Review
BibTex RIS Cite

GIDA PROTEİNLERİNDEN ELDE EDİLEN BİYOAKTİF PEPTİDLER: FONKSİYONLARI VE SAĞLIK ÜZERİNDE OYNADIĞI ROLLERE GÖRE SINIFLANDIRILMASI

Year 2021, , 42 - 52, 11.12.2020
https://doi.org/10.15237/gida.GD20095

Abstract

Gıda proteinleri; besinsel, biyolojik ve fonksiyonel aktivitelerin önemli bir bölümünde rol almaktadır. Amino asit dizilerine bağlı olarak, gıda proteini kaynaklı peptidler kardiyovasküler, endokrin, bağışıklık ve sinir sistemleri üzerindeki etkileri gibi çok sayıda fonksiyonel aktivite göstermektedirler. Bu peptidler; kan basıncını düşürücü (ACE inhibitörü) etkileri, antimikrobiyel özellikleri, kolesterolü düşürme yeteneği, mineral bağlama yeteneği, antitrombotik ve antioksidan aktiviteleri, immünomodülatör etkileri ve opioid aktiviteleri dahil olmak üzere sağlık üzerinde çeşitli etkilere sahiptirler. Bu fonksiyonel peptidler, öncül protein molekülü içerisinde inaktif formda ya da gizlenmiş olarak bulunmaktadırlar ve in vivo gastrointestinal sindirim, proteolitik starter kültürler ile gıda fermantasyonu veya proteolitik enzimler ile gerçekleştirilen hidroliz sırasında aktifleşmektedirler. Bu derlemede, gıda kaynaklı biyoaktif peptidlerin fonksiyonel özellikleri üzerinde durulmakta olup terapatik bileşenler ve fonksiyonel gıda bileşenleri olarak kullanımları değerlendirilmektedir.

