3D GIDA BASKISI: GÜNCEL DURUM VE GELECEK EĞİLİMLERİ
Year 2021,
, 152 - 167, 11.12.2020
Prof. Dr. Kezban Candoğan
,
Elvan Gökçen Bulut
Abstract
3D gıda baskısı, ilgi çekici ve özgün özelliklere sahip özel amaca yönelik gıda üretiminde şekil, boyut, doku ve lezzet açısından istenilen özellikleri sağlayabilen yeni gıda tasarımını mümkün kılan bir teknoloji olarak ortaya çıkmıştır. Gıda pazarında, farklı ihtiyaçlara hizmet eden, bir kısmı evlerde kullanıma uygun; bir kısmı ise endüstriyel üretimde yüksek verimlilik ve otomasyonu mümkün kılan gelişmiş, çok amaçlı 3D gıda yazıcıları bulunmaktadır. 3D gıda baskı teknolojisi, israfı ve işçilik maliyetlerini en aza indirerek enerji tasarrufu sağlar ve üretim hattına kolay entegre edilebilir özelliktedir. Yaşlılar, çocuklar ve sağlık sorunları nedeniyle diyetleri kısıtlanan bireyler bu teknolojiden yararlanan özel tüketici gruplarıdır. Günümüz tüketicilerinin ihtiyaçlarını karşılamada geleneksel üretim yaklaşımlarına kıyasla daha üstün kalitede ve düşük maliyetle ürünler sunduğu için 3D gıda baskısının gıda endüstrisinde umut vadeden bir geleceği olduğu bir gerçektir. Bu derlemede, 3D gıda baskısının prensipleri ve uygulamaları ile mevcut 3D gıda yazıcıları hakkında bilgilere yer verilmiştir. Bu teknolojinin olumlu ve olumsuz yanları tartışılmış, güncel araştırmalar ve olası uygulamalar hakkında bilgi verilmiş ayrıca, 3D gıda baskısı ile üretilen gıda ürünlerine yönelik tüketici tutumları özetlenmiştir.
Supporting Institution
Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)
Thanks
Bu çalışma, Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından desteklenmiştir (Proje No: 218 O 017).
References
- Akben, İ. (2017). 3 boyutlu yazıcılar ve tedarik zincirine etkileri. International Journal of Academic Value Studies, 3(10): 20–35, doi: 10.23929/javs.170.
- Arlı, B., Demirbaş, Y.K. (2015). Uygulamalarla 3 Boyutlu Yazıcı Yapımı ve Kullanımı. Abaküs Kitap Yayınevi, Fatih, İstanbul, 272 s. ISBN-13 :978-6059129022.
- Arsava, E.M., Aydoğdu, İ., Güngör, L., Togay Işıkay, C., Yaka, E. (2018). İnme hastalarında nütrisyonel yaklaşım ve tedavi, Türkiye için uzman görüşü. Türk Nöroloji Dergisi, 24: 226-242. doi: 10.4274/tnd.92603.
- ArtıBoyut (2020). 3D Yazıcı-Basım yapılırken dikkat edilmesi gerekenler. https://www.artiboyut.com./index.php/tr/bilgi-bankasi/48-3d-%20yazici-basim yapilirkendikkat-edilmesi-gerekenler (Erişim Tarihi: 09 Eylül 2020).
- Atlantic Council (2011). Strategic Foresight Report-Could 3D Printing Change the World? Technologies, Potential, and Implications of Additive Manufacturing. Washington DC, the USA.
- Azam, R.S.M., Zhang, M., Bhandari, B., Yang, C. (2018). Effect of different gums on features of 3D printed object based on vitamin-d enriched orange concentrate. Food Biophysics, 13(3): 250-262. doi: 10.1007/s11483-018-9531-x.
- Bakan, İ., Erşahan, B., Kefe, İ., Bayat, M. (2011). Kamu ve özel hastanelerde tedavi gören hastaların sağlıkta hizmet kalitesine ilişkin algılamaları. Kahramanmaraş Sütçü İmam Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 1(2): 1-16.
- Berman, B., Zarb, F.G., Hall, W. (2012). 3-D printing: the new industrial revolution. Business Horizons, 55(2): 155–162. doi: 10.1016/j.bushor.2011.11.003.
- BluRhapsody. (2019). Shop. https://blurhapsody.com/shop-pasta-3d/ (Accessed: 28 October 2020).
- Boissonneault, T. (2019). Upprinting Food Transforms Food Waste into Edible 3D Printed Snacks. https://www.3dprintingmedia.network/upprinting-food-food-waste-edible-3d-printed-snacks/ (Accessed: 01 October 2020).
- Bulut, E.G. (2019). Üç boyutlu (3D) gıda yazıcısı kullanılarak fonksiyonel tavuk eti ürünü üretimi. Ankara Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı Yüksek Lisans Tezi, Ankara, Türkiye, 94 s.
- Bulut, E.G., van Bommel, K. ve Candoğan, K. (2019a). 3B yazıcı kullanılarak fonksiyonel tavuk eti ürünü üretimi. 5. Uluslararası Beyaz Et Kongresi, 24-28 Nisan, Manavgat, Türkiye.
