Research Article
BibTex RIS Cite

ALIÇ: BİYOAKTİF BİLEŞENLERİN TERMOSONİKASYON İLE EKSTRAKSİYONU VE FİZİKO-KİMYASAL ÖZELLİKLERİNİN DEĞERLENDİRİLMESİ

Year 2021, , 939 - 948, 17.05.2021
https://doi.org/10.15237/gida.GD21077

Abstract

Meyvelerin fizikokimyasal özellikleri üzerine genotip farklılıklarının yanısıra yetişdiği bölgeye göre değişen iklim ve toprak koşulları da önemli derecede etkili olmaktadır. Bu çalışma ile Çorum yöresinde doğal olarak yetişen 7 alıç örneğinin bazı morfometrik özellikleri (en: 14.5-20.2 mm, boy: 15.6-25.2 mm, meyve ağırlığı: 2.1-8.0 g, meyve eti:çekirdek oranı: 3.3-7.9, CIE renk değerleri (L*: 48.2-74.6, a*: 7.5-44.9 ve b*:30.3-59.5) ile pH (3.6-4.0), toplam asitlik (%0.9-1.7), kuru madde (%20.8-27.9), suda çözünür kuru madde miktarları (12.6-17.7°Bx) gibi fizikokimyasal özellikleri belirlenmiştir. Alıç örneklerinin toplam fenolik madde (155.2-490.3 mg GAE/100 g), toplam flavonoid (78.7-272.6 mg CE/100 g), proantosiyanidin miktarları (64.2-132.3 mg CE/100 g) ve antioksidan kapasiteleri (14.6-44.9 µmol TEAC/g) termosonikasyon ile ekstrakte edildikten sonra spektrofotometrik olarak belirlenmiştir. Araştırılan özellikler açısından önemli bir kaynak olduğu belirlenen alıçların, organik üretim pazarına sunulması, gıda katkısı veya galenik olarak değerlendirilmesinin ülke ekonomisine katkı sağlayacağı düşünülmektedir. Ayrıca elde edilen verilerin genetik çeşitliliğin korunması açısından da önemli olduğu düşünülmektedir.

Supporting Institution

Hitit University Scientific Research Project Office

Project Number

19003.17.001

Thanks

19003.17.001 numaralı proje kapsamında vermiş oldukları maddi destekten dolayı Hitit Üniversitesi Bilimsel Araştırma Projeleri Birimine teşekkür ederim.