References

  • Aftab, R.A., Khan, A.H., Adnan, A.S., Jannah, N. (2016). A systematic review on randomized control trials on rennin angiotensin aldosterone system inhibitors role in managing hypertension among hemodialysis patients. Renal Failure, 38(3): 474-480.
  • Aguilar-Toalá, J., Hernández-Mendoza, A., González-Córdova, A., Vallejo-Cordoba, B., Liceaga, A. (2019). Potential role of natural bioactive peptides for development of cosmeceutical skin products. Peptides, 122: 1-13.
  • Aiello, G., Ferruzza, S., Ranaldi, G., Sambuy, Y., Arnoldi, A., Vistoli, G., Lammi, C. (2018). Behavior of three hypocholesterolemic peptides from soy protein in an intestinal model based on differentiated Caco-2 cell. Journal of Functional Foods, 45: 363-370.
  • Akıllıoğlu, H.G., Yalçın, E., (2010). Tahıl protein hidrolizatlarının antioksidan aktiviteleri. Gıda, 35(3): 227-233.
  • Arcan, I., Yemenicioğlu, A. (2007). Antioxidant activity of protein extracts from heat-treated or thermally processed chickpeas and white beans. Food Chemistry, 103(2): 301-312.
  • Ashaolu, T.J. (2020). Health applications of soy protein hydrolysates. International Journal of Peptide Research and Therapeutics, 1-11.
  • Birkemo, G., O’Sullivan, O., Ross, R., Hill, C. (2009). Antimicrobial activity of two peptides casecidin 15 and 17, found naturally in bovine colostrum. Journal of Applied Microbiology, 106(1): 233-240.
  • Camargo, A.C., Fernandes, B.L., Cruz, L., Ferro, E.S. (2012). Bioactive peptides produced by limited proteolysis. Morgan & Claypool Life Sciences, 92 s.
  • Cheng, S., Tu, M., Liu, H., Zhao, G., Du, M. (2019). Food-derived antithrombotic peptides: preparation, identification, and interactions with thrombin. Critical Reviews in Food Science and Nutrition, 59(sup1): S81-S95.
  • Damar, İ., Karadeniz, F. (2012). Biyoaktif peptitlerin ve proteinlerin antioksidan aktiviteleri ve fonksiyonel gıdalarda kullanılabilirliği. Dünya Gıda, 6: 70-75.
  • De Noni, I., FitzGerald, R.J., Korhonen, H.J., Le Roux, Y., Livesey, C.T., Thorsdottir, I., Tomé, D., Witkamp, R. (2009). Review of the potential health impact of β-casomorphins and related peptides, EFSA Scientific Report, 231: 1-107.
  • Dean, R.L. (ed.), Bilsky, E.J., Negus, S.S. (2009). Opiate receptors and antagonists. Springer, New York, USA, 757 p.
  • Dimitrova, D., Hristova, A., Lambev, M., Mihaylova, S., Paipanova, T., Valcheva-Kuzmanova, S. (2019). Review on the pharmacological activities of lactoferricin and lactoferricin analogues. Scripta Scientifica Medica, 51(2): 15-22.
  • Drago-Serrano, M.E., Campos-Rodriguez, R., Carrero, J.C., de la Garza, M. (2018). Lactoferrin and peptide-derivatives: antimicrobial agents with potential use in nonspecific immunity modulation. Current Pharmaceutical Design, 24 (10), 1067-1078.
  • Dullius, A., Goettert, M.I., de Souza, C.F.V. (2018). Whey protein hydrolysates as a source of bioactive peptides for functional foods–Biotechnological facilitation of industrial scale-up. Journal of Functional Foods, 42: 58-74.
  • Dullius, A., Fassina, P., Giroldi, M., Goettert, M.I., de Souza, C.F.V. (2020). A biotechnological approach for the production of branched chain amino acid containing bioactive peptides to improve human health: A review. Food Research International, 131: 1-16.
  • Elias, R.J., Kellerby, S.S., Decker, E.A. (2008). Antioxidant activity of proteins and peptides. Critical Reviews in Food Science and Nutrition. 48(5): 430-441.
  • Erdmann, K., Cheung, B.W.Y., Schröder, H., (2008). The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. The Journal of Nutritional Biochemistry, 19(10): 643-654.
  • Farvin, K. S., Baron, C. P., Nielsen, N. S., Otte, J. ve Jacobsen, C., 2010, Antioxidant activity of yoghurt peptides: part 2–characterisation of peptide fractions. Food Chemistry, 123(4): 1090-1097.
  • Fatchiyah, F., Natasia, S.C. (2018). Inhibition potency of HMGR enzyme against hypercholesterolemia by bioactive peptides of CSN1S2 protein from caprine milk. In AIP Conference Proceedings (Vol. 2021, No. 1, p. 070014). AIP Publishing LLC.
  • Gallwitz, B. (2019). Clinical use of DPP-4 inhibitors. Frontiers in Endocrinology, 10: 1-10.
  • Głąb, T.K., Boratyński, J. (2017). Potential of casein as a carrier for biologically active agents. Topics in Current Chemistry, 375(71): 1-20.
  • Gómez-Ruiz, J.Á., Taborda, G., Amigo, L., Recio, I., Ramos, M. (2006). Identification of ACE-inhibitory peptides in different Spanish cheeses by tandem mass spectrometry. European Food Research and Technology, 223(5): 595-601.
  • Gorouhi, F., Maibach, H. (2009). Role of topical peptides in preventing or treating aged skin. International Journal of Cosmetic Science, 31(5): 327-345.
  • Guedes, J.P., Pereira, C.S., Rodrigues, L.R., Côrte-Real, M. (2018). Bovine milk lactoferrin selectively kills highly metastatic prostate cancer PC-3 and osteosarcoma MG-63 cells in vitro. Frontiers in Oncology, 8: 1-12.
  • Hartmann, R., Meisel, H., (2007). Food-derived peptides with biological activity: from research to food applications. Current Opinion in Biotechnology, 18(2): 163-169.
  • Hernández-Ledesma, B. ve Hsieh, C.C. (2017). Chemopreventive role of food-derived proteins and peptides: A review. Critical Reviews in Food Science and Nutrition, 57(11): 2358-2376.
