Review
BibTex RIS Cite

THREE-DIMENSIONAL (3D) PRINTING TECHNOLOGY FOR CUSTOMIZATION AND ELABORATION OF FOOD

Year 2022, , 91 - 106, 23.12.2021
https://doi.org/10.15237/gida.GD21112

Abstract

Three-dimensional (3D) printing technology offers great flexibility in the fabrication of objects with highly complex geometries, allowing intriguing functionalities previously inaccessible. Also referred to as additive manufacturing-(AM) or rapid prototyping, 3D printing is a developing digitized technology that has attracted great interest from researchers, industry, and consumers with its various ever-growing application areas, which include medicine, gastronomy, engineering, manufacturing, arts, and education. Although it has found use in different sectors, the area that has recently activated researchers in 3D printing technology is the "food sector". AM technology offers a ready-to-consume product that is tailored to the consumer, and complies with their taste, cost, and nutritional criteria. This review outlines the importance of 3D printing systems in the food industry, and it summarizes the first step of food printing, which comprises of 3D model building and slicing.

References

  • 1. 3DSLASH (2018). A 3D piece of cake. https://www.3dslash.net/slash.php (Erişim tarihi:10.06.2021).
  • 2. Aday, S., Aday, M. S. Üç Boyutlu Yazıcıların Gıda Endüstrisinde Kullanımı. Türkiye 13. Gıda Kongresi, 21-23 Ekim 2020, Çanakkale, Türkiye, 442 s.
  • 3. Aldanmaz, E. A., Sever, R. (2017). Gıdaların Dizaynında 3 Boyutlu Yazıcı Teknolojisi Uygulamaları. https://ab.org.tr/ab17/bildiri/242.pdf (Erişim tarihi: 28.05.2021).
  • 4. Arsava, E.M., Aydoğdu, İ., Güngör, L., Togay Işıkay, C., Yaka, E. (2018). İnme hastalarında nütrisyonel yaklaşım ve tedavi, Türkiye için uzman görüşü. Türk Nöroloji Dergisi, 24: 226-242, doi: 10.4274/tnd.92603.
  • 5. Boissonneault, T. (2019). Upprinting food transforms food waste into edible 3D printed snacks. https://www.3dprintingmedia.network/upprinting-food-food-waste-edible-3d-printedsnacks/ (Accessed: 10 June 2021).
  • 6. byFlow. (2018). The first high-end restaurant in the netherlands with 3D-printed food on the menu. https://www.3dbyflow.com/post/the-first-high-end-restaurant-in-the-netherlands-with-3d-printed-food-on-the-menu. (Accessed: 24 May 2021).
  • 7. Candoğan, K., Bulut, E. G. (2021). 3D Gıda baskısı: Güncel Durum ve Gelecek Eğilimleri. Gıda, 46(1), 152-167. doi: 10.15237/gida.GD20130.
  • 8. Chuanxing, F., Qi, W., Hui, L., Quancheng, Z., Wang, M. (2018). Effects of pea protein on the properties of potato starch-based 3D printing materials. Int. J. Food Eng, 14(3). doi: https://doi.org/10.1515/ijfe-2017-0297.
  • 9. D'Angelo, G., Hansen, H. N., Hart, A. J. (2016). Molecular gastronomy meets 3D Printing: Layered construction via reverse spherification. 3D Printing and Additive Manufacturing, 3(3), 152–159. doi: https://doi.org/10.1089/3dp.2016.0024.
  • 10. Dankar, I., Haddarah, A., Omar, F. E., Sepulcre, F., Pujolà, M. (2018a). 3D printing technology: The new era for food customization and elaboration. Trends Food Sci. Technol., 75, 231-242. doi: https://doi.org/10.1016/j.tifs.2018.03.018.
  • 11. Dankar, I., Haddarah, A., El Omar, F., Sepulcre, F., Pujolà, M. (2018b). Assessing the microstructural and rheological changes induced by food additives on potato puree. Food Chem. 240, 304-313. doi: https://doi.org/10.1016/j.foodchem.2017.07.121.
  • 12. Değerli, C., El, S. N. (2017). Üç Boyutlu (3D) Yazıcı Teknolojisi ile Gıda Üretimine Genel Bakış. Turk. tarım gıda bilim teknol. derg., 5(6), 593-599. doi: https://doi.org/10.24925/turjaf.v5i6.593-599.1062.
  • 13. Deloitte (2015). The 2015 American pantry study: The call to re-connect with consumers. https://www2.deloitte.com/content/dam/ Deloitte/us/Documents/consumer-business/us-cb-2015-american-pantry-study.pdf. (Accessed: 05 May 2021).
  • 14. de Roos, B. (2013). Personalised nutrition: Ready for practice? Proceedings of the Nutrition Society, 72(1), 48–52. https://www.cambridge.org/journals/. doi: https://doi.org/10.1017/S0029665112002844.
  • 15. Derossi, A., Caporizzi, R., Azzollini, D., Severini, C. (2018). Application of 3D printing for customized food. A case on the development of a fruit-based snack for children. J. Food Eng., 220, 65–75. doi: https://doi.org/10.1016/j.jfoodeng.2017.05.015.
  • 16. Dick, A., Bhandari, B., Prakash, S. (2019). 3D printing of meat. Meat Sci., 153, 35-44. doi: https://doi.org/10.1016/j.meatsci.2019.03.005.
  • 17. Dong, Z., Cui, H., Zhang, H., Wang, F., Zhan, X., Mayer, F., Levkin, P. A. (2021). 3D printing of inherently nanoporous polymers via polymerization-induced phase separation. Nature communications, 12(1), 1-12. doi: https://doi.org/10.1038/s41467-020-20498-1.