References

  • AOAC. (2000). Official Methods of Analysis, 17th edn, Titratable acidity of fruit products, 942.15. Association of Official Analytical Chemists International, Gaithersburg.
  • AOAC. (2005). AOAC, C. A. Official methods of analysis of the Association of Analytical Chemists International. Arts, M.J.T.J., Haenen, G.R.M.M., Voss, H.P., Bast, A. (2001). Masking of antioxidant capacity by the interaction of flavonoids with protein. Food Chem Toxicol, 39, 787-791.
  • Bahri-Sahloul, R., Ammar, S., Grec, S., & Harzallah-Skhiri, F. (2009). Chemical characterisation of Crataegus azarolus L. fruit from 14 genotypes found in Tunisia. J Hortic Sci and Biotech, 84(1), 23-28.
  • Beecher, G. R. (2003). Overview of dietary flavonoids: nomenclature, occurrence and intake. J nutr, 133(10), 3248S-3254S.
  • Celep, E., Aydın, A., & Yesilada, E. (2012). A comparative study on the in vitro antioxidant potentials of three edible fruits: Cornelian cherry, Japanese persimmon and cherry laurel. Food Chem Toxicol, 50(9), 3329-3335.
  • Chung, K. T., Wong, T. Y., Wei, C. I., Huang, Y. W., & Lin, Y. (1998). Tannins and human health: a review. Crit. Rev. Food Sci. Nutr, 38(6), 421-464.
  • Demir, F., & Kalyoncu, I. H. (2003). Some nutritional, pomological and physical properties of Cornelian cherry (Cornus mas L.). J. Food Eng., 60(3), 335-341.
  • Dinda, B., Kyriakopoulos, A. M., Dinda, S., Zoumpourlis, V., Thomaidis, N. S., Velegraki, A., ... & Dinda, M. (2016). Cornus mas L. (Cornelian cherry), an important European and Asian traditional food and medicine: Ethnomedicine, phytochemistry and pharmacology for its commercial utilization in drug industry. J. Ethnopharmacol., 193, 670-690.
  • Dubey, N.K., Kumar, R., Tripathi, P. (2004). Global promotion of herbal medicine: India’s opportunity. Curr. Sci., 86, 37-41. Ebrahimzadeh, M. A., & Bahramian, F. (2009). Antioxidant Activity of Crataegus pentaegyna Subsp. elburensis Fruits Extracts. P J B S, 12(5), 413-419.
  • Edwards, J. E., Brown, P.N., Talent, N., Dickinson, T.A., Shipley, P.R. (2012). A review of the chemistry of the genus Crataegus. Phytochemistry, 79, 5-26.
  • Gu, L., Kelm, M., Hammerstone, J.F., Beecher, G., Cunnıngham, D., Vannozzi, S. and Prior, R.L. (2002). Fractionation of polymeric procyanidins from lowbush blueberry and quantification of procyanidins in selected foods with an optimized normal-phase HPLC-MS fluorescent detection method. J Agric Food Chem, 50: 4852-4860.
  • Hassanpour, H., Yousef, H., Jafar, H., & Mohammad, A. (2011). Antioxidant capacity and phytochemical properties of Cornelian cherry (Cornus mas L.) genotypes in Iran. Sci. Hortic., 129(3), 459-463.
  • Kent, K., Charlton, K., O’Sullivan, T., & Oddy, W. H. (2020). Estimated intake and major food sources of flavonoids among Australian adolescents. Eur. J Nutr., 1-16.
  • Li, W. Q., Hu, Q. P., & Xu, J. G. (2015). Changes in physicochemical characteristics and free amino acids of hawthorn (Crataegus pinnatifida) fruits during maturation. Food Chem, 175, 50-56.
  • Ling, Z.Q., Xıe, B.J., Yang, E.L. (2005). Isolation, characterization, and determination of antioxidative activity of oligomeric procyanidins from the seedpod of Nelumbo nucifera Gaertn. J Agric Food Chem, 53: 2441-2445.
  • Liu, P., Kallio, H., Lü, D., Yang, B. (2011). Quantitative analysis of phenolic compounds in Chinese hawthorn (Crataegus spp.) fruits by high performance liquid chromatography-electrospray ionization mass spectrometry. Food Chem, 127, 1370-1377.
  • Liu, P., Ynag, B., & Kallio, H. (2010). Characterization of phenolic compounds in Chinese hawthorn (Crataegus pinnatifida Bge. Var. major) fruits by high performance liquid chromatography-electrospray ionization mass spectrometry. Food Chem, 121 (4), 1188-1197.
  • Ozdemir, A. E., Candir, E., Toplu, C., & Yildiz, E. R. C. A. N. (2020). Effect of Hot Water Treatment on Astringency Removal in Persimmon Cultivars. Int J Fruit Sci., 1-13.
  • Özcan, M., Hacıseferoğulları, H., Marakoğlu, T., & Arslan, D. (2005). Hawthorn (Crataegus spp.) fruit: some physical and chemical properties. J Food Eng, 69(4), 409-413. Pantelidis, G. E., Vasilakakis, M., Manganaris, G. A., & Diamantidis, G. R. (2007). Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chem, 102(3), 777-783.
  • Peleg, H., Gacon, K., Schlich, P. and Noble, A.C. (1999). Bitterness and astringency of flavan-3-ol monomers, dimers and trimers. J Sci Food Agric, 79: 1123- 1128.
  • Ruiz-Rodríguez, B. M., de ANCOS, B., Sánchez-Moreno, C., Fernández-Ruiz, V., de Cortes Sánchez-Mata, M., Cámara, M., & Tardío, J. (2014). Wild blackthorn (Prunus spinosa L.) and hawthorn (Crataegus monogyna Jacq.) fruits as valuable sources of antioxidants. Fruits, 69(1), 61-73.
  • Šamec, D., & Piljac-Žegarac, J. (2011). Postharvest stability of antioxidant compounds in hawthorn and cornelian cherries at room and refrigerator temperatures—Comparison with blackberries, white and red grapes. Sci Hortic., 131, 15-21.
  • Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol (Vol. 299, pp. 152-178). Academic press.
  • Tanner, H., & Brunner, H. R. (1979). Getraenke Analytik. D-7170. Schwaebisch Hall: Germany: Verlag Heller Chemie-und Verwaltungsgeselschaft mbH.
  • Xie, D.Y., Dixon, R.A. (2005). Proanthocyanidin biosynthesis-still more questions than answers?. Phytochemistry, 66: 2127- 2144.
  • Yang, B., & Liu, P. (2014). Composition and biological activities of hydrolyzable tannins of fruits of Phyllanthus emblica. J Agric Food Chem, 62(3), 529-541.
  • Zhang, Z., Chang, Q., Zhu, M., Huang, Y., Ho, W. K., & Chen, Z. Y. (2001). Characterization of antioxidants present in hawthorn fruits. Journal Nutr Biochem, 12(3), 144-152.
  • Zhishen, J., Mengcheng, T., Jianming, W. (1999). The determination of flavonoid content in mulberry and their scavenging effects on superoxide radicals. Food Chem, 64(4), 555-559.