- Bulut, E.G., van Bommel, K. and Candoğan, K. (2019b). Development of a fuctional chicken meat-based snack by 3D food printing: effects of starch addition and cooking methods. XVIII European Symposium on the Quality of Eggs and Egg Products and XXIV European Symposium on the Quality of Poultry Meat, 23-26 June, Book of Abstracts, 153, Çeşme, Turkey.
- Caulier, S., Doets, E., Noort, M. (2020). An exploratory consumer study of 3D printed food perception in a real-lifemilitary setting. Food Quality and Preference, 86: 104001. doi:10.1016/j.foodqual.2020.104001.
- Çelik, D. (2015). Üç boyutlu yazıcı tasarımı, prototipi ve tersine mühendislik uygulamaları. Karabük Üniversitesi Fen Bilimleri Enstitüsü Endüstriyel Tasarım Mühendisliği Anabilim Dalı Yüksek Lisans Tezi, Karabük, Türkiye, 220 s.
- Dankar, I., Haddarah, A., Omar, F.E.L., Sepulcre, F., Pujola, M. (2018). 3D printing technology: The new era for food customization and elaboration. Trends in Food Science & Technology, 75: 231-242. doi: 10.1016/j.tifs.2018.03.018.
- Derossi, A., Caporizzi, R., Azzollini, D., Severini, C. (2017). Application of 3D printing for customized food. A case on the development of a fruit-based snack for children. Journal of Food Engineering, 5(2): 65–75. doi: 10.1016/j.jfoodeng.2017.05.015.
- Desktop Machinery (2020). Wiiboox Sweetin. https://www.desktopmachinery.com/product/wiiboox-sweetin/ (Accessed: 10 Eylül 2020).
- Dick, A., Bhandari, B., Prakash, S. (2019). 3D printing of meat. Meat Science, 153: 35-44. doi: 10.1016/j.meatsci.2019.03.005.
- Dick, A., Bhandari, B., Dong, X., Prakash, S. (2020). Feasibility study of hydrocolloid incorporated 3D printed pork as dysphagia food. Food Hydrocolloids, 107: 105940. doi: 10.1016/j.foodhyd.2020.105940.
- FAO (2009). How to Feed the World in 2050. http://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf (Accessed: 17 Eylül 2020).
- Feng, P., Mneg, X., Chen, J.F., Ye, L. (2015). Mechanical properties of structures 3D printed with cementitious powders. Construction and Building Materials, 93: 486-497. doi: 10.1016/j.conbuildmat.2015.05.132.
- FoodBot (2020). Foodbot D2 Multi Ingredient Dual Head Food 3D Printer. https://www.3dprintersonlinestore.com/foodbot-d2-food-3d-printer (Accessed: 10 Eylül 2020).
- Fuldauer, E. 2019. 3D printing will boost sustainable development. https://www.smartcitylab.com/blog/digital-transformation/3d-printing-will-boost-sustainable-development/ (Accessed: 11 Ekim 2020).
- Ghazel, A.F., Zhang, M., Liu, Z. (2019). Spontaneous Color Change of 3D Printed Healthy Food Product over time after printing as a novel application for 4D food printing. Food and Bioprocess Technology, 12: 1627-1645. doi: 10.1007/s11947-019-02327-6.
- Godoi, F.C., Prakash, S., Bhandari, B.R. (2016). 3D printing technologies applied for food design: Status and prospects. Journal of Food Engineering, 179: 44–54. doi: 10.1016/j.jfoodeng.2016.01.025.
- Godoi, F.C., Bhandari, B.R., Prakash, S., Zhang, M. (2019). An Introduction to the Principles of 3D Food Printing. In: Fundamentals of 3D Food Printing and Applications, Godoi, F.C. (ed.), Bhandari, B.R. (ed.), Prakash, S. (ed.), Zhang, M. (ed.), Academic Press, London, the UK, pp. 1-18. ISBN: 012814565X, 9780128145654.
- Hoa, S.V., Cai, X. (2020). Twisted composite structures made by 4D printing method. Composite Structures, 238: 111883. doi: 10.1016/j.compstruct.2020.111883.
- Holland, S., Tuck, C., Foster, T. (2018). Selective recrystallization of cellulose composite powders and microstructure creation through 3D binder jetting. Carbohydrate Polymers, 200: 229-238. doi: 10.1016/j.carbpol.2018.07.064.
- Huang, M., Zhang, M., Bhandari, B. (2019). Fabrication of gel-like emulsions with whey protein isolate using microfluidization: Rheological properties and 3d printing performance. Food and Bioprocess Technology, 12: 1185-1196. doi: 10.1007/s11947-019-02344-5.
- Hull, CW.1984. Apparatus for production of three-dimensional objects by stereolithography. Google Patents. US4575330A.
- Izdebska, J., Zolek-Tryznowska, Z. (2016). 3D food printing – facts and future. Agro Food Industry Hi Tech, 27(2): 33-36.
- Javaid, M., A. Haleem. (2019). 4D printing applications in medical field: A brief review. Clinical Epidemiology and Global Health, 7(3): 317–321. doi: 10.1016/j.cegh.2018.09.007.
- Keerthana, K., Anukiruthika, T., Moses, J.A., Anandharamakrishnan, C. (2020). Development of fiber-enriched 3D printed snacks from alternative foods: A study on button mushroom. Journal of Food Engineering, 287: 110116. doi: 10.1016/j.jfoodeng.2020.110116.