  • 18. Godoi, F. C., Prakash, S., Bhandari, B. R. (2016). 3D Printing technologies applied for food design: Status and prospects. J. Food Eng., 179, 44–54. doi: https://doi.org/10.1016/j.jfoodeng.2016.01.025.
  • 19. Guo, C., Zhang, M., Bhandari, B. (2019). Model building and slicing in food 3D printing processes: a review. Compr Rev Food Sci F., 18(4), 1052-1069. doi: https://doi.org/10.1111/1541-4337.12443.
  • 20. Hamilton, C. A., Alici, G., in het Panhuis, M. (2018). 3D printing vegemite and Marmite: Redefining “breadboards”. J. Food Eng., 220, 83–88. doi: https://doi.org/10.1016/j.jfoodeng.2017.01.008.
  • 21. Holland, S., Tuck, C., Foster, T. (2018). Selective recrystallization of cellulose composite powders and microstructure creation through 3D binder jetting. Carbohydr Polym., 200: 229-238. doi: https://doi.org/10.1016/j.carbpol.2018.07.064.
  • 22. Horst, D. J. (2018). 3D printing of pharmaceutical drug delivery systems. Archives of Organic and Inorganic Chemical Sciences, 1(2), 1-5. doi: 10.2174/1381612825666181206123828.
  • 23. iReviews (2014). 3D Systems Chef Jet Pro. http://3dfood-printers.www1.ireviews.com/3d-systems-chefjet-pro-review. (Accessed: 04 May 2021).
  • 24. Izdebska, J., Zolek-Tryznowska, Z. (2016). 3D food printing – facts and future. Agro Food Industry Hi-Tech., 27(2), 33–39.
  • 25. Kim, H. W., Bae, H., Park, H. J. (2017). Classification of the printability of selected food for 3D printing: Development of an assessment method using hydrocolloids as reference material. J. Food Eng, 215, 23-32. doi: https://doi.org/10.1016/j.jfoodeng.2017.07.017.
  • 26. Lanaro, M., Forrestal, D. P., Scheurer, S., Slinger, D. J., Liao, S., Powell, S. K., Woodruff, M. A. (2017). 3D printing complex chocolate objects: Platform design, optimization and evaluation. J. Food Eng, 215, 13-22. doi: https://doi.org/10.1016/j.jfoodeng.2017.06.029.
  • 27. Le Tohic, C., O'Sullivan, J. J., Drapala, K. P., Chartrin, V., Chan, T., Morrison, A. P., Kelly, A. L. (2018). Effect of 3D printing on the structure and textural properties of processed cheese. J. Food Eng., 220, 56-64. doi: https://doi.org/10.1016/j.jfoodeng.2017.02.003.
  • 28. Lille, M., Nurmela, A., Nordlund, E., Metsa-Kortelainen, S., Sozer, N. (2018). Applicability of protein and fiber-rich food materials in extrusion-based 3D printing. J. Food Eng., 220, 20–27. doi: https://doi.org/10.1016/j.jfoodeng.2017.04.034.
  • 29. Lipton, J., Arnold, D., Nigl, F., Lopez, N., Cohen, D., Norén, N., (2010). Mutlimaterial food printing with complex internal structure suitable for conventional postprocessing. 21st annual international solid freeform fabrication symposium-an additive manufacturing conference (pp. 809–815).
  • 30. Lipton, J. I., Cutler, M., Nigl, F., Cohen, D., Lipson, H. (2015). Additive manufacturing for the food industry-A review. Trends Food Sci. Technol., 43(1), 114–123. doi: https://doi.org/10.1016/j.tifs.2015.02.004.
  • 31. Liu, Z., Zhang, M., Bhandari, B., Wang, Y. (2017). 3D Printing: Printing precision and application in food sector. Trends Food Sci. Technol., 69, 83–94. doi: https://doi.org/10.1016/j.tifs.2017.08.018.
  • 32. Liu, Z., Zhang, M., Bhandari, B., Yang, C. (2018). Impact of rheological properties of mashed potatoes on 3D printing. J. Food Eng., 220, 76-82. doi: https://doi.org/10.1016/j.jfoodeng.2017.04.017.
  • 33. Mantihal, S., Prakash, S., Godoi, F. C., Bhandari, B. (2017). Optimization of chocolate 3D printing by correlating thermal and flow properties with 3D structure modeling. Innov Food Sci Emerg., 44, 21-29. doi: https://doi.org/10.1016/j.ifset.2017.09.012.
  • 34. Mantihal, S., Prakash, S., Bhandari, B. (2019). Texture‐modified 3D printed dark chocolate: Sensory evaluation and consumer perception study. J. Texture Stud., 50(5), 386-399. doi: https://doi.org/10.1111/jtxs.12472.
  • 35. Michaeli, J. G., DeGroff, M. C., Roxas, R. C. (2017). Error aggregation in the reengineering process from 3D scanning to printing. Scanning., 2017. https://doi.org/10.1155/2017/1218541.
  • 36. Molitch-Hou, M. (2015). Bocusini plug & play food 3D printer. 3D Printing Industry. https://3dprintingindustry.com/news/bocusini-plug-play-food-3d-printer-to-heat-up-kickstarter-tomorrow-48767/ . (Accessed: 01 July 2021).
  • 37. NASA (2013). 3D Printing: Food in space. https://www.nasa.gov/directorates/spacetech/home/feature_3d_food.html. (Accessed: 15 July 2021).
  • 38. Ötleş, S. (2016). Gıda sektöründe üç boyutlu yazıcıların kullanım olanakları. Dünya Gıda, 2016(11): 110–114.
  • 39. Peppel, C. V. D. (2015). 3D food printing MSc Thesis. Wageningen University, Netherlands, Holland.
  • 40. Pérez, B., Nykvist, H., Brøgger, A. F., Larsen, M. B., Falkeborg, M. F. (2019). Impact of macronutrients printability and 3D-printer parameters on 3D-food printing: A review. Food Chem., 287, 249-257.
