Research Article
BibTex RIS Cite

KÖPÜK HELVA ÜRETİM PARAMETRELERİNİN RENK VE YOĞUNLUK ÖZELLİKLERİNE ETKİSİ: TAGUCHİ MATEMATİKSEL MODEL OPTİMİZASYONU

Year 2020, , 1248 - 1260, 12.10.2020
https://doi.org/10.15237/gida.GD20089

Abstract

Bu çalışmada; kontrol parametrelerinin (protein çeşidi, hidrokolloid konsantrasyonu, hidrokolloid çeşidi ve çırpma sıcaklığı) model köpüklerin yoğunluklarına ve köpük helvaların renklerine etkileri Taguchi yöntemi kullanılarak belirlenmiştir. En düşük yoğunluk ve en yüksek L* değerleri için Sinyal/Gürültü oranları Taguchi L16 deney tasarımı (44) kullanılarak saptanmıştır. Analiz sonuçlarına göre; peynir altı suyu protein izolatı (%0.5), saponin (%0.096) ve pektin (%0.05) çözeltisinin 80 oC’de çırpılmasıyla elde edilen model köpüğün en iyi köpürebilen örnek olduğu belirlenmiştir. Ayrıca, bu örneğin yoğunluk yanıtı Sinyal/Gürültü oranının (13.98 dB) kontrolden (11.49 dB) daha yüksek olduğu tespit edilmiştir. Peynir altı suyu protein izolatı (%0.5), saponin (%0.096) ve ksantan gam (%0.1) ile hazırlanan çözeltinin 40 oC’de çırpılmasıyla üretilen model köpük helva ve geleneksel yöntemle üretilen helvanın parlaklıkları arasında istatistiksel açıdan önemli fark bulunmamıştır. Sonuç olarak; saponin içeriği azaltılmış, hedeflenen yoğunlukta ve renkte köpüklerin/köpük helvaların üretilebileceği Taguchi optimizasyon yöntemiyle belirlenmiştir.

Thanks

Bu çalışmanın gerçekleştirilmesinde katkıları bulunan Erciyes Üniv. Gıda Müh. Bölüm Başkanlığı, Tokat Gaziosmanpaşa Üniv. Gıda Müh. Bölüm Başkanlığına ve Taguchi modelleme konusundaki yardımlarından dolayı Doç. Dr. Ercan Şenyiğit’e teşekkür ederiz.