- Kouzani, A.Z., Adams, S.,J. Whyte, D., Oliver, R., Hemsley, B., Palmer, S., Balandin, S. (2017). 3D Printing of food for people with swallowing difficulties. The International Conference on Design and Technology, 05–08 December, Geelong, Australia, 23–29 p.
- Lin, C. (2015). 3D food printing: A Taste of the future. Journal of Food Science Education, 14(3): 86–87. doi: 10.1111/1541-4329.12061.
- Liu, Z., Zhang, M., Bhandari, B., Wang, Y. (2017). 3D printing: Printing precision and application in food sector. Trends in Food Science and Technology, 69(A): 83-94. doi: 10.1016/j.tifs.2017.08.018.
- Liu Z, Bhandari B, Prakash S, Zhang M. (2018). Creation of internal structure of mashed potato construct by 3D printing and its textural properties. Food Res Int, 111: 534-543. doi: 10.1016/j.foodres.2018.05.075.
- Liu, Y., Yu, Y., Liu, C., Regenstein, J.M., Liu, X., Zhou, P. (2019a). Rheological and mechanical behavior of milk protein composite gel for extrusion-based 3D food printing. LWT-Food Science and Technology, 102: 338-346. doi: 10.1016/j.lwt.2018.12.053.
- Liu, Y., Zhang, W., Wang, K., Bao, Y., Renstein, J.M., Zhou, P. (2019b). Fabrication of gel-like emulsions with whey protein isolate using microfluidization: Rheological properties and 3D printing performance. Food and Bioprocess Technology, 12: 1967-1979. doi: 10.1007/s11947-019-02344-5.
- Lopez Galdeano, J.A. (2015). 3D printing food: The sustainable future. Master Thesis, Kaunas University, Kaunas, Lithuania, 104 p.
- Lupton, D., Turner, B. (2017). Both Fascinating and Disturbing: Consumer Responses to 3D Food Printing and Implications for Food Activism, In: Digital Food Activism, Schneider, T. (ed.), Eli, K.(ed.), Dolan, C.(ed.), Ulijaszek, S. (ed.), Taylor & Francis Group, Routledge, the UK, pp. 150-167. doi: 10.4324/9781315109930.
- Manstan, T., McSweeney, M.B. (2020). Consumers’ attitudes towards and acceptance of 3D printed foods in comparison with conventional food products. International Journal of Food Science and Technology, 55: 323-331. doi: 10.1111/ijfs.14292.
- Mantihal, S., Prakash, S., Bhandari, B. (2019). Texture-modified 3D printed dark chocolate: Sensory evaluation and consumer perception study. Journal of Texture Studies, 50: 386-399. doi: 10.1111/jtxs.12472.
- Miao, S., Castro, N., Nowicki, M., Xia, L., Cui, H., Zhou, X., Zhu, W., Lee, SJ., Sarkar, K., Vozzi, G., Tabata, Y., Fisher, J., Zhang, L.G. (2017). 4D printing of polymeric materials for tissue and organ regeneration. Materials Today, 20(10): 577–591. doi: 10.1016/j.mattod.2017.06.005.
- Nachal, N., Moses, J. A, Karthik, P., Anandharamakrishnan, C. (2019). Applications of 3D printing in food processing. Food Engineering Reviews, 11: 123-141. doi: 10.1007/s12393-019-09199-8.
- NASA (2015). 3D food printer in space. https://open.nasa.gov/innovation-space/3d-food-printer-in-space/ (Accessed: 30 Eylül 2020).
- Noort, M. W. J., Van Bommel, K., Renzetti, S. (2017). 3D-Printed Cereal Foods. Cereal Foods World, 62(6): 272-277. doi: 10.1094/CFW-62-6-0272.
- Nourished (2019). Nourished Lab. https://get-nourished.com/pages/lab (Accessed: 13 Haziran 2020).
- Oladapo, B.I., Oshin, E.A., Olawumi, A.M. (2020). Nanostructural computation of 4D printing carboxymethylcellulose (CMC) composite. Nano-Structures& Nano-Objects, 21: 100423. doi: 10.1016/j.nanoso.2020.100423.
- Ortega, O., Martin, A., Clave, P. (2017). Diagnosis and management of oropharyngeal dysphagia among older persons, state of the art. Journal of the American Medical Directors Association, 18(7): 576-582. doi: 10.1016/j.jamda.2017.02.015.
- Ötleş, S. (2016). Gıda sektöründe üç boyutlu yazıcıların kullanım olanakları. Dünya Gıda, 2016(11): 110–114.
- Pallottino, F., Hakola, L., Costa, C., Antonucci, F., Figorilli, S., Seisto, A., Menesatti, P. (2016). Printing on food or food printing: A review. Food and Bioprocess Technology, 9(5): 725–733. doi: 10.1007/s11947-016-1692-3.
- Prakash, S., Bhandari, B.R., Godoi, F.C., Zhang, M. (2019). Future Outlook of 3D Food Printing. In: Fundamentals of 3D Food Printing and Applications, Godoi, F.C. (ed.), Bhandari, B.R. (ed.), Prakash, S. (ed.), Zhang, M. (ed.), Academic Press, London, the UK, pp. 373-381. ISBN: 012814565X, 9780128145654.