HAWTHORN: EXTRACTION OF BIOACTIVE COMPOUNDS BY THERMOSONICATION AND EVALUATION OF PHYSICO-CHEMICAL PROPERTIES

Year 2021, , 939 - 948, 17.05.2021
https://doi.org/10.15237/gida.GD21077

Abstract

The climate and soil condition as well as genetic diversity affect the physicochemical properties of fruits. In this study, 7 wild Hawthorn samples were obtained from different locations of the Çorum province and some physical properties (diameter: 14.5-20.2 mm, length:15.6-25.2 mm, fruit weight: 2.1-8.0 g, flesh:seed ratio: 3.3-7.9), CIE colour values (L*: 48.2-74.6, a*: 7.5-44.9 ve b*:30.3-59.5) and physicochemical properties pH (3.6-4.0), acidity (0.9-1.7%) dry matter (20.8-27.9%), soluble solids (12.6-17.7°Bx) were determined. Total phenolics (155.2-490.3 mg GAE/100 g), total flavonoid (78.7-272.6 mg CE/100 g), proanthocyanidin contents (64.2-132.3 mg CE/100 g) and antioxidant capacity (14.6-44.9 µmol TEAC/g) extracted by thermosonication and measured by spectrophotometrically. These fruits are good source of aforementioned properties. The native fruit population might have an economic potential as value added product such as organic production, food additive, or medicinal purposes. Also, results might be useful to preserve genetic diversty.