References

  • Abascal, D.M., Gracia-Fadrique, J. (2009). Surface tension and foam stability of commercial calcium and sodium caseinates. Food Hydrocolloids, 23(7): 1848–1852, https://doi.org/10.1016/j.foodhyd.2009.02.012.
  • Asghari, A.K., Norton, I., Mills, T., Sadd, P., Spyropoulos, F. (2015). Interfacial and foaming characterisation of mixed protein-starch particle systems for food-foam applications. Food Hydrocolloids, 53: 311–319, http://dx.doi.org/10.1016/j.foodhyd.2015.09.007 .
  • Balerin, C., Aymard, P., Ducept, F., Vaslin, S., Cuvelier, G. (2007). Effect of formulation and processing factors on the properties of liquid food foams. Journal of Food Engineering, 78(3): 802–809, https://doi.org/10.1016/j.jfoodeng.2005.11.021.
  • Campbell, G.M., ve Mougeot, E. (1999). Creation and characterisation of aerated food products. Trends in Food Science and Technology, 10(9): 283-296,https://doi.org/10.1016/S0924-2244(00)00008-X.
  • Carp, D.J., Baeza, R.I., Bartholomai, G.B., Pilosof, A.M.R. (2004). Impact of proteins-κ-carrageenan interactions on foam properties. LWT - Food Science and Technology, 37(5): 573–580, https://doi.org/10.1016/j.lwt.2003.11.007.
  • Foegeding, E.A., Luck, P.J., Davis, J.P. (2006). Factors determining the physical properties of protein foams. Food Hydrocolloids, 20(2-3): 284–292, https://doi.org/ 10.1016/j.foodhyd.2005.03.014.
  • Güçlü-Ustündağ, O., Mazza, G. (2007). Saponins: properties, applications and processing. Critical reviews in food science and nutrition, 47(3): 231–58, https://doi.org/10.1080/10408390600698197.
  • Ibanoglu, E., ve Erçelebi, E.A. (2007). Thermal denaturation and functional properties of egg proteins in the presence of hydrocolloid gums. Food Chemistry, 101(2): 626–633, https://doi.org/10.1016/j.foodchem.2006.01.056.
  • Lau, C.K., Dickinson, E. (2005). Instability and structural change in an aerated system containing egg albumen and invert sugar. Food Hydrocolloids, 19(1): 111–121, http://dx.doi.org/10.1016/j.foodhyd.2004.04.020.
  • Lau, K., Dickinson, E. (2006). Structural and Rheological Properties of Aerated High Sugar Systems Containing Egg Albumen. Journal of Food Science, 69(5): 232–239, http://dx.doi.wiley.com/10.1111/j.1365-2621.2004.tb10714.x.
  • Lazidis, A., Hancocks, R.D., Spyropoulos, F., Kreuß, M., Berrocal, R., Norton, I.T. (2014). Whey protein fluid gels for the stabilisation of foams. Food Hydrocolloids, 53: 209–217, http://dx.doi.org/10.1016/j.foodhyd.2015.02.022.
  • Liszka-Skoczylas, M., Ptaszek, A., Zmudziński, D. (2014). The effect of hydrocolloids on producing stable foams based on the whey protein concentrate (WPC). Journal of Food Engineering, 129: 1–11, https://doi.org/10.1016/j.jfoodeng.2014.01.002.
  • Martínez-Padilla, L.P., García-Rivera, J.L., Romero-Arreola, V., Casas-Alencáster, N.B. (2015). Effects of xanthan gum rheology on the foaming properties of whey protein concentrate. Journal of Food Engineering, 156: 22–30, https://doi.org/10.1016/j.jfoodeng.2015.01.018.
  • Mekonnen, T.H., Mussone, P.G., Choi, P., Bressler, D.C. (2015). Development of Proteinaceous Plywood Adhesive and Optimization of Its Lap Shear Strength, Macromol. Mater. Eng., 300: 198–209, https://doi.org/10.1002/mame.201400199.
  • Miquelim, J.N., Lannes, S.C.S., Mezzenga, R. (2010). pH Influence on the stability of foams with protein-polysaccharide complexes at their interfaces. Food Hydrocolloids, 24(4): 398–405, http://dx.doi.org/10.1016/j.foodhyd.2009.11.006 .
  • Narchi, I., Vial, C., Djelveh, G. (2009). Effect of protein-polysaccharide mixtures on the continuous manufacturing of foamed food products. Food Hydrocolloids, 23(1): 188–201, https://doi.org/10.1016/j.foodhyd.2007.12.010.
  • Nicorescu, I., Loisel, C., Vial, C., Riaublanc, A., Djelveh, G., Cuvelier, G., Legrand, J. (2008). Combined effect of dynamic heat treatment and ionic strength on the properties of whey protein foams - Part II. Food Research International, 41(10): 980–988, http://dx.doi.org/10.1016/j.foodres.2008.08.003.