- Rubio, E., Hurtado, S. (2019). 3D Food Printing Technology at Home, Domestic Application, In: Fundamentals of 3D Food Printing and Applications, Godoi, F.C. (ed.), Bhandari, B.R. (ed.), Prakash, S. (ed.), Zhang, M. (ed.), Academic Press, London, the UK, pp. 289-329. ISBN: 012814565X, 9780128145654.
- Seo, H.G., Yi, Y.G., Choi, YA, Leigh, J., Yi, Y., Kim, K., Bang, M.S. (2019). Oropharyngeal dysphagia in adults with dyskinetic cerebral palsy and cervical dystonia: A preliminary study. Archives of Pysical Medicine and Rhabilitation, 100(3): 495-500. doi: 10.1016/j.apmr.2018.05.024.
- Shao, LH., Zhao, B., Zhang, Q., Xing, Y., Zhang, K. (2020). 4D printing composite with electrically controlled local deformation. Extreme Mechanics Letters, 39: 100793. doi: 10.1016/j.eml.2020.100793.
- Shellabear, M., Nyrhila, O. (2004). DMLS-Development history and state of the art. Proceedings of the Fourth Laser Assisted Net Shape Engineering (LANE), 21-24 September, Erlangen, Germany, 393-404 p.
- Southerland, D., Walters, P., Huson, D. (2011). Edible 3D printing. Proceeding of NIP & Digital Fabrication Conference (7th International), Society for Imaging Science and Technology, 2–6 October, Vol 2, Minneapolis, the USA, 819–822 p.
- Sun, J., Peng, Z., Zhou, W., Fuh, J.Y.H., Hong, G.S., Chiu, A. (2015a). A review on 3D printing for customized food fabrication. Procedia Manufacturing, 1: 308–319. doi: 10.1016/j.promfg.2015.09.057.
- Sun,J., Zhou, W., Huang, D., Fuh, J.Y.H., Hong, G.S. (2015b). An overview of 3D printing technologies for food fabrication. Food and Bioprocess Technology, 8(8): 1605-1615. doi: 10.1007/s11947-015-1528-6.
- Sun, J., Peng, Z., Yan, L., Fuh., J.Y.H., Hong, G.S. (2015c). 3D food printing-An innovative way of mass customization in food fabrication. International Journal of Bioprinting, 1(1): 27–38. doi: 10.18063/IJB.2015.01.006.
- Sun, J., Zhou, W., Yan, L., Huang, D., Lin, LY. (2018). Extrusion-based food printing for digitalized food design and nutrition control. Journal of Food Engineering, 220: 1-11. doi: 10.1016/j.jfoodeng.2017.02.028.
- Tan, C., Yan Toh, W., Wong, G., Li, L. (2018). Extrusion-based 3D food printing – Materials and machines, International Journal of Bioprinting, 4(2): 143. doi: 10.18063/ijb.v4i2.143.
- Tao, Y., Do, Y., Yang, H., Lee, YC., Wang, G., Mondoa, C., Cui, J., Wang, W. (2019). Morphlour: Personalized flour-based morphing food induced by dehydration or hydration method. Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, 20-23 October, Louisiana, the USA, 329–340 p.
- Taş, T.K. (2012). Türkiye'de fonksiyonel gıdaların tüketim araştırmaları, ürün çeşitliliği ve yasal düzenlemeler. Türkiye 11. Gıda Kongresi, 18 Kasım 2012, Hatay, Türkiye.
- Terfansky, M., Thangavelu, M., Fritz, B., Khoshnevis, B. (2013). 3D printing of food for space missions. AIAA SPACE 2013 Conference and Exposition, 10-12 September, San Diego, the USA. doi: 10.2514/6.20135346.
- Truby, R.L., Lewis, J.A. (2016). Printing soft matter in three dimensions. Nature, 540: 371–378. doi: 10.1038/nature21003.
- Vancauwenberghe, V., Delele, M.A., Vanbiervliet, J., Aregawi, W., Verboven, P., Lammertyn, J., Nicolaï, B. (2018). Model-based design and validation of food texture of 3D printed pectin-based food simulants. Journal of Food Engineering, 231: 72-82. doi: 10.1016/j.jfoodeng.2018.03.010.
- Wang, L., Zhang, M., Bhandari, Yang, C. (2018). Investigation on fish surimi gel as promising food material for 3D printing. Journal of Food Engineering, 220: 101-108. doi: 10.1016/j.jfoodeng.2017.02.029.
- Warner, E.L., Norton, L.T., Mills, T.B. (2019). Comparing the viscoelastic properties of gelatin and different concentrations of kappa-carrageenan mixtures for additive manufacturing applications. Journal of Food Engineering, 246: 58-66. doi: 10.1016/j.jfoodeng.2018.10.033.
- Whitaker, M. (2014). The history of 3D printing in healthcare. The Bulletin of the Royal College of Surgeons of England, 96(7): 228–229. doi: 10.1308/147363514X13990346756481.
- Wolf, M. (2019). Barilla-Backed BluRhapsody To Launch 3D Pasta Printing E-Commerce Service in 2019. https://thespoon.tech/barilla-backed-blurhapsody-to-launch-3d-pasta-printing-e-commerce-service-in-2019/ (Accessed: 02 October 2020).