  • Hernández Galán, L., Cardador Martínez, A., Picque, D., Spinnler, H. E., López Del Castillo Lozano, M., Martín Del Campo Barba, S. (2016). Angiotensin converting enzyme inhibitors and antioxidant peptides release during ripening of Mexican Cotija hard cheese. Journal of Food Research, 5(3): 85-91.
  • Hong, F., Ming, L., Yi, S., Zhanxia, L., Yongquan, W., Chi, L. (2008). The antihypertensive effect of peptides: a novel alternative to drugs?. Peptides, 29(6): 1062-1071.
  • Iwaniak, A., Darewicz, M., Minkiewicz, P. (2018). Peptides derived from foods as supportive diet components in the prevention of metabolic syndrome. Comprehensive Reviews in Food Science and Food Safety, 17(1): 63-81.
  • Juillerat-Jeanneret, L., Robert, M.C., Juillerat, M.A. (2011). Peptides from Lactobacillus hydrolysates of bovine milk caseins inhibit prolyl-peptidases of human colon cells. Journal of Agricultural and Food Chemistry, 59(1): 370-377.
  • Karami, Z., Akbari-Adergani, B. (2019). Bioactive food derived peptides: a review on correlation between structure of bioactive peptides and their functional properties. Journal of Food Science and Technology, 56(2): 535-547.
  • Kehinde, B.A., Sharma, P. (2020). Recently isolated antidiabetic hydrolysates and peptides from multiple food sources: A review. Critical Reviews in Food Science and Nutrition, 60(2), 322-340.
  • Kınık, Ö., Gürsoy, O. (2002). Süt proteinleri kaynaklı biyoaktif peptitler. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 8(2): 195-203.
  • Kitts, D.D., Weiler, K (2003). Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Current Pharmaceutical Design, 9(16): 1309-1323.
  • Korhonen, H., Pihlanto, A. (2003). Food-derived bioactive peptides-opportunities for designing future foods. Current Pharmaceutical Design, 9(16): 1297-1308.
  • Korhonen, H., Pihlanto, A. (2006). Bioactive peptides: production and functionality, International Dairy Journal, 16(9): 945-960.
  • Kruzel, M.L., 2011, Therapeutic use of peptides. Google Patents.
  • Lammi, C., Arnoldi, A., Aiello, G. (2019). Soybean peptides exert multifunctional bioactivity modulating 3-hydroxy-3-methylglutaryl-coa reductase and dipeptidyl peptidase-iv targets in vitro. Journal of Agricultural and Food Chemistry, 67(17): 4824-4830.
  • Li, H.Y., Li, M., Luo, C.C., Wang, J.-Q., Zheng, N. (2017). Lactoferrin exerts antitumor effects by inhibiting angiogenesis in a HT29 human colon tumor model. Journal of Agricultural and Food Chemistry, 65(48): 10464-10472.
  • Longo, M., Zatterale, F., Naderi, J., Parrillo, L., Formisano, P., Raciti, G. A., Beguinot, F., Miele, C. (2019). Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. International Journal of Molecular Sciences, 20: 1-23.
  • Lozano-Ojalvo, D., López-Fandiño, R. (2018). Immunomodulating peptides for food allergy prevention and treatment. Critical Reviews in Food Science and Nutrition, 58(10): 1629-1649.
  • Mahdi, C., Untari, H., Padaga, P. (2017). Fermented goat milk supplementation in rats hypercholesterolmic on malonyldialdehyde and description of liver histopathology. Indonesian Journal of Cancer Chemoprevention, 8(1): 1-8.
  • Masood, R., Khosravi-Darani, K. (2015). Biopeptides in milk: opiate and antithrombotic effects. Mini Reviews in Medicinal Chemistry, 15(10): 872-877.
  • Meisel, H. (1998). Overview on milk protein-derived peptides. International Dairy Journal, 8(5): 363-373.
  • Mills, K. T., Stefanescu, A. ve He, J., 2020, The global epidemiology of hypertension, Nature Reviews Nephrology, 16: 223-237.
  • Mohammed, M.M., Ramadan, G., Zoheiry, M.K., El‐Beih, N.M. (2019). Antihepatocarcinogenic activity of whey protein concentrate and lactoferrin in diethylnitrosamine‐treated male albino mice. Environmental Toxicology, 34(9): 1025-1033.
  • Mohanty, D., Jena, R., Choudhury, P.K., Pattnaik, R., Mohapatra, S., Saini, M. R. (2016). Milk derived antimicrobial bioactive peptides: a review. International Journal of Food Properties, 19(4): 837-846.
  • Mudgil, P., Kamal, H., Yuen, G.C., Maqsood, S. (2018) Characterization and identification of novel antidiabetic and anti-obesity peptides from camel milk protein hydrolysates. Food Chemistry, 259: 46-54.
  • Munir, M., Nadeem, M., Qureshi, T.M., Gamlath, C.J., Martin, G.J., Hemar, Y., Ashokkumar, M. (2020). Effect of sonication, microwaves and high-pressure processing on ACE-inhibitory activity and antioxidant potential of Cheddar cheese during ripening. Ultrasonics Sonochemistry, 67: 1-8.
  • Nagasawa, A., Fukui, K., Kojima, M., Kishida, K., Maeda, N., Nagaretani, H., Hibuse, T., Nishizawa, H., Kihara, S., Waki, M., Takamatsu, K., Funahashi, T., Matsuzawa, Y. (2003). Divergent effects of soy protein diet on the expression of adipocytokines. Biochemical and Biophysical Research Communications, 311(4): 909-914.
  • Nielsen, M.S., Martinussen, T., Flambard, B., Sørensen, K.I., Otte, J. (2009). Peptide profiles and angiotensin-I-converting enzyme inhibitory activity of fermented milk products: Effect of bacterial strain, fermentation pH, and storage time. International Dairy Journal, 19 (3): 155-165.