Project Number

19003.17.001

References

  • AOAC. (2000). Official Methods of Analysis, 17th edn, Titratable acidity of fruit products, 942.15. Association of Official Analytical Chemists International, Gaithersburg.
  • AOAC. (2005). AOAC, C. A. Official methods of analysis of the Association of Analytical Chemists International. Arts, M.J.T.J., Haenen, G.R.M.M., Voss, H.P., Bast, A. (2001). Masking of antioxidant capacity by the interaction of flavonoids with protein. Food Chem Toxicol, 39, 787-791.
  • Bahri-Sahloul, R., Ammar, S., Grec, S., & Harzallah-Skhiri, F. (2009). Chemical characterisation of Crataegus azarolus L. fruit from 14 genotypes found in Tunisia. J Hortic Sci and Biotech, 84(1), 23-28.
  • Beecher, G. R. (2003). Overview of dietary flavonoids: nomenclature, occurrence and intake. J nutr, 133(10), 3248S-3254S.
  • Celep, E., Aydın, A., & Yesilada, E. (2012). A comparative study on the in vitro antioxidant potentials of three edible fruits: Cornelian cherry, Japanese persimmon and cherry laurel. Food Chem Toxicol, 50(9), 3329-3335.
  • Chung, K. T., Wong, T. Y., Wei, C. I., Huang, Y. W., & Lin, Y. (1998). Tannins and human health: a review. Crit. Rev. Food Sci. Nutr, 38(6), 421-464.
  • Demir, F., & Kalyoncu, I. H. (2003). Some nutritional, pomological and physical properties of Cornelian cherry (Cornus mas L.). J. Food Eng., 60(3), 335-341.
  • Dinda, B., Kyriakopoulos, A. M., Dinda, S., Zoumpourlis, V., Thomaidis, N. S., Velegraki, A., ... & Dinda, M. (2016). Cornus mas L. (Cornelian cherry), an important European and Asian traditional food and medicine: Ethnomedicine, phytochemistry and pharmacology for its commercial utilization in drug industry. J. Ethnopharmacol., 193, 670-690.
  • Dubey, N.K., Kumar, R., Tripathi, P. (2004). Global promotion of herbal medicine: India’s opportunity. Curr. Sci., 86, 37-41. Ebrahimzadeh, M. A., & Bahramian, F. (2009). Antioxidant Activity of Crataegus pentaegyna Subsp. elburensis Fruits Extracts. P J B S, 12(5), 413-419.
  • Edwards, J. E., Brown, P.N., Talent, N., Dickinson, T.A., Shipley, P.R. (2012). A review of the chemistry of the genus Crataegus. Phytochemistry, 79, 5-26.
  • Gu, L., Kelm, M., Hammerstone, J.F., Beecher, G., Cunnıngham, D., Vannozzi, S. and Prior, R.L. (2002). Fractionation of polymeric procyanidins from lowbush blueberry and quantification of procyanidins in selected foods with an optimized normal-phase HPLC-MS fluorescent detection method. J Agric Food Chem, 50: 4852-4860.
  • Hassanpour, H., Yousef, H., Jafar, H., & Mohammad, A. (2011). Antioxidant capacity and phytochemical properties of Cornelian cherry (Cornus mas L.) genotypes in Iran. Sci. Hortic., 129(3), 459-463.
  • Kent, K., Charlton, K., O’Sullivan, T., & Oddy, W. H. (2020). Estimated intake and major food sources of flavonoids among Australian adolescents. Eur. J Nutr., 1-16.
  • Li, W. Q., Hu, Q. P., & Xu, J. G. (2015). Changes in physicochemical characteristics and free amino acids of hawthorn (Crataegus pinnatifida) fruits during maturation. Food Chem, 175, 50-56.
  • Ling, Z.Q., Xıe, B.J., Yang, E.L. (2005). Isolation, characterization, and determination of antioxidative activity of oligomeric procyanidins from the seedpod of Nelumbo nucifera Gaertn. J Agric Food Chem, 53: 2441-2445.
  • Liu, P., Kallio, H., Lü, D., Yang, B. (2011). Quantitative analysis of phenolic compounds in Chinese hawthorn (Crataegus spp.) fruits by high performance liquid chromatography-electrospray ionization mass spectrometry. Food Chem, 127, 1370-1377.
  • Liu, P., Ynag, B., & Kallio, H. (2010). Characterization of phenolic compounds in Chinese hawthorn (Crataegus pinnatifida Bge. Var. major) fruits by high performance liquid chromatography-electrospray ionization mass spectrometry. Food Chem, 121 (4), 1188-1197.
  • Ozdemir, A. E., Candir, E., Toplu, C., & Yildiz, E. R. C. A. N. (2020). Effect of Hot Water Treatment on Astringency Removal in Persimmon Cultivars. Int J Fruit Sci., 1-13.
  • Özcan, M., Hacıseferoğulları, H., Marakoğlu, T., & Arslan, D. (2005). Hawthorn (Crataegus spp.) fruit: some physical and chemical properties. J Food Eng, 69(4), 409-413. Pantelidis, G. E., Vasilakakis, M., Manganaris, G. A., & Diamantidis, G. R. (2007). Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chem, 102(3), 777-783.
  • Peleg, H., Gacon, K., Schlich, P. and Noble, A.C. (1999). Bitterness and astringency of flavan-3-ol monomers, dimers and trimers. J Sci Food Agric, 79: 1123- 1128.
  • Ruiz-Rodríguez, B. M., de ANCOS, B., Sánchez-Moreno, C., Fernández-Ruiz, V., de Cortes Sánchez-Mata, M., Cámara, M., & Tardío, J. (2014). Wild blackthorn (Prunus spinosa L.) and hawthorn (Crataegus monogyna Jacq.) fruits as valuable sources of antioxidants. Fruits, 69(1), 61-73.
  • Šamec, D., & Piljac-Žegarac, J. (2011). Postharvest stability of antioxidant compounds in hawthorn and cornelian cherries at room and refrigerator temperatures—Comparison with blackberries, white and red grapes. Sci Hortic., 131, 15-21.
  • Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol (Vol. 299, pp. 152-178). Academic press.
  • Tanner, H., & Brunner, H. R. (1979). Getraenke Analytik. D-7170. Schwaebisch Hall: Germany: Verlag Heller Chemie-und Verwaltungsgeselschaft mbH.
  • Xie, D.Y., Dixon, R.A. (2005). Proanthocyanidin biosynthesis-still more questions than answers?. Phytochemistry, 66: 2127- 2144.
  • Yang, B., & Liu, P. (2014). Composition and biological activities of hydrolyzable tannins of fruits of Phyllanthus emblica. J Agric Food Chem, 62(3), 529-541.
  • Zhang, Z., Chang, Q., Zhu, M., Huang, Y., Ho, W. K., & Chen, Z. Y. (2001). Characterization of antioxidants present in hawthorn fruits. Journal Nutr Biochem, 12(3), 144-152.
  • Zhishen, J., Mengcheng, T., Jianming, W. (1999). The determination of flavonoid content in mulberry and their scavenging effects on superoxide radicals. Food Chem, 64(4), 555-559.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Articles
Authors