- Yang, F., Zhang, M., Bhandari, B. (2015). Recent development in 3D food printing. Critical Reviews in Food Science and Nutrition, 57(14): 3145–3153. doi: 10.1080/10408398.2015.1094732.
- Zhao, H., Wang, J., Ren, X., Li, J., Yang, YL., Jin, X. (2018). Personalized food printing for portrait images. Computer & Graphics, 70: 188-197. doi: 10.1016/j.cag.2017.07.012.
3D FOOD PRINTING: AN UPDATE AND FUTURE TRENDS
Year 2021,
, 152 - 167, 11.12.2020
Prof. Dr. Kezban Candoğan
,
Elvan Gökçen Bulut
Abstract
3D Food Printing has emerged as viable tool to manufacture personalized food products in small or large quantities. This technology has interesting and unique features such as the formulation of food products with high repeatability in terms of desirable shape, size, texture and flavor. There are a number of 3D food printers that have been designed to fulfill a wide spectrum of needs within the food market. Some of these printers are very simple and could be even used in households where others are quite sophisticated, very versatile, fully automized, and with variable throughput. 3D food printing minimizes waste and labor costs, facilitates energy savings and could be easily integrated in a production line. Elderly, children, people with restricted diets because of health issues are among the consumer groups that are particularly benefited by this technology. It is quite apparent that 3D food printing has a bright future within the food industry because it facilitates addressing the needs of today’s consumers while offering products of superior quality and lower costs to those manufactured by more traditional approaches. This overview includes principles and applications of 3D food printing and currently available 3D food printers. Pros and cons of this technology are discussed and an update on recent research and potential implementation are provided. Consumer attitudes towards food products manufactured by 3D food printing are also summarized.
References
- Akben, İ. (2017). 3 boyutlu yazıcılar ve tedarik zincirine etkileri. International Journal of Academic Value Studies, 3(10): 20–35, doi: 10.23929/javs.170.
- Arlı, B., Demirbaş, Y.K. (2015). Uygulamalarla 3 Boyutlu Yazıcı Yapımı ve Kullanımı. Abaküs Kitap Yayınevi, Fatih, İstanbul, 272 s. ISBN-13 :978-6059129022.
- Arsava, E.M., Aydoğdu, İ., Güngör, L., Togay Işıkay, C., Yaka, E. (2018). İnme hastalarında nütrisyonel yaklaşım ve tedavi, Türkiye için uzman görüşü. Türk Nöroloji Dergisi, 24: 226-242. doi: 10.4274/tnd.92603.
- ArtıBoyut (2020). 3D Yazıcı-Basım yapılırken dikkat edilmesi gerekenler. https://www.artiboyut.com./index.php/tr/bilgi-bankasi/48-3d-%20yazici-basim yapilirkendikkat-edilmesi-gerekenler (Erişim Tarihi: 09 Eylül 2020).
- Atlantic Council (2011). Strategic Foresight Report-Could 3D Printing Change the World? Technologies, Potential, and Implications of Additive Manufacturing. Washington DC, the USA.
- Azam, R.S.M., Zhang, M., Bhandari, B., Yang, C. (2018). Effect of different gums on features of 3D printed object based on vitamin-d enriched orange concentrate. Food Biophysics, 13(3): 250-262. doi: 10.1007/s11483-018-9531-x.
- Bakan, İ., Erşahan, B., Kefe, İ., Bayat, M. (2011). Kamu ve özel hastanelerde tedavi gören hastaların sağlıkta hizmet kalitesine ilişkin algılamaları. Kahramanmaraş Sütçü İmam Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 1(2): 1-16.
- Berman, B., Zarb, F.G., Hall, W. (2012). 3-D printing: the new industrial revolution. Business Horizons, 55(2): 155–162. doi: 10.1016/j.bushor.2011.11.003.
- BluRhapsody. (2019). Shop. https://blurhapsody.com/shop-pasta-3d/ (Accessed: 28 October 2020).
- Boissonneault, T. (2019). Upprinting Food Transforms Food Waste into Edible 3D Printed Snacks. https://www.3dprintingmedia.network/upprinting-food-food-waste-edible-3d-printed-snacks/ (Accessed: 01 October 2020).
- Bulut, E.G. (2019). Üç boyutlu (3D) gıda yazıcısı kullanılarak fonksiyonel tavuk eti ürünü üretimi. Ankara Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı Yüksek Lisans Tezi, Ankara, Türkiye, 94 s.
- Bulut, E.G., van Bommel, K. ve Candoğan, K. (2019a). 3B yazıcı kullanılarak fonksiyonel tavuk eti ürünü üretimi. 5. Uluslararası Beyaz Et Kongresi, 24-28 Nisan, Manavgat, Türkiye.
- Bulut, E.G., van Bommel, K. and Candoğan, K. (2019b). Development of a fuctional chicken meat-based snack by 3D food printing: effects of starch addition and cooking methods. XVIII European Symposium on the Quality of Eggs and Egg Products and XXIV European Symposium on the Quality of Poultry Meat, 23-26 June, Book of Abstracts, 153, Çeşme, Turkey.
- Caulier, S., Doets, E., Noort, M. (2020). An exploratory consumer study of 3D printed food perception in a real-lifemilitary setting. Food Quality and Preference, 86: 104001. doi:10.1016/j.foodqual.2020.104001.