  • Nongonierma, A.B., FitzGerald, R.J. (2016). Structure activity relationship modelling of milk protein-derived peptides with dipeptidyl peptidase IV (DPP-IV) inhibitory activity. Peptides, 79: 1-7.
  • Nongonierma, A.B., Lalmahomed, M., Paolella, S., FitzGerald, R.J. (2017a). Milk protein isolate (MPI) as a source of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides. Food Chemistry, 231: 202-211.
  • Nongonierma, A.B., Mazzocchi, C., Paolella, S., FitzGerald, R.J. (2017b). Release of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from milk protein isolate (MPI) during enzymatic hydrolysis. Food Research International, 94: 79-89.
  • Pereira, C. S., Guedes, J. P., Gonçalves, M., Loureiro, L., Castro, L., Gerós, H., Rodrigues, L. R., Côrte-Real, M. (2016). Lactoferrin selectively triggers apoptosis in highly metastatic breast cancer cells through inhibition of plasmalemmal V-H+-ATPase. Oncotarget, 7(38): 62144-62158.
  • Pisanu, S., Pagnozzi, D., Pes, M., Pirisi, A., Roggio, T., Uzzau, S., Addis, M. F. (2015). Differences in the peptide profile of raw and pasteurised ovine milk cheese and implications for its bioactive potential. International Dairy Journal, 42: 26-33.
  • Rana, S., Bajaj, R., Mann, B. (2018). Characterization of antimicrobial and antioxidative peptides synthesized by L. rhamnosus C6 fermentation of milk. International Journal of Peptide Research and Therapeutics, 24(2): 309-321.
  • Rivero-Pino, F., Espejo-Carpio, F.J., Guadix, E.M. (2020). Antidiabetic food-derived peptides for functional feeding: production, functionality and in vivo evidences. Foods, 9(983): 1-33.
  • Rizzello, C., Losito, I., Gobbetti, M., Carbonara, T., De Bari, M., Zambonin, P. (2005). Antibacterial activities of peptides from the water-soluble extracts of Italian cheese varieties. Journal of Dairy Science, 88(7): 2348-2360.
  • Rutherfurd, K.J., Gill, H.S. (2000). Peptides affecting coagulation. British Journal of Nutrition, 84(S1): 99-102.
  • Sanchez, I.R., Del Bosque, A.Q., Ledesma, B.H., Ruiz, J.G., Castro, M.M., Garrido, M.L.A., Exposito, I.L., Gonzalez, M.M.R., De Artiñano, A.A., Gómez, M.C. (2013). Bioactive peptides identified in enzymatic hydrolyzates of milk caseins and method of obtaining same. Google Patents.
  • Santiago‐López, L., Hernández‐Mendoza, A., Vallejo‐Cordoba, B., Mata‐Haro, V., González‐Córdova, A.F. (2016). Food‐derived immunomodulatory peptides. Journal of the Science of Food and Agriculture, 96(11): 3631-3641.
  • Sbroggio, M.F., Montilha, M.S., Figueiredo, V.R.G.D., Georgetti, S.R., Kurozawa, L. E. (2016). Influence of the degree of hydrolysis and type of enzyme on antioxidant activity of okara protein hydrolysates. Food Science and Technology, 36(2): 375-381.
  • Schagen, S.K. (2017). Topical peptide treatments with effective anti-aging results. Cosmetics, 4(16): 1-14.
  • Sieber, R., Bütikofer, U., Egger, C., Portmann, R., Walther, B., Wechsler, D. (2010). ACE-inhibitory activity and ACE-inhibiting peptides in different cheese varieties. Dairy Science & Technology, 90(1): 47-73.
  • Skrzypczak, K., Gustaw, W., Szwajgier, D., Fornal, E., Waśko, A. (2017). κ-Casein as a source of short-chain bioactive peptides generated by Lactobacillus helveticus. Journal of Food Science and Technology, 54(11): 3679-3688.
  • Suetsuna, K., Ukeda, H., Ochi, H. (2000). Isolation and characterization of free radical scavenging activities peptides derived from casein, The Journal of Nutritional Biochemistry, 11(3): 128-131.
  • Sultan, S., Huma, N., Butt, M.S., Aleem, M., Abbas, M. (2018). Therapeutic potential of dairy bioactive peptides: A contemporary perspective, Critical Reviews in Food Science and Nutrition, 58(1): 105-115.
  • Vegarud, G.E., Langsrud, T., Svenning, C. (2000). Mineral-binding milk proteins and peptides; occurrence, biochemical and technological characteristics. British Journal of Nutrition, 84(S1): 91-98.
  • Velasquez, M.T., Bhathena, S.J. (2007). Role of dietary soy protein in obesity. International Journal of Medical Sciences, 4(2): 72-82.
  • Verdecchia, P., Angeli, F., Mazzotta, G., Gentile, G., Reboldi, G. (2008). The renin angiotensin system in the development of cardiovascular disease: role of aliskiren in risk reduction.Vascular Health and Risk Management, 4(5): 971-981.
  • Vinderola, G., Perdigón, G., Matar, C. (2008). Biologically active peptides released in fermented milk: role and functions, In: Handbook of Fermented Functional Foods, CRC Press, p. 209-241.
  • Weisel, J. W., Litvinov, R. I. (2017). Fibrin formation, structure and properties, Subcellular Biochemistry, 82: 405-456.
  • Xie, Z., Huang, J., Xu, X., Jin, Z. (2008). Antioxidant activity of peptides isolated from alfalfa leaf protein hydrolysate. Food Chemistry, 111(2): 370-376.
  • Yildirim, Z., Tokatli, M., Öncül, N., Yıldırım, M. (2011). Laktoferrinin biyolojik aktivitesi. Akademik Gıda, 9(6): 52-63.
  • Zhao, N., Tao, K., Wang, G., Xia, Z. (2019). Global obesity research trends during 1999 to 2017: A bibliometric analysis, Medicine, 98(4): 1-7.
  • Zhu, J., Du, M., Wu, M., Yue, P., Yang, X., Wei, X., Wang, Y. (2020). Preparation, physicochemical characterization and identification of two novel mixed ACE-inhibiting peptides from two distinct tea alkali-soluble protein. European Food Research and Technology, 246(7): 1483-1494.

