 172-180. doi:10.1590/1983-21252017v30n119rc
  • Lobo, F. A., Nascimento, M. A., Domingues, J. R., Falcao, D. Q., Hernanz, D., Heredia, F. J., Araujo, K. G. L. (2017). Foam mat drying of Tommy Atkins mango: Effects of air temperature and concentrations of soy lecithin and carboxymethylcellulose on phenolic composition, mangiferin, and antioxidant capacity. Food Chem, 221: 258-266. doi:10.1016/j.foodchem.2016.10.080
  • Maciel, R. M. G., Afonso, M. R. A., da Costa, J. M. C., Severo, L. S., de Lima, N. D. (2017). Mathematical modeling of the foam-mat drying curves of guava pulp. Rev Bras Eng Agr Amb, 21(10): 721-725. doi:10.1590/1807-1929/agriambi.v21n10p721-725
  • Madamba, P. S., Driscoll, R. H., Buckle, K. A. (1996). The thin-layer drying characteristics of garlic slices. J Food Eng, 29(1): 75-97. doi:10.1016/0260-8774(95)00062-3
  • McMinn, W. A. M. (2006). Thin-layer modelling of the convective, microwave, microwave-convective and microwave-vacuum drying of lactose powder. J Food Eng, 72(2): 113-123. doi:10.1016/j.jfoodeng.2004.11.025
  • Midilli, A., Kucuk, H., Yapar, Z. (2002). A new model for single-layer drying. Dry. Technol., 20(7): 1503-1513. doi:10.1081/Drt-120005864
  • Noordia, A., Mustar, Y. S., Kusnanik, N. W. (2020). Foam mat drying of banana juice: varieties of ripe banana analysis and egg albumen foam. Food Sci Tech-Brazil, 40(2): 465-468. doi:10.1590/fst.24918
  • Omolola, A. O., Jideani, A. I. O., Kapila, P. F. (2014). Modeling microwave drying kinetics and moisture diffusivity of Mabonde banana variety. Int J Agr Biol Eng, 7(6): 107-113. doi:10.3965/j.ijabe.20140706.013
  • Onwude, D. I., Hashim, N., Janius, R. B., Nawi, N. M., Abdan, K. (2016). Modeling the Thin-Layer Drying of Fruits and Vegetables: A Review. Compr Rev Food Sci F, 15(3): 599-618. doi:10.1111/1541-4337.12196
  • Prakotmak, P., Soponronnarit, S., Prachayawarakorn, S. (2010). Modelling of moisture diffusion in pores of banana foam mat using a 2-D stochastic pore network: Determination of moisture diffusion coefficient during adsorption process. J Food Eng, 96(1): 119-126. doi:10.1016/j.jfoodeng.2009.07.004
  • Prakotmak, P., Soponronnarit, S., Prachayawarakorn, S. (2011). Effect of Adsorption Conditions on Effective Diffusivity and Textural Property of Dry Banana Foam Mat. Dry Technol., 29(9): 1090-1100. doi:10.1080/07373937.2011.569044
  • Qadri, O. S., Osama, K., Srivastava, A. K. (2020). Foam mat drying of papaya using microwaves: Machine learning modeling. J Food Process Eng., 43(6): e13394. doi:10.1111/jfpe.13394
  • Qadri, O. S., Srivastava, A. K. (2017). Microwave-Assisted Foam Mat Drying of Guava Pulp: Drying Kinetics and Effect on Quality Attributes. J. Food Process Eng., 40(1): e12295. doi:10.1111/jfpe.12295
  • Raharitsifa, N., Genovese, D. B., Ratti, C. (2006). Characterization of apple juice foams for foam-mat drying prepared with egg white protein and methylcellulose. J Food Sci, 71(3): E142-E151. doi:DOI 10.1111/j.1365-2621.2006.tb15627.x
  • Ratti, C. (2001). Hot air and freeze-drying of high-value foods: a review. J Food Eng, 49(4): 311-319. doi:10.1016/S0260-8774(00)00228-4
  • Salahi, M. R., Mohebbi, M., Taghizadeh, M. (2015). Foam-Mat Drying of Cantaloupe (Cucumis Melo): Optimization of Foaming Parameters and Investigating Drying Characteristics. J Food Process Preserv., 39(6): 1798-1808. doi:10.1111/jfpp.12414
  • Sankat, C. K., Castaigne, F. (2004). Foaming and drying behaviour of ripe bananas. Lebensm-Wiss Technol, 37(5): 517-525. doi:10.1016/S0023-6438(03)00132-4
  • Sun, Y., Zhang, Y. H., Xu, W., Zheng, X. Z. (2020). Analysis of the Anthocyanin Degradation in Blue Honeysuckle Berry under Microwave Assisted Foam-Mat Drying. Foods, 9(4): 397. doi:10.3390/foods9040397
  • Thuwapanichayanan, R., Prachayawarakorn, S., Soponronnarit, S. (2008). Drying characteristics and quality of banana foam mat. J Food Eng, 86(4): 573-583. doi:10.1016/j.jfoodeng.2007.11.008
  • Togrul, I. T., Pehlivan, D. (2003). Modelling of drying kinetics of single apricot. J Food Eng, 58(1): 23-32. doi:10.1016/S0260-8774(02)00329-1
  • Torki-Harchegani, M., Ghasemi-Varnamkhasti, M., Ghanbarian, D., Sadeghi, M., Tohidi, M. (2016). Dehydration characteristics and mathematical modelling of lemon slices drying undergoing oven treatment. Heat Mass Transfer, 52(2): 281-289. doi:10.1007/s00231-015-1546-y
  • Vega-Galvez, A., San Martin, R., Sanders, M., Miranda, M., Lara, E. (2010). Characteristics and Mathematical Modeling of Convective Drying of Quinoa (Chenopodium Quinoa Willd.): Influence of Temperature on the Kinetic Parameters. J. Food Process Preserv., 34(6): 945-963. doi:10.1111/j.1745-4549.2009.00410.x