  • Özakın, A.N., Kaya, F. (2020). Optimization of Control Parameters Affecting Panel Surface Temperature in Air-Cooled PVT Panels. Journal of the Institute of Science and Technology, 10(1): 509–519.
  • Özçelik, H., Yıldırım, B. (2011). Türkiye çövenlerinin ( Gypsophila L . ve Ankyropetalum Fenzl spp.) ekonomik önemi, kullanım olanakları ve korunması üzerine düşünceler, SDÜ Orman Fakültesi Dergisi, 12: 57–61.
  • Perez, A.A., Carrara, C.R., Sánchez, C.C., Santiago, L.G., Rodríguez Patino, J.M. (2009). Interfacial dynamic properties of whey protein concentrate/polysaccharide mixtures at neutral pH. Food Hydrocolloids, 23(5): 1253–1262, https://doi.org/10.1016/j.foodhyd.2008.08.013.
  • Pernell, C.W., Foegeding, E.A., Luck, P.J., Davis, J.P. (2002). Properties of whey and egg white protein foams. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 204(1): 9–21, https://doi.org/10.1016/S0927-7757(01)01061-5.
  • Ptaszek, P., Kabziński, M., Kruk, J., Kaczmarczyk, K., Zmudziński, D., Liszka-Skoczylas, M., Mickowska, B. (2015). The effect of pectins and xanthan gum on physicochemical properties of egg white protein foams. Journal of Food Engineering, 144: 129–137, https://doi.org/10.1016/j.jfoodeng.2014.07.017.
  • Ptaszek, P., Kabziński, M., Ptaszek, A., Kaczmarczyk, K., Kruk, J., Bieńczak, A. (2016). The analysis of the influence of xanthan gum and apple pectins on egg white protein foams using the large amplitude oscillatory shear method. Food Hydrocolloids, 54: 293–301, https://doi.org/10.1016/j.foodhyd.2015.10.010.
  • Ptaszek, P., Zmudziński, D., Kruk, J., Kaczmarczyk, K., Roznowski, W., Berski, W. (2014). The Physical and Linear Viscoelastic Properties of Fresh Wet Foams Based on Egg White Proteins and Selected Hydrocolloids. Food Biophysics, 9(1): 76–87, https://doi.org/10.1007/s11483-013-9320-5.
  • Raikos, V., Campbell, L., Euston, S.R. (2007). Effects of sucrose and sodium chloride on foaming properties of egg white proteins. Food Research International, 40(3): 347–355, https://doi.org/10.1016/j.foodres.2006.10.008.
  • Ravanfar, R., Tamadon, A.M., Niakousari, M. (2015). Optimization of ultrasound assisted extraction of anthocyanins from red cabbage using Taguchi design method. Journal of Food Science and Technology, 52(12): 8140–8147, https://doi.org/10.1007/s13197-015-1880-6.
  • Rodriguez Patino, J.M., Pilosof, A.M.R. (2011). Protein-polysaccharide interactions at fluid interfaces. Food Hydrocolloids, 25(8): 1925–1937, http://dx.doi.org/10.1016/j.foodhyd.2011.02.023.
  • Roy, R.K. (2010). A Primer on the Taguchi method. 2nd Edition, Michigan: Society of Manufacturing Engineers, USA, 299 p. Sadahira, M.S., Lopes, F.C.R., Rodrigues, M.I., Netto, F.M. (2014). Influence of protein-pectin electrostatic interaction on the foam stability mechanism. Carbohydrate Polymers, 103(1): 55–61, http://dx.doi.org/10.1016/j.carbpol.2013.11.070.
  • Sarıçoban, C., Karakaya, M. (2004). Geleneksel gıdalardan köpük helvanın endüstriyel ölçekte üretimi. Geleneksel Gıdalar Sempozyumu, 23-24 Eylül, Van, Türkiye, 104-105s s.
  • Shen, X., Shao, S., Guo, M. (2017). Ultrasound-induced changes in physical and functional properties of whey proteins. International Journal of Food Science & Technology, 52(2): 381–388, http://doi.wiley.com/10.1111/ijfs.13292.
  • Silva, M.B., Carneiro, L.M., Silva, J.P.A., Dos Santos Oliveira, I., Filho, H.J.I., Oliveira Almeida, C.R. (2014). An Application of the Taguchi Method (Robust Design) to Environmental Engineering: Evaluating Advanced Oxidative Processes in Polyester-Resin Wastewater Treatment. American Journal of Analytical Chemistry, 5(13): 828–837, https://doi.org/10.4236/ajac.2014.513092.
  • Walsh, D.J., Russell, K., FitzGerald, R. J. (2008). Stabilisation of sodium caseinate hydrolysate foams. Food Research International, 41(1): 43–52, https://doi.org/10.1016/j.foodres.2007.09.003.
  • Zmudziński, D., Ptaszek, P., Kruk, J., Kaczmarczyk, K., Roznowski, W., Berski, W., Ptaszek, A., (2014). The role of hydrocolloids in mechanical properties of fresh foams based on egg white proteins. Journal of Food Engineering, 121(1): 128–134, https://doi.org/10.1016/j.jfoodeng.2013.08.020.