FOOD PROTEINS-DERIVED BIOACTIVE PEPTIDES: FUNCTIONS AND CLASSIFICATION ACCORDING TO THEIR ROLES ON HEALTH

Year 2021, , 42 - 52, 11.12.2020
https://doi.org/10.15237/gida.GD20095

Abstract

Food proteins play a role in an important part of nutritional, biological, and functional activities. Depending on their amino acid sequences, food protein-derived peptides exhibit several functional activities such as effects on the cardiovascular, endocrine, immune, and nervous systems. These peptides have different health effects, including blood pressure-lowering (ACE inhibitory) effects, antimicrobial properties, cholesterol-lowering ability, mineral binding ability, antithrombotic and antioxidant activities, immunomodulatory effects, and opioid activities. These functional peptides are inactive or hidden within the sequence of the parent protein molecule and are activated during in vivo gastrointestinal digestion, fermentation of food with proteolytic starter cultures, or hydrolysis via proteolytic enzymes. In this review, the functional properties of food-derived bioactive peptides are dwelled on and their usage as therapeutic ingredients and functional food ingredients are evaluated.

References

  • Aftab, R.A., Khan, A.H., Adnan, A.S., Jannah, N. (2016). A systematic review on randomized control trials on rennin angiotensin aldosterone system inhibitors role in managing hypertension among hemodialysis patients. Renal Failure, 38(3): 474-480.
  • Aguilar-Toalá, J., Hernández-Mendoza, A., González-Córdova, A., Vallejo-Cordoba, B., Liceaga, A. (2019). Potential role of natural bioactive peptides for development of cosmeceutical skin products. Peptides, 122: 1-13.
  • Aiello, G., Ferruzza, S., Ranaldi, G., Sambuy, Y., Arnoldi, A., Vistoli, G., Lammi, C. (2018). Behavior of three hypocholesterolemic peptides from soy protein in an intestinal model based on differentiated Caco-2 cell. Journal of Functional Foods, 45: 363-370.
  • Akıllıoğlu, H.G., Yalçın, E., (2010). Tahıl protein hidrolizatlarının antioksidan aktiviteleri. Gıda, 35(3): 227-233.
  • Arcan, I., Yemenicioğlu, A. (2007). Antioxidant activity of protein extracts from heat-treated or thermally processed chickpeas and white beans. Food Chemistry, 103(2): 301-312.
  • Ashaolu, T.J. (2020). Health applications of soy protein hydrolysates. International Journal of Peptide Research and Therapeutics, 1-11.
  • Birkemo, G., O’Sullivan, O., Ross, R., Hill, C. (2009). Antimicrobial activity of two peptides casecidin 15 and 17, found naturally in bovine colostrum. Journal of Applied Microbiology, 106(1): 233-240.
  • Camargo, A.C., Fernandes, B.L., Cruz, L., Ferro, E.S. (2012). Bioactive peptides produced by limited proteolysis. Morgan & Claypool Life Sciences, 92 s.
  • Cheng, S., Tu, M., Liu, H., Zhao, G., Du, M. (2019). Food-derived antithrombotic peptides: preparation, identification, and interactions with thrombin. Critical Reviews in Food Science and Nutrition, 59(sup1): S81-S95.
  • Damar, İ., Karadeniz, F. (2012). Biyoaktif peptitlerin ve proteinlerin antioksidan aktiviteleri ve fonksiyonel gıdalarda kullanılabilirliği. Dünya Gıda, 6: 70-75.
  • De Noni, I., FitzGerald, R.J., Korhonen, H.J., Le Roux, Y., Livesey, C.T., Thorsdottir, I., Tomé, D., Witkamp, R. (2009). Review of the potential health impact of β-casomorphins and related peptides, EFSA Scientific Report, 231: 1-107.
  • Dean, R.L. (ed.), Bilsky, E.J., Negus, S.S. (2009). Opiate receptors and antagonists. Springer, New York, USA, 757 p.
  • Dimitrova, D., Hristova, A., Lambev, M., Mihaylova, S., Paipanova, T., Valcheva-Kuzmanova, S. (2019). Review on the pharmacological activities of lactoferricin and lactoferricin analogues. Scripta Scientifica Medica, 51(2): 15-22.
  • Drago-Serrano, M.E., Campos-Rodriguez, R., Carrero, J.C., de la Garza, M. (2018). Lactoferrin and peptide-derivatives: antimicrobial agents with potential use in nonspecific immunity modulation. Current Pharmaceutical Design, 24 (10), 1067-1078.
  • Dullius, A., Goettert, M.I., de Souza, C.F.V. (2018). Whey protein hydrolysates as a source of bioactive peptides for functional foods–Biotechnological facilitation of industrial scale-up. Journal of Functional Foods, 42: 58-74.
  • Dullius, A., Fassina, P., Giroldi, M., Goettert, M.I., de Souza, C.F.V. (2020). A biotechnological approach for the production of branched chain amino acid containing bioactive peptides to improve human health: A review. Food Research International, 131: 1-16.
  • Elias, R.J., Kellerby, S.S., Decker, E.A. (2008). Antioxidant activity of proteins and peptides. Critical Reviews in Food Science and Nutrition. 48(5): 430-441.
  • Erdmann, K., Cheung, B.W.Y., Schröder, H., (2008). The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. The Journal of Nutritional Biochemistry, 19(10): 643-654.
  • Farvin, K. S., Baron, C. P., Nielsen, N. S., Otte, J. ve Jacobsen, C., 2010, Antioxidant activity of yoghurt peptides: part 2–characterisation of peptide fractions. Food Chemistry, 123(4): 1090-1097.
  • Fatchiyah, F., Natasia, S.C. (2018). Inhibition potency of HMGR enzyme against hypercholesterolemia by bioactive peptides of CSN1S2 protein from caprine milk. In AIP Conference Proceedings (Vol. 2021, No. 1, p. 070014). AIP Publishing LLC.
  • Gallwitz, B. (2019). Clinical use of DPP-4 inhibitors. Frontiers in Endocrinology, 10: 1-10.
  • Głąb, T.K., Boratyński, J. (2017). Potential of casein as a carrier for biologically active agents. Topics in Current Chemistry, 375(71): 1-20.
  • Gómez-Ruiz, J.Á., Taborda, G., Amigo, L., Recio, I., Ramos, M. (2006). Identification of ACE-inhibitory peptides in different Spanish cheeses by tandem mass spectrometry. European Food Research and Technology, 223(5): 595-601.
