Review
BibTex RIS Cite

TOKSİK GLUTEN PEPTİTLERİN DETOKSİFİKASYONUNDA YENİ YÖNTEMLER VE GLUTEN TOKSİSİTESİNİN BELİRLENMESİ

Year 2017, Volume: 42 Issue: 2, 177 - 185, 15.04.2017

Abstract

Buğday, arpa ve çavdarda ve yulafın bazı çeşitlerinde bulunan
sırasıyla gliadin, hordein, sekalin ve avenin prolamin proteinlerine karşı
oto-immün sistemin intolerans göstermesinden kaynaklanan sindirim sistemi
rahatsızlığına çölyak hastalığı denmektedir. Çölyak hastaları için toksik olan
buğday, arpa ve çavdar prolaminleri, terminolojide genellikle “gluten” olarak
adlandırılır. Prolamin proteinlerinin ince bağırsakta kısmen hidrolizi sonucu oluşan
toksik gluten peptitler ince bağırsaklarda villilerin körelmesi ve iltihaplanma
gibi karakteristik belirtilere sebep olurlar. Glutensiz diyet, çölyak hastaları
için güvenli tek uygulamadır.
Codex Alimentarius Commission (CAC), glutensiz gıdaların
gluten içeriği eşik değerini <20 mg/kg, düşük gluten içerikli gıdaların ise <100
mg/kg olarak belirlemiştir. Glutensiz gıda üretimi için
son yıllarda yeni gluten detoksifikasyon yöntemleri araştırılmaktadır. Bunlar, bakteri
veya küf kaynaklı gluten-spesifik peptidazların kullanıldığı enzimatik
yöntemler, ekşi hamur uygulaması, tahılların çimlendirilmesiyle aktifleşen gluten-spesifik
peptidazlar ile glutenin oto-sindirimi, mikrobiyel transglutaminazın transamidasyonu
yoluyla detoksifikasyon gibi bazı alternatif yöntemlerdir. Glutenin
tespitinde immünolojik teknikler önemli rol oynamaktadır. CAC tarafından belirlenen
resmi standart metot, R5 antikorunu kullanan kompetetiv ELISA yöntemidir.   