  • 41. Pitayachaval, P., Sanklong, N., Thongrak, A. (2018). A review of 3D food printing technology. In MATEC Web of Conferences (Vol. 213, p. 01012). EDP Sciences. doi: https://doi.org/10.1051/matecconf/201821301012 .
  • 42. Prakash, S., Bhandari, B.R., Godoi, F.C., Zhang, M. (2019). Future outlook of 3D food printing. Fundamentals of 3D Food Printing and Applications, Godoi, F.C. (ed.), Bhandari, B.R. (ed.), Prakash, S. (ed.), Zhang, M. (ed.), Academic Press, London, the UK, pp. 373-381. ISBN: 012814565X, 9780128145654.
  • 43. Rayna, T., Striukova, L. (2016). From rapid prototyping to home fabrication: How 3D printing is changing business model innovation. Technol Forecast Soc Change., 102, 214-224. doi: https://doi.org/10.1016/j.techfore.2015.07.023.
  • 44. Severini, C., Derossi, A., Ricci, I., Caporizzi, R., Fiore, A. (2018). Printing a blend of fruit and vegetables. New advances on critical variables and shelf life of 3D edible objects. J. Food Eng., 220, 89–100. doi: https://doi.org/10.1016/j.jfoodeng.2017.08.025.
  • 45. Shahbazi, M., Jäger, H. (2020). Current status in the utilization of biobased polymers for 3D printing process: a systematic review of the materials, processes, and challenges. ACS Appl. Bio Mater., 4(1), 325-369. doi: https://doi.org/10.1021/acsabm.0c01379.
  • 46. Simon (2015). PepsiCo is creating new deep-ridged potato chips on 3D printers 3D Printer News & 3D Printing News. https://3dfoodprintingconference.com/food/pepsico-is-creating-new-deep-ridged-potato-chips-on-3d-printers/ (Accessed: 28 April 2021).
  • 47. Sun, J., Peng, Z., Yan, L., Fuh, J. Y. H., Hong, G. S. H., Fuh, J. Y. (2015a). 3D food printing—an innovative way of mass customization in food fabrication. Int J. Bioprinting, 1(1), 27–38. doi: 10.18063/IJB.2015.01.006.
  • 48. Sun, J., Zhou, W., Huang, D., Fuh, J. Y. H., Hong, G. S. (2015b). An Overview of 3D printing technologies for food fabrication Food Bioproc Tech., 8(8), 1605–1615). doi: 10.1007/s11947-015-1528-6.
  • 49. Tan, C., Yan Toh, W., Wong, G., Li, L. (2018). Extrusion-based 3D food printing – Materials and machines, Int J. Bioprinting, 4(2): 143. doi: 10.18063/IJB.v4i2.143.
  • 50. Tess (2016). Columbia scientists are developing a 3D food printer that can cook your food https://www.3ders.org/articles/20160801-columbia-engineers-are-developing-a-3d-food-printer-that-can-cook-your-food.html (Accessed: 02 June 2021).
  • 51. Türker, İ., İşleroğlu, H. (2020). Gıda Mühendisliği ve Gastronomi Bilimi: Ortak Yaklaşımlar ve Ortak Gelişim. Journal of Tourism and Gastronomy Studies, 8(2), 1552-1577. doi: https://doi.org/10.21325/jotags.2020.621.
  • 52. Vancauwenberghe, V., Katalagarianakis, L., Wang, Z., Meerts, M., Hertog, M., Verboven, P., Nicolai, B. (2017). Pectin based food-ink formulations for 3-D printing of customizable porous food simulants. Innov Food Sci Emerg., 42, 138–150. doi: https://doi.org/10.1016/j.ifset.2017.06.011.
  • 53. Vialva, T. (2018). Novameat 3D prints vegetatian steak from plant-based proteins. https://3dprintingindustry.com/news/novameat-3d-prints-vegetarian-steak-from-plant-based-proteins-144722/. (Accessed: 15 May 2021).
  • 54. Wang, L., Zhang, M., Bhandari, B., Yang, C. (2018). Investigation on fish surimi gel as promising food material for 3D printing. J. Food Eng, 220, 101–108. doi: https://doi.org/10.1016/j.jfoodeng.2017.02.029.
  • 55. Warner, E.L., Norton, L.T., Mills, T.B. (2019). Comparing the viscoelastic properties of gelatin and different concentrations of kappa-carrageenan mixtures for additive manufacturing applications. J. Food Eng., 246: 58-66. doi: https://doi.org/10.1016/j.jfoodeng.2018.10.033.
  • 56. Watkin, H. (2016). World’s first 3D printing restaurant opens in London. https://all3dp.com/worlds-first-3d-printing-restaurantcoming- london/. (Accessed: 02 April 2021).
  • 57. Wiggers, K. (2017). From pixels to plate, food has become 3D printing’s delicious new frontier.https://www.digitaltrends.com/cool-tech/3d-food-printers-how-they-could-change-what-you-eat/. (Accessed: 13 June 2021).
  • 58. Yang, F., Zhang, M., Bhandari, B. (2017). Recent development in 3D food printing. Crit Rev Food., 57(14), 3145-3153. doi: https://doi.org/10.1080/10408398.2015.1094732.
  • 59. Yang, F., Zhang, M., Bhandari, B., Liu, Y. (2018). Investigation on lemon juice gel as food material for 3D printing and optimization of printing parameters. LWT-Food Sci Technol., 87, 67–76. doi: https://doi.org/10.1016/j.lwt.2017.08.054.
  • 60. Yang, F., Guo, C., Zhang, M., Bhandari, B., Liu, Y. (2019). Improving 3D printing process of lemon juice gel based on fluid flow numerical simulation. LWT-Food Sci Technol., 102, 89–99. doi: https://doi.org/10.1016/j.lwt.2018.12.031.
  • 61. Zoran, A., Coelho, M. (2011). Cornucopia: the concept of digital gastronomy. Leonardo, 44(5), 425-431. doi: https://doi.org/10.1162/LEON_a_00243.