MODELING FOAM-MAT DRYING CHARACTERISTICS OF BANANA UNDER MICROWAVE CONDITIONS

Year 2020, , 1134 - 1142, 12.10.2020
https://doi.org/10.15237/gida.GD20088

Abstract

In this study, it was aimed to dry banana using microwave-assisted foam-mat drying and to identify the drying behavior. Foam-mat drying of banana foam was made using a microwave oven at output power of 100, 180, 300, 450 and 600 W. Effective moisture diffusivities were obtained in the range of 5.9536 x 10-9 and 3.5692 x 10-8 m2 s-1. Activation energy was determined as 10.80 W g-1 of microwave dried banana foam. Besides, to find the best model to experimental moisture ratio values, thin layer models of Page, Wang and Singh, Midilli and others, Silva and others, two-term and Peleg were applied. As a result, Midilli and others’ model gave a better fit than others with highest value of R2, lowest values of RMSE, RSS and χ2.

References

  • Branco, I. G., Kikuchi, T. T., Argandona, E. J. S., Moraes, I. C. F., Haminiuk, C. W. I. (2016). Drying kinetics and quality of uvaia (Hexachlamys edulis (O. Berg)) powder obtained by foam-mat drying. Int J Food Sci Tech, 51(7): 1703-1710. doi:10.1111/ijfs.13145
  • Chakraborty, S., Mazumder, S., Banerjee, S. (2017). Changes in Thermal Properties and Colour Attributes of Potato (Chandramukhi Variety) during Foam Mat and Thin Layer Drying. J Microb Biotec Food, 6(5): 1121-1126. doi:10.15414/jmbfs.2017.6.5.1121-1126
  • Chayjan, R. A., Kaveh, M. (2014). Physical Parameters and Kinetic Modeling of Fix and Fluid Bed Drying of Terebinth Seeds. J. Food Process Preserv., 38(3): 1307-1320. doi:10.1111/jfpp.12092
  • Chayjan, R. A., Kaveh, M., Khayati, S. (2015). Modeling Drying Characteristics of Hawthorn Fruit under Microwave-Convective Conditions. J. Food Process Preserv., 39(3): 239-253. doi:10.1111/jfpp.12226
  • Crank, J. (1975). Mathematic of Diffusion (2nd ed.). London: Oxford University Press.
  • da Silva, W. P., Rodrigues, A. F., Silva, C. M. D. P. S. E., de Castro, D. S., Gomes, J. P. (2015). Comparison between continuous and intermittent drying of whole bananas using empirical and diffusion models to describe the processes. J Food Eng, 166: 230-236. doi:10.1016/j.jfoodeng.2015.06.018
  • Dadali, G., Demirhan, E., Ozbek, B. (2007). Microwave heat treatment of spinach: Drying kinetics and effective moisture diffusivity. Dry. Technol., 25(10): 1703-1712. doi:10.1080/07373930701590954
  • Demirhan, E., Ozbek, B. (2010a). Drying kinetics and effective moisture diffusivity of purslane undergoing microwave heat treatment. Korean J Chem Eng, 27(5): 1377-1383. doi:10.1007/s11814-010-0251-2
  • Demirhan, E., Ozbek, B. (2010b). Microwave-Drying Characteristics of Basil. J. Food Process Preserv., 34(3): 476-494. doi:10.1111/j.1745-4549.2008.00352.x
  • Ertekin, C., Yaldiz, O. (2004). Drying of eggplant and selection of a suitable thin layer drying model. J Food Eng, 63(3): 349-359. doi:10.1016/j.jfoodeng.2003.08.007
  • Falade, K. O., Okocha, J. O. (2012). Foam-Mat Drying of Plantain and Cooking Banana (Musa spp.). Food Bioprocess Tech, 5(4): 1173-1180. doi:10.1007/s11947-010-0354-0
  • Guimaraes, M. K. A., De Figueiredo, R. M. F., Queiroz, A. J. D. (2017). Foam-Mat Drying Kinetics of Keitt Mango Pulp. Rev Caatinga, 30(1): 172-180. doi:10.1590/1983-21252017v30n119rc
  • Lobo, F. A., Nascimento, M. A., Domingues, J. R., Falcao, D. Q., Hernanz, D., Heredia, F. J., Araujo, K. G. L. (2017). Foam mat drying of Tommy Atkins mango: Effects of air temperature and concentrations of soy lecithin and carboxymethylcellulose on phenolic composition, mangiferin, and antioxidant capacity. Food Chem, 221: 258-266. doi:10.1016/j.foodchem.2016.10.080
  • Maciel, R. M. G., Afonso, M. R. A., da Costa, J. M. C., Severo, L. S., de Lima, N. D. (2017). Mathematical modeling of the foam-mat drying curves of guava pulp. Rev Bras Eng Agr Amb, 21(10): 721-725. doi:10.1590/1807-1929/agriambi.v21n10p721-725