References

  • 1. Rosell CM, Barro F, Sousa C, Mena MC. 2014. Cereals for Developing Gluten-Free Products and Analytical Tools for Gluten Detection, J Cereal Sci, 59(2014): 354-364.
  • 2. Wieser H, Koehler P. 2008. The Biochemical Basis of Celiac Disease, Cereal Chem, 85(1): 1-13.
  • 3. Camarca A, Del Mastro A, Gianfrani C. 2012. Repertoire of Gluten Peptides Active in Celiac Disease Patients: Perspectives for Translational Therapeutic Applications, Endocr Metab Immune Disord Drug Targets, 12(2): 207-219.
  • 4. Gallagher E. (Ed.), 2009. Gluten-Free Food Science and Technology, Wiley-Blackwell, Dublin, Ireland, 30, 85, 122 p.
  • 5. Diaz-Amigo C, Popping B. 2012. Gluten and Gluten-Free: Issues and Considerations of Labeling Regulations, Detection Methods and Assay Validation. J AOAC Int, 95 (2): 337-348.
  • 6. Michalcová E, Potocká1 E, Chmelová D, Ondrejovič M. 2012. Study of Wheat Protein Degradation During Germination, J Microbiol Biotech Food Sci, 1(6): 1439-1447.
  • 7. Knorr V, Kerpes R, Wieser H, Zarnkow M, Becker T, Koehler P. 2016. Production and Application of Barley Malt Extract with High Peptidase Activity for the Degradation of Gluten in Wort, Eur Food Res Technol, 242: 585-597.
  • 8. Johansson E, Malik AH, Hussain A, Rasheed F, Newson WR, Plivelic T, Hedenqvist MS, Gällstedt M, Kuktaite R. 2013. Wheat Gluten Polymer Structures: The Impact of Genotype, Environment and Processing on Their Functionality in Various Applications, Cereal Chem, 90(4): 367-376.
  • 9. Shewry P R, Miles M J, Tatham A S. 1994. The Prolamin Storage Proteins of Wheat and Related Cereals. Prog Biophys Mol Biol, 61: 37-59.
  • 10. Mika N, Gorshkov V, Spengler B, Zorn H, Rühl M. 2015. Characterization of Novel Insect Associated Peptidases for Hydrolysis of Food Proteins, Eur Food Res Technol, 240: 431-439.
  • 11. Cavaletti L, Abbondi M, Brunati M, Taravella A. December 2014. New Proteases Able to Hydrolyze Gluten Peptides and Proteins at Acidic pH, from the Actinomycete Actinoallomurus, US Patent 0356345.
  • 12. Comino I, de Lourdes Moreno M, Real A, Rodríguez-Herrera A, Barro F, Sousa C. 2013. The Gluten-Free Diet: Testing Alternative Cereals Tolerated by Celiac Patients, Nutrients, 5: 4250-4268.
  • 13. Loponen J. 2006. Prolamin Degradation in Sourdoughs, Doctoral Thesis, University of Helsinki, Helsinki, Finland.
  • 14. Caputo I, Lepretti M, Martusciello S, Esposito C. 2010. Enzymatic Strategies to Detoxify Gluten: Implications for Celiac Disease, Enzyme Res, 2010(5): 1-9.
  • 15. Koehler P, Wieser H. 2011. Peptidases for degradation of gluten and possible use in dietary therapy, Proceedings of the 24th Meeting of Working Group on Prolamin Analysis and Toxicity, 30 September-2 October, Ancona, Italy, 95-98 p.
  • 16. Hartmann G, Koehler P, Wieser H. 2006. Rapid Degradation of Gliadin Peptides Toxic for Coeliac Disease Patients by Proteases from Germinating Cereals, J Cereal Sci, 44(2006): 368-371.
  • 17. Gass JD, Khosla C, Bethune M, Siegel MJ. July 2014. Combination Enzyme Therapy for Digestion of Dietary Gluten, US Patent 8, 778, 338.
  • 18. Siegel MJ, Park M. July 2014. Proteases for Degrading Gluten, US Patent 0205587.
  • 19. Fernandez-Feo M, Wei G, Blumenkranz G, Dewhirst FE, Schuppan D, Oppenheim FG, Helmerhorst EJ. 2013. The Cultivable Human Oral Gluten-degrading Microbiome and Its Potential Implications in Coeliac Disease and Gluten Sensitivity, Eur J Clin Microbiol Infect Dis, 19: 386-394.
  • 20. Montserrat V, Bruins MJ, Edens L, Koning F. 2015. Influence of Dietary Components on Aspergillus niger Prolyl Endoprotease Mediated Gluten Degradation, Food Chem, 174(2015): 440-445.
  • 21. Bethune MT, Khosla C. 2012. Oral Enzyme Therapy for Celiac Sprue, Methods Enzymol, 502: 241-271.
  • 22. Gass J, Ehren J, Strohmeier G, Isaacs I, Khosla C. 2005. Fermentation, Purification, Formulation and Pharmacological Evaluation of a Prolyl Endopeptidase From Myxococcus xanthus: Implications for Celiac Sprue Therapy, Biotechnol Bioeng, 92(6): 674-684.
  • 23. Plugis NM, Khosla C. 2015. Therapeutic Approaches for Celiac Disease, Best Pract Res Cl Ga, 29(2015): 503-521.
  • 24. Kanerva P. 2011. Immunochemical Analysis of Prolamins in Gluten-free Foods, Academic Dissertation, University of Helsinki, Helsinki, Finland, 24 p.
  • 25. Wieser H, Koehler P. 2012. Detoxification of Gluten by Means of Enzymatic Treatment, J AOAC Int, 95(2): 356-363.
  • 26. Bellir N, Bellir MN, Rouabah L. 2014. Enzymatic Degradation of Gliadin by Nigella sativa Seeds Protease: Implications for New Treatment of Celiac Disease, World J Pharm Sci, 3(12): 1555-1571.
  • 27. Stoven S, Murray JA, Marietta E. 2012. Celiac Disease: Advances in Treatment via Gluten Modification, Clin Gastroenterol H, 10(8): 859 – 862.
  • 28. Cabrera-Chavez F, Calderon de la Barca AM. 2010. Trends in wheat technology and modification of gluten proteins for dietary treatment of coeliac disease patients, J Cereal Sci, 52(2010): 337-341.