  • Gorouhi, F., Maibach, H. (2009). Role of topical peptides in preventing or treating aged skin. International Journal of Cosmetic Science, 31(5): 327-345.
  • Guedes, J.P., Pereira, C.S., Rodrigues, L.R., Côrte-Real, M. (2018). Bovine milk lactoferrin selectively kills highly metastatic prostate cancer PC-3 and osteosarcoma MG-63 cells in vitro. Frontiers in Oncology, 8: 1-12.
  • Hartmann, R., Meisel, H., (2007). Food-derived peptides with biological activity: from research to food applications. Current Opinion in Biotechnology, 18(2): 163-169.
  • Hernández-Ledesma, B. ve Hsieh, C.C. (2017). Chemopreventive role of food-derived proteins and peptides: A review. Critical Reviews in Food Science and Nutrition, 57(11): 2358-2376.
  • Hernández Galán, L., Cardador Martínez, A., Picque, D., Spinnler, H. E., López Del Castillo Lozano, M., Martín Del Campo Barba, S. (2016). Angiotensin converting enzyme inhibitors and antioxidant peptides release during ripening of Mexican Cotija hard cheese. Journal of Food Research, 5(3): 85-91.
  • Hong, F., Ming, L., Yi, S., Zhanxia, L., Yongquan, W., Chi, L. (2008). The antihypertensive effect of peptides: a novel alternative to drugs?. Peptides, 29(6): 1062-1071.
  • Iwaniak, A., Darewicz, M., Minkiewicz, P. (2018). Peptides derived from foods as supportive diet components in the prevention of metabolic syndrome. Comprehensive Reviews in Food Science and Food Safety, 17(1): 63-81.
  • Juillerat-Jeanneret, L., Robert, M.C., Juillerat, M.A. (2011). Peptides from Lactobacillus hydrolysates of bovine milk caseins inhibit prolyl-peptidases of human colon cells. Journal of Agricultural and Food Chemistry, 59(1): 370-377.
  • Karami, Z., Akbari-Adergani, B. (2019). Bioactive food derived peptides: a review on correlation between structure of bioactive peptides and their functional properties. Journal of Food Science and Technology, 56(2): 535-547.
  • Kehinde, B.A., Sharma, P. (2020). Recently isolated antidiabetic hydrolysates and peptides from multiple food sources: A review. Critical Reviews in Food Science and Nutrition, 60(2), 322-340.
  • Kınık, Ö., Gürsoy, O. (2002). Süt proteinleri kaynaklı biyoaktif peptitler. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 8(2): 195-203.
  • Kitts, D.D., Weiler, K (2003). Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Current Pharmaceutical Design, 9(16): 1309-1323.
  • Korhonen, H., Pihlanto, A. (2003). Food-derived bioactive peptides-opportunities for designing future foods. Current Pharmaceutical Design, 9(16): 1297-1308.
  • Korhonen, H., Pihlanto, A. (2006). Bioactive peptides: production and functionality, International Dairy Journal, 16(9): 945-960.
  • Kruzel, M.L., 2011, Therapeutic use of peptides. Google Patents.
  • Lammi, C., Arnoldi, A., Aiello, G. (2019). Soybean peptides exert multifunctional bioactivity modulating 3-hydroxy-3-methylglutaryl-coa reductase and dipeptidyl peptidase-iv targets in vitro. Journal of Agricultural and Food Chemistry, 67(17): 4824-4830.
  • Li, H.Y., Li, M., Luo, C.C., Wang, J.-Q., Zheng, N. (2017). Lactoferrin exerts antitumor effects by inhibiting angiogenesis in a HT29 human colon tumor model. Journal of Agricultural and Food Chemistry, 65(48): 10464-10472.
  • Longo, M., Zatterale, F., Naderi, J., Parrillo, L., Formisano, P., Raciti, G. A., Beguinot, F., Miele, C. (2019). Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. International Journal of Molecular Sciences, 20: 1-23.
  • Lozano-Ojalvo, D., López-Fandiño, R. (2018). Immunomodulating peptides for food allergy prevention and treatment. Critical Reviews in Food Science and Nutrition, 58(10): 1629-1649.
  • Mahdi, C., Untari, H., Padaga, P. (2017). Fermented goat milk supplementation in rats hypercholesterolmic on malonyldialdehyde and description of liver histopathology. Indonesian Journal of Cancer Chemoprevention, 8(1): 1-8.
  • Masood, R., Khosravi-Darani, K. (2015). Biopeptides in milk: opiate and antithrombotic effects. Mini Reviews in Medicinal Chemistry, 15(10): 872-877.
  • Meisel, H. (1998). Overview on milk protein-derived peptides. International Dairy Journal, 8(5): 363-373.
  • Mills, K. T., Stefanescu, A. ve He, J., 2020, The global epidemiology of hypertension, Nature Reviews Nephrology, 16: 223-237.
  • Mohammed, M.M., Ramadan, G., Zoheiry, M.K., El‐Beih, N.M. (2019). Antihepatocarcinogenic activity of whey protein concentrate and lactoferrin in diethylnitrosamine‐treated male albino mice. Environmental Toxicology, 34(9): 1025-1033.
  • Mohanty, D., Jena, R., Choudhury, P.K., Pattnaik, R., Mohapatra, S., Saini, M. R. (2016). Milk derived antimicrobial bioactive peptides: a review. International Journal of Food Properties, 19(4): 837-846.
  • Mudgil, P., Kamal, H., Yuen, G.C., Maqsood, S. (2018) Characterization and identification of novel antidiabetic and anti-obesity peptides from camel milk protein hydrolysates. Food Chemistry, 259: 46-54.
  • Munir, M., Nadeem, M., Qureshi, T.M., Gamlath, C.J., Martin, G.J., Hemar, Y., Ashokkumar, M. (2020). Effect of sonication, microwaves and high-pressure processing on ACE-inhibitory activity and antioxidant potential of Cheddar cheese during ripening. Ultrasonics Sonochemistry, 67: 1-8.
  • Nagasawa, A., Fukui, K., Kojima, M., Kishida, K., Maeda, N., Nagaretani, H., Hibuse, T., Nishizawa, H., Kihara, S., Waki, M., Takamatsu, K., Funahashi, T., Matsuzawa, Y. (2003). Divergent effects of soy protein diet on the expression of adipocytokines. Biochemical and Biophysical Research Communications, 311(4): 909-914.