GIDANIN ÖZELLEŞTİRİLMESİ VE DETAYLANDIRILMASINDA ÜÇ BOYUTLU (3D) YAZICININ KULLANIMI

Year 2022, , 91 - 106, 23.12.2021
https://doi.org/10.15237/gida.GD21112

Abstract

Üç boyutlu (3D) yazıcı teknolojisi, oldukça karmaşık geometrik yapılara sahip üç boyutlu nesnelerin üretiminde büyük esneklik sunarak, daha önce erişilemeyen özelliklere ve ilgi çekici işlevlere olanak tanımaktadır. Katmanlı üretim veya hızlı prototipleme olarak da ifade edilen üç boyutlu yazıcı teknolojisi; tıp, gastronomi, mühendislik, imalat, sanat ve eğitim gibi sürekli büyüyen farklı uygulama alanlarıyla araştırmacıların, endüstrinin ve tüketicilerin büyük ilgisini çeken, gelişmekte olan dijitalleştirilmiş bir teknolojidir. Farklı sektörlerde uygulama alanı bulunmasına karşın kompleks uygulamaları gastronomi alanında ortaya çıkmaktadır. Başka bir ifade ile son çalışmalarda 3D yazıcı teknolojisinde araştırmacıları harekete geçiren trend alanı “gıda sektörü” olarak karşımıza çıkmaktadır. Gıda sektöründe katmanlı üretim teknolojisi tüketiciye özel lezzet, maliyet, beslenme kriterlerine uygun olan tüketime hazır bir ürün sunmaktadır. Bu derleme; gıda endüstrisinde 3D yazıcı teknolojisinin önemini ortaya koymakta, 3D model oluşturma ve dilimlemeden oluşan gıda yazıcı sisteminin ilk adımını özetlemektedir.