  • 29. Loponen J, Mikola M, Katina K, Sontag-Strohm T, Salovaara H. 2004. Degradation of HMW Glutenins During Wheat Sourdough Fermentations, Cereal Chem, 81(1): 87-93.
  • 30. Rizzello CG, Curiel JA, Nionelli L, Vincentini O, Di Cagno R, Silano M, Gobbetti M, Coda R. 2014. Use of Fungal Proteases and Selected Sourdough Lactic Acid Bacteria for Making Wheat Bread with an Intermediate Content of Gluten, Food Microbiol, 37: 59-68.
  • 31. Angelis MD, Cassone A, Rizzello CG, Gagliardi F, Minervini F, Calasso M, Di Cagno R, Francavilla R, Gobbetti M. 2010. Mechanism of Degradation of Immunogenic Gluten Epitopes from Triticum turgidum L. var. durum by Sourdough Lactobacilli and Fungal Proteases, Appl Environ Microbiol, 76(2): 508-518.
  • 32. Deora, N. S., Deswal, A., Mishra, H. N., 2014. Alternative Approaches Towards Gluten-Free Dough Development: Recent Trends, Food Eng Rev, 6: 89-104.
  • 33. M’hir S, Ziadi M, Chammem N, Hamdi M. 2012. Gluten Proteolysis as Alternative Therapy for Celiac Patients : A mini review. Afr J Biotechnol, 11(29): 7323-7330.
  • 34. Zannini E, Pontonio E, Waters DM, Arendt EK. 2012. Applications of microbial fermentations for production of gluten-free products and perspectives. Appl Microbiol Biotechnol, 93: 473-485.
  • 35. Luoto S, Jiang Z, Brinck O, Sontag-Strohma T, Kanerva P, Bruins M, Edens L, Salovaara H, Loponen J. 2012. Malt hydrolysates for gluten-free applications: Autolytic and proline endopeptidase assisted removal of prolamins from wheat, barley and rye. J Cereal Sci, 56(2012): 504-509.
  • 36. Kerpes R, Knorr V, Procopio S Koehler P, Becker T. 2016. Gluten-specific peptidase activity of barley as affected by germination and its impact on gluten degradation, J Cereal Sci, 68(2016): 93-99.
  • 37. Stenman S. 2011. Coeliac Disease-inducing Gluten In vitro harmfulness and detoxification by germinating cereal enzymes, Academic Dissertation, University of Tampere, Tampere, Finland.
  • 38. Lerner, A., Matthias, T., 2015. Food Industrial Microbial Transglutaminase in Celiac Disease: Treat or Trick, Intern J Celiac Disease, 3(1): 1-6.
  • 39. Haraszi R, Chassaigne H, Maquet A, Ulberth F. 2011. Analytical Methods for Detection of Gluten in Food—Method Developments in Support of Food Labeling Legislation, J AOAC Int, 94(4): 1006-1025.
  • 40. Cabrera-Chavez F, Rouzaud-Sandez O, Sotelo-Cruz N, Calderon De La Barca AM. 2008. Transglutaminase Treatment of Wheat and Maize Prolamins of Bread Increases the Serum IgA Reactivity of Celiac Disease Patients, J Agric Food Chem, 56: 1387-1391.
  • 41. Brzozowski B. 2016. Immunoreactivity of wheat proteins modified by hydrolysis and polymerisation, Eur Food Res Technol, 242: 1025-1040.
  • 42. Gianfrani, C, Siciliano RA, Facchiano AM, Camarca A, Mazzeo MF, Constantini S, Salvati VM, Maurano F, Mazzarella G, Iaquinto G, Bergamo P, Rossi M, 2007. Transamidation of Wheat Flour Inhibits the Response to Gliadin of Intestinal T Cells in Celiac Disease, Gastroenterology, 133(3): 780-789.
  • 43. Heredia, N., Chavez, F. C., Islas-Rubio, A., Calderon, A. M., 2014. Transamidation of Gluten Proteins During the Bread-Making Process of Wheat Flour to Produce Breads with Less Immunoreactive Gluten, Food Funct, 5: 1813-1818.
  • 44. Bergamo P, Gianfrani C, Capobianco F, Moscaritolo S, Rossi M. 2011. Transamidation of Wheat: An enzyme strategy to detoxify gluten, Proceedings of the 24th Meeting of Working Group on Prolamin Analysis and Toxicity, 30 Sep-2 Oct, Ancona, Italy, 91-94 p.
  • 45. Cui C, Zhao H, Zhao M, Chai H. 2011. Effects of Extrusion Treatment on Enzymatic Hydrolysis Properties of Wheat Gluten, J Food Process Eng, 34(2011): 187-203.
  • 46. Rahaman T, Vasiljevic T, Ramchandran L. 2016. Shear, heat and pH induced conformational changes of wheat gluten – Impact on antigenicity, Food Chem, 196 (2016): 180-188.
  • 47. Colgravea ML, Goswamia H, Blundellb M, Howittb CA, Tannerb GJ. 2014. Using mass spectrometry to detect hydrolysed gluten in beer that is responsible for false negatives by ELISA, J Chromatogr A, 1370 (2014): 105–114.
  • 48. Hager AS, Taylor JP, Waters DM, Arendt EK. 2014. Gluten free beer-A review, Trends Food Sci Tech, 36 (2014): 44-54.
  • 49. Comino I, Real A, Moreno ML, Montes R, Cebolla A, Sousa C. 2013. Immunological determination of gliadin 33-mer equivalent peptides in beers as a specific and practical analytical method to assess safety for celiac patients. J Sci Food Agric, 93, 933-943.
  • 50. Pinto A, Nadal P, Henry O, Svobodova M. 2013. Label-Free Detection of Gliadin Food Allergen Mediated by Real-Time Apta-PCR, Anal Bioanal Chem, 406:515–524.
  • 51. Mujico JR, Lombardía M, Mena MC, Méndez E, Albar JP. 2011. A highly sensitive real-time PCR system for quantification of wheat contamination in gluten-free food for celiac patients, Food Chem, 128(2011): 795–801.