Nihal Güzel 0000-0002-2387-9009

Project Number 19003.17.001
Publication Date May 17, 2021
Published in Issue Year 2021

Cite

APA Güzel, N. (2021). ALIÇ: BİYOAKTİF BİLEŞENLERİN TERMOSONİKASYON İLE EKSTRAKSİYONU VE FİZİKO-KİMYASAL ÖZELLİKLERİNİN DEĞERLENDİRİLMESİ. Gıda, 46(4), 939-948. https://doi.org/10.15237/gida.GD21077
AMA Güzel N. ALIÇ: BİYOAKTİF BİLEŞENLERİN TERMOSONİKASYON İLE EKSTRAKSİYONU VE FİZİKO-KİMYASAL ÖZELLİKLERİNİN DEĞERLENDİRİLMESİ. GIDA. May 2021;46(4):939-948. doi:10.15237/gida.GD21077
Chicago Güzel, Nihal. “ALIÇ: BİYOAKTİF BİLEŞENLERİN TERMOSONİKASYON İLE EKSTRAKSİYONU VE FİZİKO-KİMYASAL ÖZELLİKLERİNİN DEĞERLENDİRİLMESİ”. Gıda 46, no. 4 (May 2021): 939-48. https://doi.org/10.15237/gida.GD21077.
EndNote Güzel N (May 1, 2021) ALIÇ: BİYOAKTİF BİLEŞENLERİN TERMOSONİKASYON İLE EKSTRAKSİYONU VE FİZİKO-KİMYASAL ÖZELLİKLERİNİN DEĞERLENDİRİLMESİ. Gıda 46 4 939–948.
IEEE N. Güzel, “ALIÇ: BİYOAKTİF BİLEŞENLERİN TERMOSONİKASYON İLE EKSTRAKSİYONU VE FİZİKO-KİMYASAL ÖZELLİKLERİNİN DEĞERLENDİRİLMESİ”, GIDA, vol. 46, no. 4, pp. 939–948, 2021, doi: 10.15237/gida.GD21077.
ISNAD Güzel, Nihal. “ALIÇ: BİYOAKTİF BİLEŞENLERİN TERMOSONİKASYON İLE EKSTRAKSİYONU VE FİZİKO-KİMYASAL ÖZELLİKLERİNİN DEĞERLENDİRİLMESİ”. Gıda 46/4 (May 2021), 939-948. https://doi.org/10.15237/gida.GD21077.
JAMA Güzel N. ALIÇ: BİYOAKTİF BİLEŞENLERİN TERMOSONİKASYON İLE EKSTRAKSİYONU VE FİZİKO-KİMYASAL ÖZELLİKLERİNİN DEĞERLENDİRİLMESİ. GIDA. 2021;46:939–948.
MLA Güzel, Nihal. “ALIÇ: BİYOAKTİF BİLEŞENLERİN TERMOSONİKASYON İLE EKSTRAKSİYONU VE FİZİKO-KİMYASAL ÖZELLİKLERİNİN DEĞERLENDİRİLMESİ”. Gıda, vol. 46, no. 4, 2021, pp. 939-48, doi:10.15237/gida.GD21077.
Vancouver Güzel N. ALIÇ: BİYOAKTİF BİLEŞENLERİN TERMOSONİKASYON İLE EKSTRAKSİYONU VE FİZİKO-KİMYASAL ÖZELLİKLERİNİN DEĞERLENDİRİLMESİ. GIDA. 2021;46(4):939-48.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/