- Çelik, D. (2015). Üç boyutlu yazıcı tasarımı, prototipi ve tersine mühendislik uygulamaları. Karabük Üniversitesi Fen Bilimleri Enstitüsü Endüstriyel Tasarım Mühendisliği Anabilim Dalı Yüksek Lisans Tezi, Karabük, Türkiye, 220 s.
- Dankar, I., Haddarah, A., Omar, F.E.L., Sepulcre, F., Pujola, M. (2018). 3D printing technology: The new era for food customization and elaboration. Trends in Food Science & Technology, 75: 231-242. doi: 10.1016/j.tifs.2018.03.018.
- Derossi, A., Caporizzi, R., Azzollini, D., Severini, C. (2017). Application of 3D printing for customized food. A case on the development of a fruit-based snack for children. Journal of Food Engineering, 5(2): 65–75. doi: 10.1016/j.jfoodeng.2017.05.015.
- Desktop Machinery (2020). Wiiboox Sweetin. https://www.desktopmachinery.com/product/wiiboox-sweetin/ (Accessed: 10 Eylül 2020).
- Dick, A., Bhandari, B., Prakash, S. (2019). 3D printing of meat. Meat Science, 153: 35-44. doi: 10.1016/j.meatsci.2019.03.005.
- Dick, A., Bhandari, B., Dong, X., Prakash, S. (2020). Feasibility study of hydrocolloid incorporated 3D printed pork as dysphagia food. Food Hydrocolloids, 107: 105940. doi: 10.1016/j.foodhyd.2020.105940.
- FAO (2009). How to Feed the World in 2050. http://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf (Accessed: 17 Eylül 2020).
- Feng, P., Mneg, X., Chen, J.F., Ye, L. (2015). Mechanical properties of structures 3D printed with cementitious powders. Construction and Building Materials, 93: 486-497. doi: 10.1016/j.conbuildmat.2015.05.132.
- FoodBot (2020). Foodbot D2 Multi Ingredient Dual Head Food 3D Printer. https://www.3dprintersonlinestore.com/foodbot-d2-food-3d-printer (Accessed: 10 Eylül 2020).
- Fuldauer, E. 2019. 3D printing will boost sustainable development. https://www.smartcitylab.com/blog/digital-transformation/3d-printing-will-boost-sustainable-development/ (Accessed: 11 Ekim 2020).
- Ghazel, A.F., Zhang, M., Liu, Z. (2019). Spontaneous Color Change of 3D Printed Healthy Food Product over time after printing as a novel application for 4D food printing. Food and Bioprocess Technology, 12: 1627-1645. doi: 10.1007/s11947-019-02327-6.
- Godoi, F.C., Prakash, S., Bhandari, B.R. (2016). 3D printing technologies applied for food design: Status and prospects. Journal of Food Engineering, 179: 44–54. doi: 10.1016/j.jfoodeng.2016.01.025.
- Godoi, F.C., Bhandari, B.R., Prakash, S., Zhang, M. (2019). An Introduction to the Principles of 3D Food Printing. In: Fundamentals of 3D Food Printing and Applications, Godoi, F.C. (ed.), Bhandari, B.R. (ed.), Prakash, S. (ed.), Zhang, M. (ed.), Academic Press, London, the UK, pp. 1-18. ISBN: 012814565X, 9780128145654.
- Hoa, S.V., Cai, X. (2020). Twisted composite structures made by 4D printing method. Composite Structures, 238: 111883. doi: 10.1016/j.compstruct.2020.111883.
- Holland, S., Tuck, C., Foster, T. (2018). Selective recrystallization of cellulose composite powders and microstructure creation through 3D binder jetting. Carbohydrate Polymers, 200: 229-238. doi: 10.1016/j.carbpol.2018.07.064.
- Huang, M., Zhang, M., Bhandari, B. (2019). Fabrication of gel-like emulsions with whey protein isolate using microfluidization: Rheological properties and 3d printing performance. Food and Bioprocess Technology, 12: 1185-1196. doi: 10.1007/s11947-019-02344-5.
- Hull, CW.1984. Apparatus for production of three-dimensional objects by stereolithography. Google Patents. US4575330A.
- Izdebska, J., Zolek-Tryznowska, Z. (2016). 3D food printing – facts and future. Agro Food Industry Hi Tech, 27(2): 33-36.
- Javaid, M., A. Haleem. (2019). 4D printing applications in medical field: A brief review. Clinical Epidemiology and Global Health, 7(3): 317–321. doi: 10.1016/j.cegh.2018.09.007.
- Keerthana, K., Anukiruthika, T., Moses, J.A., Anandharamakrishnan, C. (2020). Development of fiber-enriched 3D printed snacks from alternative foods: A study on button mushroom. Journal of Food Engineering, 287: 110116. doi: 10.1016/j.jfoodeng.2020.110116.
- Kouzani, A.Z., Adams, S.,J. Whyte, D., Oliver, R., Hemsley, B., Palmer, S., Balandin, S. (2017). 3D Printing of food for people with swallowing difficulties. The International Conference on Design and Technology, 05–08 December, Geelong, Australia, 23–29 p.
- Lin, C. (2015). 3D food printing: A Taste of the future. Journal of Food Science Education, 14(3): 86–87. doi: 10.1111/1541-4329.12061.