  • Nielsen, M.S., Martinussen, T., Flambard, B., Sørensen, K.I., Otte, J. (2009). Peptide profiles and angiotensin-I-converting enzyme inhibitory activity of fermented milk products: Effect of bacterial strain, fermentation pH, and storage time. International Dairy Journal, 19 (3): 155-165.
  • Nongonierma, A.B., FitzGerald, R.J. (2016). Structure activity relationship modelling of milk protein-derived peptides with dipeptidyl peptidase IV (DPP-IV) inhibitory activity. Peptides, 79: 1-7.
  • Nongonierma, A.B., Lalmahomed, M., Paolella, S., FitzGerald, R.J. (2017a). Milk protein isolate (MPI) as a source of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides. Food Chemistry, 231: 202-211.
  • Nongonierma, A.B., Mazzocchi, C., Paolella, S., FitzGerald, R.J. (2017b). Release of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from milk protein isolate (MPI) during enzymatic hydrolysis. Food Research International, 94: 79-89.
  • Pereira, C. S., Guedes, J. P., Gonçalves, M., Loureiro, L., Castro, L., Gerós, H., Rodrigues, L. R., Côrte-Real, M. (2016). Lactoferrin selectively triggers apoptosis in highly metastatic breast cancer cells through inhibition of plasmalemmal V-H+-ATPase. Oncotarget, 7(38): 62144-62158.
  • Pisanu, S., Pagnozzi, D., Pes, M., Pirisi, A., Roggio, T., Uzzau, S., Addis, M. F. (2015). Differences in the peptide profile of raw and pasteurised ovine milk cheese and implications for its bioactive potential. International Dairy Journal, 42: 26-33.
  • Rana, S., Bajaj, R., Mann, B. (2018). Characterization of antimicrobial and antioxidative peptides synthesized by L. rhamnosus C6 fermentation of milk. International Journal of Peptide Research and Therapeutics, 24(2): 309-321.
  • Rivero-Pino, F., Espejo-Carpio, F.J., Guadix, E.M. (2020). Antidiabetic food-derived peptides for functional feeding: production, functionality and in vivo evidences. Foods, 9(983): 1-33.
  • Rizzello, C., Losito, I., Gobbetti, M., Carbonara, T., De Bari, M., Zambonin, P. (2005). Antibacterial activities of peptides from the water-soluble extracts of Italian cheese varieties. Journal of Dairy Science, 88(7): 2348-2360.
  • Rutherfurd, K.J., Gill, H.S. (2000). Peptides affecting coagulation. British Journal of Nutrition, 84(S1): 99-102.
  • Sanchez, I.R., Del Bosque, A.Q., Ledesma, B.H., Ruiz, J.G., Castro, M.M., Garrido, M.L.A., Exposito, I.L., Gonzalez, M.M.R., De Artiñano, A.A., Gómez, M.C. (2013). Bioactive peptides identified in enzymatic hydrolyzates of milk caseins and method of obtaining same. Google Patents.
  • Santiago‐López, L., Hernández‐Mendoza, A., Vallejo‐Cordoba, B., Mata‐Haro, V., González‐Córdova, A.F. (2016). Food‐derived immunomodulatory peptides. Journal of the Science of Food and Agriculture, 96(11): 3631-3641.
  • Sbroggio, M.F., Montilha, M.S., Figueiredo, V.R.G.D., Georgetti, S.R., Kurozawa, L. E. (2016). Influence of the degree of hydrolysis and type of enzyme on antioxidant activity of okara protein hydrolysates. Food Science and Technology, 36(2): 375-381.
  • Schagen, S.K. (2017). Topical peptide treatments with effective anti-aging results. Cosmetics, 4(16): 1-14.
  • Sieber, R., Bütikofer, U., Egger, C., Portmann, R., Walther, B., Wechsler, D. (2010). ACE-inhibitory activity and ACE-inhibiting peptides in different cheese varieties. Dairy Science & Technology, 90(1): 47-73.
  • Skrzypczak, K., Gustaw, W., Szwajgier, D., Fornal, E., Waśko, A. (2017). κ-Casein as a source of short-chain bioactive peptides generated by Lactobacillus helveticus. Journal of Food Science and Technology, 54(11): 3679-3688.
  • Suetsuna, K., Ukeda, H., Ochi, H. (2000). Isolation and characterization of free radical scavenging activities peptides derived from casein, The Journal of Nutritional Biochemistry, 11(3): 128-131.
  • Sultan, S., Huma, N., Butt, M.S., Aleem, M., Abbas, M. (2018). Therapeutic potential of dairy bioactive peptides: A contemporary perspective, Critical Reviews in Food Science and Nutrition, 58(1): 105-115.
  • Vegarud, G.E., Langsrud, T., Svenning, C. (2000). Mineral-binding milk proteins and peptides; occurrence, biochemical and technological characteristics. British Journal of Nutrition, 84(S1): 91-98.
  • Velasquez, M.T., Bhathena, S.J. (2007). Role of dietary soy protein in obesity. International Journal of Medical Sciences, 4(2): 72-82.
  • Verdecchia, P., Angeli, F., Mazzotta, G., Gentile, G., Reboldi, G. (2008). The renin angiotensin system in the development of cardiovascular disease: role of aliskiren in risk reduction.Vascular Health and Risk Management, 4(5): 971-981.
  • Vinderola, G., Perdigón, G., Matar, C. (2008). Biologically active peptides released in fermented milk: role and functions, In: Handbook of Fermented Functional Foods, CRC Press, p. 209-241.
  • Weisel, J. W., Litvinov, R. I. (2017). Fibrin formation, structure and properties, Subcellular Biochemistry, 82: 405-456.
  • Xie, Z., Huang, J., Xu, X., Jin, Z. (2008). Antioxidant activity of peptides isolated from alfalfa leaf protein hydrolysate. Food Chemistry, 111(2): 370-376.
  • Yildirim, Z., Tokatli, M., Öncül, N., Yıldırım, M. (2011). Laktoferrinin biyolojik aktivitesi. Akademik Gıda, 9(6): 52-63.
  • Zhao, N., Tao, K., Wang, G., Xia, Z. (2019). Global obesity research trends during 1999 to 2017: A bibliometric analysis, Medicine, 98(4): 1-7.
  • Zhu, J., Du, M., Wu, M., Yue, P., Yang, X., Wei, X., Wang, Y. (2020). Preparation, physicochemical characterization and identification of two novel mixed ACE-inhibiting peptides from two distinct tea alkali-soluble protein. European Food Research and Technology, 246(7): 1483-1494.
There are 78 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Articles
Authors