NEW METHODS FOR DETOXIFYING OF TOXIC GLUTEN PEPTIDES AND DETERMINATION OF GLUTEN TOXICITY

Year 2017, Volume: 42 Issue: 2, 177 - 185, 15.04.2017

Abstract

Celiac disease (CD), which is a gastrointestinal disorder, is
an auto-immune intolerance against prolamine proteins, like gliadin, hordein,
secalin and avenin, of wheat, barley, rye and in some varieties of oats,
respectively. Prolamins of wheat, barley and rye, which are toxic to celiac
patients, are generally recognised as ‘gluten’ terminologically. Toxic gluten
peptides, which are formed through partial hydrolysis of prolamin proteins,
cause characteristic inflammation and
villous
atrophy in upper small intestine of celiac patients. Gluten-free diet is the only safety treatment for celiac patients. Codex
Alimentarius Commission (CAC) determined that the threshold values of gluten
content in gluten-free foods and foods containing low levels of gluten are
<20 mg/kg and <100 mg/kg, respectively. For
the production of gluten-free products, 
the novel gluten detoxifying methods have recently been investigated.
These are alternative methods, such as enzymatic approaches like using
gluten-specific peptidases obtained from fungi or bacteria, sourdough
practices, autolysis of gluten with activated gluten-spesific peptidases during
germination of cereals, using microbial transglutaminase fulfilling transamidation
reactions. Immunologic technics play an important role in the quantification of
gluten. The official standart method issued by CAC is the competitive ELISA
method using R5 antibody.