THE EFFECT OF PROCESS PARAMETERS ON COLOR AND DENSITY PROPERTIES OF FOAM HALVA: TAGUCHI MATHEMETICAL MODEL OPTIMIZATION

Year 2020, , 1248 - 1260, 12.10.2020
https://doi.org/10.15237/gida.GD20089

Abstract

In this study, effects of control parameters (protein type, hydrocolloid concentration, hydrocolloid type and mixing temperature) on density response of model foams and color response of model foam halvas. Signal/Noise ratio for the lowest density and the highest L* values were obtained using Taguchi L16 experimental design (44). As a result of the analysis, model foam obtained by mixing solution containing whey protein isolate (0.5%), saponin (0.096%) and pectin (0.05%) at 80oC was determined as the best foaming sample. For density response, Signal/Noise ratio of this sample (13.98 dB) was also detected higher than control (11.49 dB). There was no significant difference between the model foam halva produced by whipping the solution (whey protein isolate (0.5%), saponin (0.096%) and xanthan gam (0.1%)) at 40oC and traditional method. Consequently, it was determined that model foams/foam halvas with reduced saponin content and targeted density and color could be produced using Taguchi method. 

References

  • Abascal, D.M., Gracia-Fadrique, J. (2009). Surface tension and foam stability of commercial calcium and sodium caseinates. Food Hydrocolloids, 23(7): 1848–1852, https://doi.org/10.1016/j.foodhyd.2009.02.012.
  • Asghari, A.K., Norton, I., Mills, T., Sadd, P., Spyropoulos, F. (2015). Interfacial and foaming characterisation of mixed protein-starch particle systems for food-foam applications. Food Hydrocolloids, 53: 311–319, http://dx.doi.org/10.1016/j.foodhyd.2015.09.007 .
  • Balerin, C., Aymard, P., Ducept, F., Vaslin, S., Cuvelier, G. (2007). Effect of formulation and processing factors on the properties of liquid food foams. Journal of Food Engineering, 78(3): 802–809, https://doi.org/10.1016/j.jfoodeng.2005.11.021.
  • Campbell, G.M., ve Mougeot, E. (1999). Creation and characterisation of aerated food products. Trends in Food Science and Technology, 10(9): 283-296,https://doi.org/10.1016/S0924-2244(00)00008-X.
  • Carp, D.J., Baeza, R.I., Bartholomai, G.B., Pilosof, A.M.R. (2004). Impact of proteins-κ-carrageenan interactions on foam properties. LWT - Food Science and Technology, 37(5): 573–580, https://doi.org/10.1016/j.lwt.2003.11.007.
  • Foegeding, E.A., Luck, P.J., Davis, J.P. (2006). Factors determining the physical properties of protein foams. Food Hydrocolloids, 20(2-3): 284–292, https://doi.org/ 10.1016/j.foodhyd.2005.03.014.
  • Güçlü-Ustündağ, O., Mazza, G. (2007). Saponins: properties, applications and processing. Critical reviews in food science and nutrition, 47(3): 231–58, https://doi.org/10.1080/10408390600698197.
  • Ibanoglu, E., ve Erçelebi, E.A. (2007). Thermal denaturation and functional properties of egg proteins in the presence of hydrocolloid gums. Food Chemistry, 101(2): 626–633, https://doi.org/10.1016/j.foodchem.2006.01.056.
  • Lau, C.K., Dickinson, E. (2005). Instability and structural change in an aerated system containing egg albumen and invert sugar. Food Hydrocolloids, 19(1): 111–121, http://dx.doi.org/10.1016/j.foodhyd.2004.04.020.