References

  • 1. 3DSLASH (2018). A 3D piece of cake. https://www.3dslash.net/slash.php (Erişim tarihi:10.06.2021).
  • 2. Aday, S., Aday, M. S. Üç Boyutlu Yazıcıların Gıda Endüstrisinde Kullanımı. Türkiye 13. Gıda Kongresi, 21-23 Ekim 2020, Çanakkale, Türkiye, 442 s.
  • 3. Aldanmaz, E. A., Sever, R. (2017). Gıdaların Dizaynında 3 Boyutlu Yazıcı Teknolojisi Uygulamaları. https://ab.org.tr/ab17/bildiri/242.pdf (Erişim tarihi: 28.05.2021).
  • 4. Arsava, E.M., Aydoğdu, İ., Güngör, L., Togay Işıkay, C., Yaka, E. (2018). İnme hastalarında nütrisyonel yaklaşım ve tedavi, Türkiye için uzman görüşü. Türk Nöroloji Dergisi, 24: 226-242, doi: 10.4274/tnd.92603.
  • 5. Boissonneault, T. (2019). Upprinting food transforms food waste into edible 3D printed snacks. https://www.3dprintingmedia.network/upprinting-food-food-waste-edible-3d-printedsnacks/ (Accessed: 10 June 2021).
  • 6. byFlow. (2018). The first high-end restaurant in the netherlands with 3D-printed food on the menu. https://www.3dbyflow.com/post/the-first-high-end-restaurant-in-the-netherlands-with-3d-printed-food-on-the-menu. (Accessed: 24 May 2021).
  • 7. Candoğan, K., Bulut, E. G. (2021). 3D Gıda baskısı: Güncel Durum ve Gelecek Eğilimleri. Gıda, 46(1), 152-167. doi: 10.15237/gida.GD20130.
  • 8. Chuanxing, F., Qi, W., Hui, L., Quancheng, Z., Wang, M. (2018). Effects of pea protein on the properties of potato starch-based 3D printing materials. Int. J. Food Eng, 14(3). doi: https://doi.org/10.1515/ijfe-2017-0297.
  • 9. D'Angelo, G., Hansen, H. N., Hart, A. J. (2016). Molecular gastronomy meets 3D Printing: Layered construction via reverse spherification. 3D Printing and Additive Manufacturing, 3(3), 152–159. doi: https://doi.org/10.1089/3dp.2016.0024.
  • 10. Dankar, I., Haddarah, A., Omar, F. E., Sepulcre, F., Pujolà, M. (2018a). 3D printing technology: The new era for food customization and elaboration. Trends Food Sci. Technol., 75, 231-242. doi: https://doi.org/10.1016/j.tifs.2018.03.018.
  • 11. Dankar, I., Haddarah, A., El Omar, F., Sepulcre, F., Pujolà, M. (2018b). Assessing the microstructural and rheological changes induced by food additives on potato puree. Food Chem. 240, 304-313. doi: https://doi.org/10.1016/j.foodchem.2017.07.121.
  • 12. Değerli, C., El, S. N. (2017). Üç Boyutlu (3D) Yazıcı Teknolojisi ile Gıda Üretimine Genel Bakış. Turk. tarım gıda bilim teknol. derg., 5(6), 593-599. doi: https://doi.org/10.24925/turjaf.v5i6.593-599.1062.
  • 13. Deloitte (2015). The 2015 American pantry study: The call to re-connect with consumers. https://www2.deloitte.com/content/dam/ Deloitte/us/Documents/consumer-business/us-cb-2015-american-pantry-study.pdf. (Accessed: 05 May 2021).
  • 14. de Roos, B. (2013). Personalised nutrition: Ready for practice? Proceedings of the Nutrition Society, 72(1), 48–52. https://www.cambridge.org/journals/. doi: https://doi.org/10.1017/S0029665112002844.
  • 15. Derossi, A., Caporizzi, R., Azzollini, D., Severini, C. (2018). Application of 3D printing for customized food. A case on the development of a fruit-based snack for children. J. Food Eng., 220, 65–75. doi: https://doi.org/10.1016/j.jfoodeng.2017.05.015.
  • 16. Dick, A., Bhandari, B., Prakash, S. (2019). 3D printing of meat. Meat Sci., 153, 35-44. doi: https://doi.org/10.1016/j.meatsci.2019.03.005.
  • 17. Dong, Z., Cui, H., Zhang, H., Wang, F., Zhan, X., Mayer, F., Levkin, P. A. (2021). 3D printing of inherently nanoporous polymers via polymerization-induced phase separation. Nature communications, 12(1), 1-12. doi: https://doi.org/10.1038/s41467-020-20498-1.
  • 18. Godoi, F. C., Prakash, S., Bhandari, B. R. (2016). 3D Printing technologies applied for food design: Status and prospects. J. Food Eng., 179, 44–54. doi: https://doi.org/10.1016/j.jfoodeng.2016.01.025.
  • 19. Guo, C., Zhang, M., Bhandari, B. (2019). Model building and slicing in food 3D printing processes: a review. Compr Rev Food Sci F., 18(4), 1052-1069. doi: https://doi.org/10.1111/1541-4337.12443.
  • 20. Hamilton, C. A., Alici, G., in het Panhuis, M. (2018). 3D printing vegemite and Marmite: Redefining “breadboards”. J. Food Eng., 220, 83–88. doi: https://doi.org/10.1016/j.jfoodeng.2017.01.008.
  • 21. Holland, S., Tuck, C., Foster, T. (2018). Selective recrystallization of cellulose composite powders and microstructure creation through 3D binder jetting. Carbohydr Polym., 200: 229-238. doi: https://doi.org/10.1016/j.carbpol.2018.07.064.