- Liu, Z., Zhang, M., Bhandari, B., Wang, Y. (2017). 3D printing: Printing precision and application in food sector. Trends in Food Science and Technology, 69(A): 83-94. doi: 10.1016/j.tifs.2017.08.018.
- Liu Z, Bhandari B, Prakash S, Zhang M. (2018). Creation of internal structure of mashed potato construct by 3D printing and its textural properties. Food Res Int, 111: 534-543. doi: 10.1016/j.foodres.2018.05.075.
- Liu, Y., Yu, Y., Liu, C., Regenstein, J.M., Liu, X., Zhou, P. (2019a). Rheological and mechanical behavior of milk protein composite gel for extrusion-based 3D food printing. LWT-Food Science and Technology, 102: 338-346. doi: 10.1016/j.lwt.2018.12.053.
- Liu, Y., Zhang, W., Wang, K., Bao, Y., Renstein, J.M., Zhou, P. (2019b). Fabrication of gel-like emulsions with whey protein isolate using microfluidization: Rheological properties and 3D printing performance. Food and Bioprocess Technology, 12: 1967-1979. doi: 10.1007/s11947-019-02344-5.
- Lopez Galdeano, J.A. (2015). 3D printing food: The sustainable future. Master Thesis, Kaunas University, Kaunas, Lithuania, 104 p.
- Lupton, D., Turner, B. (2017). Both Fascinating and Disturbing: Consumer Responses to 3D Food Printing and Implications for Food Activism, In: Digital Food Activism, Schneider, T. (ed.), Eli, K.(ed.), Dolan, C.(ed.), Ulijaszek, S. (ed.), Taylor & Francis Group, Routledge, the UK, pp. 150-167. doi: 10.4324/9781315109930.
- Manstan, T., McSweeney, M.B. (2020). Consumers’ attitudes towards and acceptance of 3D printed foods in comparison with conventional food products. International Journal of Food Science and Technology, 55: 323-331. doi: 10.1111/ijfs.14292.
- Mantihal, S., Prakash, S., Bhandari, B. (2019). Texture-modified 3D printed dark chocolate: Sensory evaluation and consumer perception study. Journal of Texture Studies, 50: 386-399. doi: 10.1111/jtxs.12472.
- Miao, S., Castro, N., Nowicki, M., Xia, L., Cui, H., Zhou, X., Zhu, W., Lee, SJ., Sarkar, K., Vozzi, G., Tabata, Y., Fisher, J., Zhang, L.G. (2017). 4D printing of polymeric materials for tissue and organ regeneration. Materials Today, 20(10): 577–591. doi: 10.1016/j.mattod.2017.06.005.
- Nachal, N., Moses, J. A, Karthik, P., Anandharamakrishnan, C. (2019). Applications of 3D printing in food processing. Food Engineering Reviews, 11: 123-141. doi: 10.1007/s12393-019-09199-8.
- NASA (2015). 3D food printer in space. https://open.nasa.gov/innovation-space/3d-food-printer-in-space/ (Accessed: 30 Eylül 2020).
- Noort, M. W. J., Van Bommel, K., Renzetti, S. (2017). 3D-Printed Cereal Foods. Cereal Foods World, 62(6): 272-277. doi: 10.1094/CFW-62-6-0272.
- Nourished (2019). Nourished Lab. https://get-nourished.com/pages/lab (Accessed: 13 Haziran 2020).
- Oladapo, B.I., Oshin, E.A., Olawumi, A.M. (2020). Nanostructural computation of 4D printing carboxymethylcellulose (CMC) composite. Nano-Structures& Nano-Objects, 21: 100423. doi: 10.1016/j.nanoso.2020.100423.
- Ortega, O., Martin, A., Clave, P. (2017). Diagnosis and management of oropharyngeal dysphagia among older persons, state of the art. Journal of the American Medical Directors Association, 18(7): 576-582. doi: 10.1016/j.jamda.2017.02.015.
- Ötleş, S. (2016). Gıda sektöründe üç boyutlu yazıcıların kullanım olanakları. Dünya Gıda, 2016(11): 110–114.
- Pallottino, F., Hakola, L., Costa, C., Antonucci, F., Figorilli, S., Seisto, A., Menesatti, P. (2016). Printing on food or food printing: A review. Food and Bioprocess Technology, 9(5): 725–733. doi: 10.1007/s11947-016-1692-3.
- Prakash, S., Bhandari, B.R., Godoi, F.C., Zhang, M. (2019). Future Outlook of 3D Food Printing. In: Fundamentals of 3D Food Printing and Applications, Godoi, F.C. (ed.), Bhandari, B.R. (ed.), Prakash, S. (ed.), Zhang, M. (ed.), Academic Press, London, the UK, pp. 373-381. ISBN: 012814565X, 9780128145654.
- Rubio, E., Hurtado, S. (2019). 3D Food Printing Technology at Home, Domestic Application, In: Fundamentals of 3D Food Printing and Applications, Godoi, F.C. (ed.), Bhandari, B.R. (ed.), Prakash, S. (ed.), Zhang, M. (ed.), Academic Press, London, the UK, pp. 289-329. ISBN: 012814565X, 9780128145654.