  • Madamba, P. S., Driscoll, R. H., Buckle, K. A. (1996). The thin-layer drying characteristics of garlic slices. J Food Eng, 29(1): 75-97. doi:10.1016/0260-8774(95)00062-3
  • McMinn, W. A. M. (2006). Thin-layer modelling of the convective, microwave, microwave-convective and microwave-vacuum drying of lactose powder. J Food Eng, 72(2): 113-123. doi:10.1016/j.jfoodeng.2004.11.025
  • Midilli, A., Kucuk, H., Yapar, Z. (2002). A new model for single-layer drying. Dry. Technol., 20(7): 1503-1513. doi:10.1081/Drt-120005864
  • Noordia, A., Mustar, Y. S., Kusnanik, N. W. (2020). Foam mat drying of banana juice: varieties of ripe banana analysis and egg albumen foam. Food Sci Tech-Brazil, 40(2): 465-468. doi:10.1590/fst.24918
  • Omolola, A. O., Jideani, A. I. O., Kapila, P. F. (2014). Modeling microwave drying kinetics and moisture diffusivity of Mabonde banana variety. Int J Agr Biol Eng, 7(6): 107-113. doi:10.3965/j.ijabe.20140706.013
  • Onwude, D. I., Hashim, N., Janius, R. B., Nawi, N. M., Abdan, K. (2016). Modeling the Thin-Layer Drying of Fruits and Vegetables: A Review. Compr Rev Food Sci F, 15(3): 599-618. doi:10.1111/1541-4337.12196
  • Prakotmak, P., Soponronnarit, S., Prachayawarakorn, S. (2010). Modelling of moisture diffusion in pores of banana foam mat using a 2-D stochastic pore network: Determination of moisture diffusion coefficient during adsorption process. J Food Eng, 96(1): 119-126. doi:10.1016/j.jfoodeng.2009.07.004
  • Prakotmak, P., Soponronnarit, S., Prachayawarakorn, S. (2011). Effect of Adsorption Conditions on Effective Diffusivity and Textural Property of Dry Banana Foam Mat. Dry Technol., 29(9): 1090-1100. doi:10.1080/07373937.2011.569044
  • Qadri, O. S., Osama, K., Srivastava, A. K. (2020). Foam mat drying of papaya using microwaves: Machine learning modeling. J Food Process Eng., 43(6): e13394. doi:10.1111/jfpe.13394
  • Qadri, O. S., Srivastava, A. K. (2017). Microwave-Assisted Foam Mat Drying of Guava Pulp: Drying Kinetics and Effect on Quality Attributes. J. Food Process Eng., 40(1): e12295. doi:10.1111/jfpe.12295
  • Raharitsifa, N., Genovese, D. B., Ratti, C. (2006). Characterization of apple juice foams for foam-mat drying prepared with egg white protein and methylcellulose. J Food Sci, 71(3): E142-E151. doi:DOI 10.1111/j.1365-2621.2006.tb15627.x
  • Ratti, C. (2001). Hot air and freeze-drying of high-value foods: a review. J Food Eng, 49(4): 311-319. doi:10.1016/S0260-8774(00)00228-4
  • Salahi, M. R., Mohebbi, M., Taghizadeh, M. (2015). Foam-Mat Drying of Cantaloupe (Cucumis Melo): Optimization of Foaming Parameters and Investigating Drying Characteristics. J Food Process Preserv., 39(6): 1798-1808. doi:10.1111/jfpp.12414
  • Sankat, C. K., Castaigne, F. (2004). Foaming and drying behaviour of ripe bananas. Lebensm-Wiss Technol, 37(5): 517-525. doi:10.1016/S0023-6438(03)00132-4
  • Sun, Y., Zhang, Y. H., Xu, W., Zheng, X. Z. (2020). Analysis of the Anthocyanin Degradation in Blue Honeysuckle Berry under Microwave Assisted Foam-Mat Drying. Foods, 9(4): 397. doi:10.3390/foods9040397
  • Thuwapanichayanan, R., Prachayawarakorn, S., Soponronnarit, S. (2008). Drying characteristics and quality of banana foam mat. J Food Eng, 86(4): 573-583. doi:10.1016/j.jfoodeng.2007.11.008
  • Togrul, I. T., Pehlivan, D. (2003). Modelling of drying kinetics of single apricot. J Food Eng, 58(1): 23-32. doi:10.1016/S0260-8774(02)00329-1
  • Torki-Harchegani, M., Ghasemi-Varnamkhasti, M., Ghanbarian, D., Sadeghi, M., Tohidi, M. (2016). Dehydration characteristics and mathematical modelling of lemon slices drying undergoing oven treatment. Heat Mass Transfer, 52(2): 281-289. doi:10.1007/s00231-015-1546-y
  • Vega-Galvez, A., San Martin, R., Sanders, M., Miranda, M., Lara, E. (2010). Characteristics and Mathematical Modeling of Convective Drying of Quinoa (Chenopodium Quinoa Willd.): Influence of Temperature on the Kinetic Parameters. J. Food Process Preserv., 34(6): 945-963. doi:10.1111/j.1745-4549.2009.00410.x
There are 33 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Articles
Authors