  • Lau, K., Dickinson, E. (2006). Structural and Rheological Properties of Aerated High Sugar Systems Containing Egg Albumen. Journal of Food Science, 69(5): 232–239, http://dx.doi.wiley.com/10.1111/j.1365-2621.2004.tb10714.x.
  • Lazidis, A., Hancocks, R.D., Spyropoulos, F., Kreuß, M., Berrocal, R., Norton, I.T. (2014). Whey protein fluid gels for the stabilisation of foams. Food Hydrocolloids, 53: 209–217, http://dx.doi.org/10.1016/j.foodhyd.2015.02.022.
  • Liszka-Skoczylas, M., Ptaszek, A., Zmudziński, D. (2014). The effect of hydrocolloids on producing stable foams based on the whey protein concentrate (WPC). Journal of Food Engineering, 129: 1–11, https://doi.org/10.1016/j.jfoodeng.2014.01.002.
  • Martínez-Padilla, L.P., García-Rivera, J.L., Romero-Arreola, V., Casas-Alencáster, N.B. (2015). Effects of xanthan gum rheology on the foaming properties of whey protein concentrate. Journal of Food Engineering, 156: 22–30, https://doi.org/10.1016/j.jfoodeng.2015.01.018.
  • Mekonnen, T.H., Mussone, P.G., Choi, P., Bressler, D.C. (2015). Development of Proteinaceous Plywood Adhesive and Optimization of Its Lap Shear Strength, Macromol. Mater. Eng., 300: 198–209, https://doi.org/10.1002/mame.201400199.
  • Miquelim, J.N., Lannes, S.C.S., Mezzenga, R. (2010). pH Influence on the stability of foams with protein-polysaccharide complexes at their interfaces. Food Hydrocolloids, 24(4): 398–405, http://dx.doi.org/10.1016/j.foodhyd.2009.11.006 .
  • Narchi, I., Vial, C., Djelveh, G. (2009). Effect of protein-polysaccharide mixtures on the continuous manufacturing of foamed food products. Food Hydrocolloids, 23(1): 188–201, https://doi.org/10.1016/j.foodhyd.2007.12.010.
  • Nicorescu, I., Loisel, C., Vial, C., Riaublanc, A., Djelveh, G., Cuvelier, G., Legrand, J. (2008). Combined effect of dynamic heat treatment and ionic strength on the properties of whey protein foams - Part II. Food Research International, 41(10): 980–988, http://dx.doi.org/10.1016/j.foodres.2008.08.003.
  • Özakın, A.N., Kaya, F. (2020). Optimization of Control Parameters Affecting Panel Surface Temperature in Air-Cooled PVT Panels. Journal of the Institute of Science and Technology, 10(1): 509–519.
  • Özçelik, H., Yıldırım, B. (2011). Türkiye çövenlerinin ( Gypsophila L . ve Ankyropetalum Fenzl spp.) ekonomik önemi, kullanım olanakları ve korunması üzerine düşünceler, SDÜ Orman Fakültesi Dergisi, 12: 57–61.
  • Perez, A.A., Carrara, C.R., Sánchez, C.C., Santiago, L.G., Rodríguez Patino, J.M. (2009). Interfacial dynamic properties of whey protein concentrate/polysaccharide mixtures at neutral pH. Food Hydrocolloids, 23(5): 1253–1262, https://doi.org/10.1016/j.foodhyd.2008.08.013.
  • Pernell, C.W., Foegeding, E.A., Luck, P.J., Davis, J.P. (2002). Properties of whey and egg white protein foams. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 204(1): 9–21, https://doi.org/10.1016/S0927-7757(01)01061-5.
  • Ptaszek, P., Kabziński, M., Kruk, J., Kaczmarczyk, K., Zmudziński, D., Liszka-Skoczylas, M., Mickowska, B. (2015). The effect of pectins and xanthan gum on physicochemical properties of egg white protein foams. Journal of Food Engineering, 144: 129–137, https://doi.org/10.1016/j.jfoodeng.2014.07.017.