- Seo, H.G., Yi, Y.G., Choi, YA, Leigh, J., Yi, Y., Kim, K., Bang, M.S. (2019). Oropharyngeal dysphagia in adults with dyskinetic cerebral palsy and cervical dystonia: A preliminary study. Archives of Pysical Medicine and Rhabilitation, 100(3): 495-500. doi: 10.1016/j.apmr.2018.05.024.
- Shao, LH., Zhao, B., Zhang, Q., Xing, Y., Zhang, K. (2020). 4D printing composite with electrically controlled local deformation. Extreme Mechanics Letters, 39: 100793. doi: 10.1016/j.eml.2020.100793.
- Shellabear, M., Nyrhila, O. (2004). DMLS-Development history and state of the art. Proceedings of the Fourth Laser Assisted Net Shape Engineering (LANE), 21-24 September, Erlangen, Germany, 393-404 p.
- Southerland, D., Walters, P., Huson, D. (2011). Edible 3D printing. Proceeding of NIP & Digital Fabrication Conference (7th International), Society for Imaging Science and Technology, 2–6 October, Vol 2, Minneapolis, the USA, 819–822 p.
- Sun, J., Peng, Z., Zhou, W., Fuh, J.Y.H., Hong, G.S., Chiu, A. (2015a). A review on 3D printing for customized food fabrication. Procedia Manufacturing, 1: 308–319. doi: 10.1016/j.promfg.2015.09.057.
- Sun,J., Zhou, W., Huang, D., Fuh, J.Y.H., Hong, G.S. (2015b). An overview of 3D printing technologies for food fabrication. Food and Bioprocess Technology, 8(8): 1605-1615. doi: 10.1007/s11947-015-1528-6.
- Sun, J., Peng, Z., Yan, L., Fuh., J.Y.H., Hong, G.S. (2015c). 3D food printing-An innovative way of mass customization in food fabrication. International Journal of Bioprinting, 1(1): 27–38. doi: 10.18063/IJB.2015.01.006.
- Sun, J., Zhou, W., Yan, L., Huang, D., Lin, LY. (2018). Extrusion-based food printing for digitalized food design and nutrition control. Journal of Food Engineering, 220: 1-11. doi: 10.1016/j.jfoodeng.2017.02.028.
- Tan, C., Yan Toh, W., Wong, G., Li, L. (2018). Extrusion-based 3D food printing – Materials and machines, International Journal of Bioprinting, 4(2): 143. doi: 10.18063/ijb.v4i2.143.
- Tao, Y., Do, Y., Yang, H., Lee, YC., Wang, G., Mondoa, C., Cui, J., Wang, W. (2019). Morphlour: Personalized flour-based morphing food induced by dehydration or hydration method. Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, 20-23 October, Louisiana, the USA, 329–340 p.
- Taş, T.K. (2012). Türkiye'de fonksiyonel gıdaların tüketim araştırmaları, ürün çeşitliliği ve yasal düzenlemeler. Türkiye 11. Gıda Kongresi, 18 Kasım 2012, Hatay, Türkiye.
- Terfansky, M., Thangavelu, M., Fritz, B., Khoshnevis, B. (2013). 3D printing of food for space missions. AIAA SPACE 2013 Conference and Exposition, 10-12 September, San Diego, the USA. doi: 10.2514/6.20135346.
- Truby, R.L., Lewis, J.A. (2016). Printing soft matter in three dimensions. Nature, 540: 371–378. doi: 10.1038/nature21003.
- Vancauwenberghe, V., Delele, M.A., Vanbiervliet, J., Aregawi, W., Verboven, P., Lammertyn, J., Nicolaï, B. (2018). Model-based design and validation of food texture of 3D printed pectin-based food simulants. Journal of Food Engineering, 231: 72-82. doi: 10.1016/j.jfoodeng.2018.03.010.
- Wang, L., Zhang, M., Bhandari, Yang, C. (2018). Investigation on fish surimi gel as promising food material for 3D printing. Journal of Food Engineering, 220: 101-108. doi: 10.1016/j.jfoodeng.2017.02.029.
- Warner, E.L., Norton, L.T., Mills, T.B. (2019). Comparing the viscoelastic properties of gelatin and different concentrations of kappa-carrageenan mixtures for additive manufacturing applications. Journal of Food Engineering, 246: 58-66. doi: 10.1016/j.jfoodeng.2018.10.033.
- Whitaker, M. (2014). The history of 3D printing in healthcare. The Bulletin of the Royal College of Surgeons of England, 96(7): 228–229. doi: 10.1308/147363514X13990346756481.
- Wolf, M. (2019). Barilla-Backed BluRhapsody To Launch 3D Pasta Printing E-Commerce Service in 2019. https://thespoon.tech/barilla-backed-blurhapsody-to-launch-3d-pasta-printing-e-commerce-service-in-2019/ (Accessed: 02 October 2020).
- Yang, F., Zhang, M., Bhandari, B. (2015). Recent development in 3D food printing. Critical Reviews in Food Science and Nutrition, 57(14): 3145–3153. doi: 10.1080/10408398.2015.1094732.
- Zhao, H., Wang, J., Ren, X., Li, J., Yang, YL., Jin, X. (2018). Personalized food printing for portrait images. Computer & Graphics, 70: 188-197. doi: 10.1016/j.cag.2017.07.012.