Hale İnci Öztürk 0000-0001-8334-0403

Nihat Akın This is me 0000-0002-0966-1126

Publication Date December 11, 2020
Published in Issue Year 2021

Cite

APA Öztürk, H. İ., & Akın, N. (2020). GIDA PROTEİNLERİNDEN ELDE EDİLEN BİYOAKTİF PEPTİDLER: FONKSİYONLARI VE SAĞLIK ÜZERİNDE OYNADIĞI ROLLERE GÖRE SINIFLANDIRILMASI. Gıda, 46(1), 42-52. https://doi.org/10.15237/gida.GD20095
AMA Öztürk Hİ, Akın N. GIDA PROTEİNLERİNDEN ELDE EDİLEN BİYOAKTİF PEPTİDLER: FONKSİYONLARI VE SAĞLIK ÜZERİNDE OYNADIĞI ROLLERE GÖRE SINIFLANDIRILMASI. GIDA. December 2020;46(1):42-52. doi:10.15237/gida.GD20095
Chicago Öztürk, Hale İnci, and Nihat Akın. “GIDA PROTEİNLERİNDEN ELDE EDİLEN BİYOAKTİF PEPTİDLER: FONKSİYONLARI VE SAĞLIK ÜZERİNDE OYNADIĞI ROLLERE GÖRE SINIFLANDIRILMASI”. Gıda 46, no. 1 (December 2020): 42-52. https://doi.org/10.15237/gida.GD20095.
EndNote Öztürk Hİ, Akın N (December 1, 2020) GIDA PROTEİNLERİNDEN ELDE EDİLEN BİYOAKTİF PEPTİDLER: FONKSİYONLARI VE SAĞLIK ÜZERİNDE OYNADIĞI ROLLERE GÖRE SINIFLANDIRILMASI. Gıda 46 1 42–52.
IEEE H. İ. Öztürk and N. Akın, “GIDA PROTEİNLERİNDEN ELDE EDİLEN BİYOAKTİF PEPTİDLER: FONKSİYONLARI VE SAĞLIK ÜZERİNDE OYNADIĞI ROLLERE GÖRE SINIFLANDIRILMASI”, GIDA, vol. 46, no. 1, pp. 42–52, 2020, doi: 10.15237/gida.GD20095.
ISNAD Öztürk, Hale İnci - Akın, Nihat. “GIDA PROTEİNLERİNDEN ELDE EDİLEN BİYOAKTİF PEPTİDLER: FONKSİYONLARI VE SAĞLIK ÜZERİNDE OYNADIĞI ROLLERE GÖRE SINIFLANDIRILMASI”. Gıda 46/1 (December 2020), 42-52. https://doi.org/10.15237/gida.GD20095.
JAMA Öztürk Hİ, Akın N. GIDA PROTEİNLERİNDEN ELDE EDİLEN BİYOAKTİF PEPTİDLER: FONKSİYONLARI VE SAĞLIK ÜZERİNDE OYNADIĞI ROLLERE GÖRE SINIFLANDIRILMASI. GIDA. 2020;46:42–52.
MLA Öztürk, Hale İnci and Nihat Akın. “GIDA PROTEİNLERİNDEN ELDE EDİLEN BİYOAKTİF PEPTİDLER: FONKSİYONLARI VE SAĞLIK ÜZERİNDE OYNADIĞI ROLLERE GÖRE SINIFLANDIRILMASI”. Gıda, vol. 46, no. 1, 2020, pp. 42-52, doi:10.15237/gida.GD20095.
Vancouver Öztürk Hİ, Akın N. GIDA PROTEİNLERİNDEN ELDE EDİLEN BİYOAKTİF PEPTİDLER: FONKSİYONLARI VE SAĞLIK ÜZERİNDE OYNADIĞI ROLLERE GÖRE SINIFLANDIRILMASI. GIDA. 2020;46(1):42-5.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/