  • 22. Horst, D. J. (2018). 3D printing of pharmaceutical drug delivery systems. Archives of Organic and Inorganic Chemical Sciences, 1(2), 1-5. doi: 10.2174/1381612825666181206123828.
  • 23. iReviews (2014). 3D Systems Chef Jet Pro. http://3dfood-printers.www1.ireviews.com/3d-systems-chefjet-pro-review. (Accessed: 04 May 2021).
  • 24. Izdebska, J., Zolek-Tryznowska, Z. (2016). 3D food printing – facts and future. Agro Food Industry Hi-Tech., 27(2), 33–39.
  • 25. Kim, H. W., Bae, H., Park, H. J. (2017). Classification of the printability of selected food for 3D printing: Development of an assessment method using hydrocolloids as reference material. J. Food Eng, 215, 23-32. doi: https://doi.org/10.1016/j.jfoodeng.2017.07.017.
  • 26. Lanaro, M., Forrestal, D. P., Scheurer, S., Slinger, D. J., Liao, S., Powell, S. K., Woodruff, M. A. (2017). 3D printing complex chocolate objects: Platform design, optimization and evaluation. J. Food Eng, 215, 13-22. doi: https://doi.org/10.1016/j.jfoodeng.2017.06.029.
  • 27. Le Tohic, C., O'Sullivan, J. J., Drapala, K. P., Chartrin, V., Chan, T., Morrison, A. P., Kelly, A. L. (2018). Effect of 3D printing on the structure and textural properties of processed cheese. J. Food Eng., 220, 56-64. doi: https://doi.org/10.1016/j.jfoodeng.2017.02.003.
  • 28. Lille, M., Nurmela, A., Nordlund, E., Metsa-Kortelainen, S., Sozer, N. (2018). Applicability of protein and fiber-rich food materials in extrusion-based 3D printing. J. Food Eng., 220, 20–27. doi: https://doi.org/10.1016/j.jfoodeng.2017.04.034.
  • 29. Lipton, J., Arnold, D., Nigl, F., Lopez, N., Cohen, D., Norén, N., (2010). Mutlimaterial food printing with complex internal structure suitable for conventional postprocessing. 21st annual international solid freeform fabrication symposium-an additive manufacturing conference (pp. 809–815).
  • 30. Lipton, J. I., Cutler, M., Nigl, F., Cohen, D., Lipson, H. (2015). Additive manufacturing for the food industry-A review. Trends Food Sci. Technol., 43(1), 114–123. doi: https://doi.org/10.1016/j.tifs.2015.02.004.
  • 31. Liu, Z., Zhang, M., Bhandari, B., Wang, Y. (2017). 3D Printing: Printing precision and application in food sector. Trends Food Sci. Technol., 69, 83–94. doi: https://doi.org/10.1016/j.tifs.2017.08.018.
  • 32. Liu, Z., Zhang, M., Bhandari, B., Yang, C. (2018). Impact of rheological properties of mashed potatoes on 3D printing. J. Food Eng., 220, 76-82. doi: https://doi.org/10.1016/j.jfoodeng.2017.04.017.
  • 33. Mantihal, S., Prakash, S., Godoi, F. C., Bhandari, B. (2017). Optimization of chocolate 3D printing by correlating thermal and flow properties with 3D structure modeling. Innov Food Sci Emerg., 44, 21-29. doi: https://doi.org/10.1016/j.ifset.2017.09.012.
  • 34. Mantihal, S., Prakash, S., Bhandari, B. (2019). Texture‐modified 3D printed dark chocolate: Sensory evaluation and consumer perception study. J. Texture Stud., 50(5), 386-399. doi: https://doi.org/10.1111/jtxs.12472.
  • 35. Michaeli, J. G., DeGroff, M. C., Roxas, R. C. (2017). Error aggregation in the reengineering process from 3D scanning to printing. Scanning., 2017. https://doi.org/10.1155/2017/1218541.
  • 36. Molitch-Hou, M. (2015). Bocusini plug & play food 3D printer. 3D Printing Industry. https://3dprintingindustry.com/news/bocusini-plug-play-food-3d-printer-to-heat-up-kickstarter-tomorrow-48767/ . (Accessed: 01 July 2021).
  • 37. NASA (2013). 3D Printing: Food in space. https://www.nasa.gov/directorates/spacetech/home/feature_3d_food.html. (Accessed: 15 July 2021).
  • 38. Ötleş, S. (2016). Gıda sektöründe üç boyutlu yazıcıların kullanım olanakları. Dünya Gıda, 2016(11): 110–114.
  • 39. Peppel, C. V. D. (2015). 3D food printing MSc Thesis. Wageningen University, Netherlands, Holland.
  • 40. Pérez, B., Nykvist, H., Brøgger, A. F., Larsen, M. B., Falkeborg, M. F. (2019). Impact of macronutrients printability and 3D-printer parameters on 3D-food printing: A review. Food Chem., 287, 249-257.
  • 41. Pitayachaval, P., Sanklong, N., Thongrak, A. (2018). A review of 3D food printing technology. In MATEC Web of Conferences (Vol. 213, p. 01012). EDP Sciences. doi: https://doi.org/10.1051/matecconf/201821301012 .
  • 42. Prakash, S., Bhandari, B.R., Godoi, F.C., Zhang, M. (2019). Future outlook of 3D food printing. Fundamentals of 3D Food Printing and Applications, Godoi, F.C. (ed.), Bhandari, B.R. (ed.), Prakash, S. (ed.), Zhang, M. (ed.), Academic Press, London, the UK, pp. 373-381. ISBN: 012814565X, 9780128145654.