References

  • 1. Rosell CM, Barro F, Sousa C, Mena MC. 2014. Cereals for Developing Gluten-Free Products and Analytical Tools for Gluten Detection, J Cereal Sci, 59(2014): 354-364.
  • 2. Wieser H, Koehler P. 2008. The Biochemical Basis of Celiac Disease, Cereal Chem, 85(1): 1-13.
  • 3. Camarca A, Del Mastro A, Gianfrani C. 2012. Repertoire of Gluten Peptides Active in Celiac Disease Patients: Perspectives for Translational Therapeutic Applications, Endocr Metab Immune Disord Drug Targets, 12(2): 207-219.
  • 4. Gallagher E. (Ed.), 2009. Gluten-Free Food Science and Technology, Wiley-Blackwell, Dublin, Ireland, 30, 85, 122 p.
  • 5. Diaz-Amigo C, Popping B. 2012. Gluten and Gluten-Free: Issues and Considerations of Labeling Regulations, Detection Methods and Assay Validation. J AOAC Int, 95 (2): 337-348.
  • 6. Michalcová E, Potocká1 E, Chmelová D, Ondrejovič M. 2012. Study of Wheat Protein Degradation During Germination, J Microbiol Biotech Food Sci, 1(6): 1439-1447.
  • 7. Knorr V, Kerpes R, Wieser H, Zarnkow M, Becker T, Koehler P. 2016. Production and Application of Barley Malt Extract with High Peptidase Activity for the Degradation of Gluten in Wort, Eur Food Res Technol, 242: 585-597.
  • 8. Johansson E, Malik AH, Hussain A, Rasheed F, Newson WR, Plivelic T, Hedenqvist MS, Gällstedt M, Kuktaite R. 2013. Wheat Gluten Polymer Structures: The Impact of Genotype, Environment and Processing on Their Functionality in Various Applications, Cereal Chem, 90(4): 367-376.
  • 9. Shewry P R, Miles M J, Tatham A S. 1994. The Prolamin Storage Proteins of Wheat and Related Cereals. Prog Biophys Mol Biol, 61: 37-59.
  • 10. Mika N, Gorshkov V, Spengler B, Zorn H, Rühl M. 2015. Characterization of Novel Insect Associated Peptidases for Hydrolysis of Food Proteins, Eur Food Res Technol, 240: 431-439.
  • 11. Cavaletti L, Abbondi M, Brunati M, Taravella A. December 2014. New Proteases Able to Hydrolyze Gluten Peptides and Proteins at Acidic pH, from the Actinomycete Actinoallomurus, US Patent 0356345.
  • 12. Comino I, de Lourdes Moreno M, Real A, Rodríguez-Herrera A, Barro F, Sousa C. 2013. The Gluten-Free Diet: Testing Alternative Cereals Tolerated by Celiac Patients, Nutrients, 5: 4250-4268.
  • 13. Loponen J. 2006. Prolamin Degradation in Sourdoughs, Doctoral Thesis, University of Helsinki, Helsinki, Finland.
  • 14. Caputo I, Lepretti M, Martusciello S, Esposito C. 2010. Enzymatic Strategies to Detoxify Gluten: Implications for Celiac Disease, Enzyme Res, 2010(5): 1-9.
  • 15. Koehler P, Wieser H. 2011. Peptidases for degradation of gluten and possible use in dietary therapy, Proceedings of the 24th Meeting of Working Group on Prolamin Analysis and Toxicity, 30 September-2 October, Ancona, Italy, 95-98 p.
  • 16. Hartmann G, Koehler P, Wieser H. 2006. Rapid Degradation of Gliadin Peptides Toxic for Coeliac Disease Patients by Proteases from Germinating Cereals, J Cereal Sci, 44(2006): 368-371.
  • 17. Gass JD, Khosla C, Bethune M, Siegel MJ. July 2014. Combination Enzyme Therapy for Digestion of Dietary Gluten, US Patent 8, 778, 338.
  • 18. Siegel MJ, Park M. July 2014. Proteases for Degrading Gluten, US Patent 0205587.
  • 19. Fernandez-Feo M, Wei G, Blumenkranz G, Dewhirst FE, Schuppan D, Oppenheim FG, Helmerhorst EJ. 2013. The Cultivable Human Oral Gluten-degrading Microbiome and Its Potential Implications in Coeliac Disease and Gluten Sensitivity, Eur J Clin Microbiol Infect Dis, 19: 386-394.