Ayşe Nur Yüksel 0000-0002-6828-1190

Publication Date October 12, 2020
Published in Issue Year 2020

Cite

APA Yüksel, A. N. (2020). MODELING FOAM-MAT DRYING CHARACTERISTICS OF BANANA UNDER MICROWAVE CONDITIONS. Gıda, 45(6), 1134-1142. https://doi.org/10.15237/gida.GD20088
AMA Yüksel AN. MODELING FOAM-MAT DRYING CHARACTERISTICS OF BANANA UNDER MICROWAVE CONDITIONS. GIDA. October 2020;45(6):1134-1142. doi:10.15237/gida.GD20088
Chicago Yüksel, Ayşe Nur. “MODELING FOAM-MAT DRYING CHARACTERISTICS OF BANANA UNDER MICROWAVE CONDITIONS”. Gıda 45, no. 6 (October 2020): 1134-42. https://doi.org/10.15237/gida.GD20088.
EndNote Yüksel AN (October 1, 2020) MODELING FOAM-MAT DRYING CHARACTERISTICS OF BANANA UNDER MICROWAVE CONDITIONS. Gıda 45 6 1134–1142.
IEEE A. N. Yüksel, “MODELING FOAM-MAT DRYING CHARACTERISTICS OF BANANA UNDER MICROWAVE CONDITIONS”, GIDA, vol. 45, no. 6, pp. 1134–1142, 2020, doi: 10.15237/gida.GD20088.
ISNAD Yüksel, Ayşe Nur. “MODELING FOAM-MAT DRYING CHARACTERISTICS OF BANANA UNDER MICROWAVE CONDITIONS”. Gıda 45/6 (October 2020), 1134-1142. https://doi.org/10.15237/gida.GD20088.
JAMA Yüksel AN. MODELING FOAM-MAT DRYING CHARACTERISTICS OF BANANA UNDER MICROWAVE CONDITIONS. GIDA. 2020;45:1134–1142.
MLA Yüksel, Ayşe Nur. “MODELING FOAM-MAT DRYING CHARACTERISTICS OF BANANA UNDER MICROWAVE CONDITIONS”. Gıda, vol. 45, no. 6, 2020, pp. 1134-42, doi:10.15237/gida.GD20088.
Vancouver Yüksel AN. MODELING FOAM-MAT DRYING CHARACTERISTICS OF BANANA UNDER MICROWAVE CONDITIONS. GIDA. 2020;45(6):1134-42.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/