  • 43. Rayna, T., Striukova, L. (2016). From rapid prototyping to home fabrication: How 3D printing is changing business model innovation. Technol Forecast Soc Change., 102, 214-224. doi: https://doi.org/10.1016/j.techfore.2015.07.023.
  • 44. Severini, C., Derossi, A., Ricci, I., Caporizzi, R., Fiore, A. (2018). Printing a blend of fruit and vegetables. New advances on critical variables and shelf life of 3D edible objects. J. Food Eng., 220, 89–100. doi: https://doi.org/10.1016/j.jfoodeng.2017.08.025.
  • 45. Shahbazi, M., Jäger, H. (2020). Current status in the utilization of biobased polymers for 3D printing process: a systematic review of the materials, processes, and challenges. ACS Appl. Bio Mater., 4(1), 325-369. doi: https://doi.org/10.1021/acsabm.0c01379.
  • 46. Simon (2015). PepsiCo is creating new deep-ridged potato chips on 3D printers 3D Printer News & 3D Printing News. https://3dfoodprintingconference.com/food/pepsico-is-creating-new-deep-ridged-potato-chips-on-3d-printers/ (Accessed: 28 April 2021).
  • 47. Sun, J., Peng, Z., Yan, L., Fuh, J. Y. H., Hong, G. S. H., Fuh, J. Y. (2015a). 3D food printing—an innovative way of mass customization in food fabrication. Int J. Bioprinting, 1(1), 27–38. doi: 10.18063/IJB.2015.01.006.
  • 48. Sun, J., Zhou, W., Huang, D., Fuh, J. Y. H., Hong, G. S. (2015b). An Overview of 3D printing technologies for food fabrication Food Bioproc Tech., 8(8), 1605–1615). doi: 10.1007/s11947-015-1528-6.
  • 49. Tan, C., Yan Toh, W., Wong, G., Li, L. (2018). Extrusion-based 3D food printing – Materials and machines, Int J. Bioprinting, 4(2): 143. doi: 10.18063/IJB.v4i2.143.
  • 50. Tess (2016). Columbia scientists are developing a 3D food printer that can cook your food https://www.3ders.org/articles/20160801-columbia-engineers-are-developing-a-3d-food-printer-that-can-cook-your-food.html (Accessed: 02 June 2021).
  • 51. Türker, İ., İşleroğlu, H. (2020). Gıda Mühendisliği ve Gastronomi Bilimi: Ortak Yaklaşımlar ve Ortak Gelişim. Journal of Tourism and Gastronomy Studies, 8(2), 1552-1577. doi: https://doi.org/10.21325/jotags.2020.621.
  • 52. Vancauwenberghe, V., Katalagarianakis, L., Wang, Z., Meerts, M., Hertog, M., Verboven, P., Nicolai, B. (2017). Pectin based food-ink formulations for 3-D printing of customizable porous food simulants. Innov Food Sci Emerg., 42, 138–150. doi: https://doi.org/10.1016/j.ifset.2017.06.011.
  • 53. Vialva, T. (2018). Novameat 3D prints vegetatian steak from plant-based proteins. https://3dprintingindustry.com/news/novameat-3d-prints-vegetarian-steak-from-plant-based-proteins-144722/. (Accessed: 15 May 2021).
  • 54. Wang, L., Zhang, M., Bhandari, B., Yang, C. (2018). Investigation on fish surimi gel as promising food material for 3D printing. J. Food Eng, 220, 101–108. doi: https://doi.org/10.1016/j.jfoodeng.2017.02.029.
  • 55. Warner, E.L., Norton, L.T., Mills, T.B. (2019). Comparing the viscoelastic properties of gelatin and different concentrations of kappa-carrageenan mixtures for additive manufacturing applications. J. Food Eng., 246: 58-66. doi: https://doi.org/10.1016/j.jfoodeng.2018.10.033.
  • 56. Watkin, H. (2016). World’s first 3D printing restaurant opens in London. https://all3dp.com/worlds-first-3d-printing-restaurantcoming- london/. (Accessed: 02 April 2021).
  • 57. Wiggers, K. (2017). From pixels to plate, food has become 3D printing’s delicious new frontier.https://www.digitaltrends.com/cool-tech/3d-food-printers-how-they-could-change-what-you-eat/. (Accessed: 13 June 2021).
  • 58. Yang, F., Zhang, M., Bhandari, B. (2017). Recent development in 3D food printing. Crit Rev Food., 57(14), 3145-3153. doi: https://doi.org/10.1080/10408398.2015.1094732.
  • 59. Yang, F., Zhang, M., Bhandari, B., Liu, Y. (2018). Investigation on lemon juice gel as food material for 3D printing and optimization of printing parameters. LWT-Food Sci Technol., 87, 67–76. doi: https://doi.org/10.1016/j.lwt.2017.08.054.
  • 60. Yang, F., Guo, C., Zhang, M., Bhandari, B., Liu, Y. (2019). Improving 3D printing process of lemon juice gel based on fluid flow numerical simulation. LWT-Food Sci Technol., 102, 89–99. doi: https://doi.org/10.1016/j.lwt.2018.12.031.
  • 61. Zoran, A., Coelho, M. (2011). Cornucopia: the concept of digital gastronomy. Leonardo, 44(5), 425-431. doi: https://doi.org/10.1162/LEON_a_00243.
There are 61 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Articles
Authors