  • Ptaszek, P., Kabziński, M., Ptaszek, A., Kaczmarczyk, K., Kruk, J., Bieńczak, A. (2016). The analysis of the influence of xanthan gum and apple pectins on egg white protein foams using the large amplitude oscillatory shear method. Food Hydrocolloids, 54: 293–301, https://doi.org/10.1016/j.foodhyd.2015.10.010.
  • Ptaszek, P., Zmudziński, D., Kruk, J., Kaczmarczyk, K., Roznowski, W., Berski, W. (2014). The Physical and Linear Viscoelastic Properties of Fresh Wet Foams Based on Egg White Proteins and Selected Hydrocolloids. Food Biophysics, 9(1): 76–87, https://doi.org/10.1007/s11483-013-9320-5.
  • Raikos, V., Campbell, L., Euston, S.R. (2007). Effects of sucrose and sodium chloride on foaming properties of egg white proteins. Food Research International, 40(3): 347–355, https://doi.org/10.1016/j.foodres.2006.10.008.
  • Ravanfar, R., Tamadon, A.M., Niakousari, M. (2015). Optimization of ultrasound assisted extraction of anthocyanins from red cabbage using Taguchi design method. Journal of Food Science and Technology, 52(12): 8140–8147, https://doi.org/10.1007/s13197-015-1880-6.
  • Rodriguez Patino, J.M., Pilosof, A.M.R. (2011). Protein-polysaccharide interactions at fluid interfaces. Food Hydrocolloids, 25(8): 1925–1937, http://dx.doi.org/10.1016/j.foodhyd.2011.02.023.
  • Roy, R.K. (2010). A Primer on the Taguchi method. 2nd Edition, Michigan: Society of Manufacturing Engineers, USA, 299 p. Sadahira, M.S., Lopes, F.C.R., Rodrigues, M.I., Netto, F.M. (2014). Influence of protein-pectin electrostatic interaction on the foam stability mechanism. Carbohydrate Polymers, 103(1): 55–61, http://dx.doi.org/10.1016/j.carbpol.2013.11.070.
  • Sarıçoban, C., Karakaya, M. (2004). Geleneksel gıdalardan köpük helvanın endüstriyel ölçekte üretimi. Geleneksel Gıdalar Sempozyumu, 23-24 Eylül, Van, Türkiye, 104-105s s.
  • Shen, X., Shao, S., Guo, M. (2017). Ultrasound-induced changes in physical and functional properties of whey proteins. International Journal of Food Science & Technology, 52(2): 381–388, http://doi.wiley.com/10.1111/ijfs.13292.
  • Silva, M.B., Carneiro, L.M., Silva, J.P.A., Dos Santos Oliveira, I., Filho, H.J.I., Oliveira Almeida, C.R. (2014). An Application of the Taguchi Method (Robust Design) to Environmental Engineering: Evaluating Advanced Oxidative Processes in Polyester-Resin Wastewater Treatment. American Journal of Analytical Chemistry, 5(13): 828–837, https://doi.org/10.4236/ajac.2014.513092.
  • Walsh, D.J., Russell, K., FitzGerald, R. J. (2008). Stabilisation of sodium caseinate hydrolysate foams. Food Research International, 41(1): 43–52, https://doi.org/10.1016/j.foodres.2007.09.003.
  • Zmudziński, D., Ptaszek, P., Kruk, J., Kaczmarczyk, K., Roznowski, W., Berski, W., Ptaszek, A., (2014). The role of hydrocolloids in mechanical properties of fresh foams based on egg white proteins. Journal of Food Engineering, 121(1): 128–134, https://doi.org/10.1016/j.jfoodeng.2013.08.020.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Articles
Authors