Hilal Meral 0000-0001-6238-7958

Aslihan Demirdöven 0000-0003-1246-9132

Publication Date December 23, 2021
Published in Issue Year 2022

Cite

APA Meral, H., & Demirdöven, A. (2021). GIDANIN ÖZELLEŞTİRİLMESİ VE DETAYLANDIRILMASINDA ÜÇ BOYUTLU (3D) YAZICININ KULLANIMI. Gıda, 47(1), 91-106. https://doi.org/10.15237/gida.GD21112
AMA Meral H, Demirdöven A. GIDANIN ÖZELLEŞTİRİLMESİ VE DETAYLANDIRILMASINDA ÜÇ BOYUTLU (3D) YAZICININ KULLANIMI. GIDA. December 2021;47(1):91-106. doi:10.15237/gida.GD21112
Chicago Meral, Hilal, and Aslihan Demirdöven. “GIDANIN ÖZELLEŞTİRİLMESİ VE DETAYLANDIRILMASINDA ÜÇ BOYUTLU (3D) YAZICININ KULLANIMI”. Gıda 47, no. 1 (December 2021): 91-106. https://doi.org/10.15237/gida.GD21112.
EndNote Meral H, Demirdöven A (December 1, 2021) GIDANIN ÖZELLEŞTİRİLMESİ VE DETAYLANDIRILMASINDA ÜÇ BOYUTLU (3D) YAZICININ KULLANIMI. Gıda 47 1 91–106.
IEEE H. Meral and A. Demirdöven, “GIDANIN ÖZELLEŞTİRİLMESİ VE DETAYLANDIRILMASINDA ÜÇ BOYUTLU (3D) YAZICININ KULLANIMI”, GIDA, vol. 47, no. 1, pp. 91–106, 2021, doi: 10.15237/gida.GD21112.
ISNAD Meral, Hilal - Demirdöven, Aslihan. “GIDANIN ÖZELLEŞTİRİLMESİ VE DETAYLANDIRILMASINDA ÜÇ BOYUTLU (3D) YAZICININ KULLANIMI”. Gıda 47/1 (December 2021), 91-106. https://doi.org/10.15237/gida.GD21112.
JAMA Meral H, Demirdöven A. GIDANIN ÖZELLEŞTİRİLMESİ VE DETAYLANDIRILMASINDA ÜÇ BOYUTLU (3D) YAZICININ KULLANIMI. GIDA. 2021;47:91–106.
MLA Meral, Hilal and Aslihan Demirdöven. “GIDANIN ÖZELLEŞTİRİLMESİ VE DETAYLANDIRILMASINDA ÜÇ BOYUTLU (3D) YAZICININ KULLANIMI”. Gıda, vol. 47, no. 1, 2021, pp. 91-106, doi:10.15237/gida.GD21112.
Vancouver Meral H, Demirdöven A. GIDANIN ÖZELLEŞTİRİLMESİ VE DETAYLANDIRILMASINDA ÜÇ BOYUTLU (3D) YAZICININ KULLANIMI. GIDA. 2021;47(1):91-106.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/