Mehmet Güldane 0000-0001-7321-0496

Mahmut Dogan 0000-0003-1639-4641

Publication Date October 12, 2020
Published in Issue Year 2020

Cite

APA Güldane, M., & Dogan, M. (2020). KÖPÜK HELVA ÜRETİM PARAMETRELERİNİN RENK VE YOĞUNLUK ÖZELLİKLERİNE ETKİSİ: TAGUCHİ MATEMATİKSEL MODEL OPTİMİZASYONU. Gıda, 45(6), 1248-1260. https://doi.org/10.15237/gida.GD20089
AMA Güldane M, Dogan M. KÖPÜK HELVA ÜRETİM PARAMETRELERİNİN RENK VE YOĞUNLUK ÖZELLİKLERİNE ETKİSİ: TAGUCHİ MATEMATİKSEL MODEL OPTİMİZASYONU. GIDA. October 2020;45(6):1248-1260. doi:10.15237/gida.GD20089
Chicago Güldane, Mehmet, and Mahmut Dogan. “KÖPÜK HELVA ÜRETİM PARAMETRELERİNİN RENK VE YOĞUNLUK ÖZELLİKLERİNE ETKİSİ: TAGUCHİ MATEMATİKSEL MODEL OPTİMİZASYONU”. Gıda 45, no. 6 (October 2020): 1248-60. https://doi.org/10.15237/gida.GD20089.
EndNote Güldane M, Dogan M (October 1, 2020) KÖPÜK HELVA ÜRETİM PARAMETRELERİNİN RENK VE YOĞUNLUK ÖZELLİKLERİNE ETKİSİ: TAGUCHİ MATEMATİKSEL MODEL OPTİMİZASYONU. Gıda 45 6 1248–1260.
IEEE M. Güldane and M. Dogan, “KÖPÜK HELVA ÜRETİM PARAMETRELERİNİN RENK VE YOĞUNLUK ÖZELLİKLERİNE ETKİSİ: TAGUCHİ MATEMATİKSEL MODEL OPTİMİZASYONU”, GIDA, vol. 45, no. 6, pp. 1248–1260, 2020, doi: 10.15237/gida.GD20089.
ISNAD Güldane, Mehmet - Dogan, Mahmut. “KÖPÜK HELVA ÜRETİM PARAMETRELERİNİN RENK VE YOĞUNLUK ÖZELLİKLERİNE ETKİSİ: TAGUCHİ MATEMATİKSEL MODEL OPTİMİZASYONU”. Gıda 45/6 (October 2020), 1248-1260. https://doi.org/10.15237/gida.GD20089.
JAMA Güldane M, Dogan M. KÖPÜK HELVA ÜRETİM PARAMETRELERİNİN RENK VE YOĞUNLUK ÖZELLİKLERİNE ETKİSİ: TAGUCHİ MATEMATİKSEL MODEL OPTİMİZASYONU. GIDA. 2020;45:1248–1260.
MLA Güldane, Mehmet and Mahmut Dogan. “KÖPÜK HELVA ÜRETİM PARAMETRELERİNİN RENK VE YOĞUNLUK ÖZELLİKLERİNE ETKİSİ: TAGUCHİ MATEMATİKSEL MODEL OPTİMİZASYONU”. Gıda, vol. 45, no. 6, 2020, pp. 1248-60, doi:10.15237/gida.GD20089.
Vancouver Güldane M, Dogan M. KÖPÜK HELVA ÜRETİM PARAMETRELERİNİN RENK VE YOĞUNLUK ÖZELLİKLERİNE ETKİSİ: TAGUCHİ MATEMATİKSEL MODEL OPTİMİZASYONU. GIDA. 2020;45(6):1248-60.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/