  • 20. Montserrat V, Bruins MJ, Edens L, Koning F. 2015. Influence of Dietary Components on Aspergillus niger Prolyl Endoprotease Mediated Gluten Degradation, Food Chem, 174(2015): 440-445.
  • 21. Bethune MT, Khosla C. 2012. Oral Enzyme Therapy for Celiac Sprue, Methods Enzymol, 502: 241-271.
  • 22. Gass J, Ehren J, Strohmeier G, Isaacs I, Khosla C. 2005. Fermentation, Purification, Formulation and Pharmacological Evaluation of a Prolyl Endopeptidase From Myxococcus xanthus: Implications for Celiac Sprue Therapy, Biotechnol Bioeng, 92(6): 674-684.
  • 23. Plugis NM, Khosla C. 2015. Therapeutic Approaches for Celiac Disease, Best Pract Res Cl Ga, 29(2015): 503-521.
  • 24. Kanerva P. 2011. Immunochemical Analysis of Prolamins in Gluten-free Foods, Academic Dissertation, University of Helsinki, Helsinki, Finland, 24 p.
  • 25. Wieser H, Koehler P. 2012. Detoxification of Gluten by Means of Enzymatic Treatment, J AOAC Int, 95(2): 356-363.
  • 26. Bellir N, Bellir MN, Rouabah L. 2014. Enzymatic Degradation of Gliadin by Nigella sativa Seeds Protease: Implications for New Treatment of Celiac Disease, World J Pharm Sci, 3(12): 1555-1571.
  • 27. Stoven S, Murray JA, Marietta E. 2012. Celiac Disease: Advances in Treatment via Gluten Modification, Clin Gastroenterol H, 10(8): 859 – 862.
  • 28. Cabrera-Chavez F, Calderon de la Barca AM. 2010. Trends in wheat technology and modification of gluten proteins for dietary treatment of coeliac disease patients, J Cereal Sci, 52(2010): 337-341.
  • 29. Loponen J, Mikola M, Katina K, Sontag-Strohm T, Salovaara H. 2004. Degradation of HMW Glutenins During Wheat Sourdough Fermentations, Cereal Chem, 81(1): 87-93.
  • 30. Rizzello CG, Curiel JA, Nionelli L, Vincentini O, Di Cagno R, Silano M, Gobbetti M, Coda R. 2014. Use of Fungal Proteases and Selected Sourdough Lactic Acid Bacteria for Making Wheat Bread with an Intermediate Content of Gluten, Food Microbiol, 37: 59-68.
  • 31. Angelis MD, Cassone A, Rizzello CG, Gagliardi F, Minervini F, Calasso M, Di Cagno R, Francavilla R, Gobbetti M. 2010. Mechanism of Degradation of Immunogenic Gluten Epitopes from Triticum turgidum L. var. durum by Sourdough Lactobacilli and Fungal Proteases, Appl Environ Microbiol, 76(2): 508-518.
  • 32. Deora, N. S., Deswal, A., Mishra, H. N., 2014. Alternative Approaches Towards Gluten-Free Dough Development: Recent Trends, Food Eng Rev, 6: 89-104.
  • 33. M’hir S, Ziadi M, Chammem N, Hamdi M. 2012. Gluten Proteolysis as Alternative Therapy for Celiac Patients : A mini review. Afr J Biotechnol, 11(29): 7323-7330.
  • 34. Zannini E, Pontonio E, Waters DM, Arendt EK. 2012. Applications of microbial fermentations for production of gluten-free products and perspectives. Appl Microbiol Biotechnol, 93: 473-485.
  • 35. Luoto S, Jiang Z, Brinck O, Sontag-Strohma T, Kanerva P, Bruins M, Edens L, Salovaara H, Loponen J. 2012. Malt hydrolysates for gluten-free applications: Autolytic and proline endopeptidase assisted removal of prolamins from wheat, barley and rye. J Cereal Sci, 56(2012): 504-509.
  • 36. Kerpes R, Knorr V, Procopio S Koehler P, Becker T. 2016. Gluten-specific peptidase activity of barley as affected by germination and its impact on gluten degradation, J Cereal Sci, 68(2016): 93-99.
  • 37. Stenman S. 2011. Coeliac Disease-inducing Gluten In vitro harmfulness and detoxification by germinating cereal enzymes, Academic Dissertation, University of Tampere, Tampere, Finland.
  • 38. Lerner, A., Matthias, T., 2015. Food Industrial Microbial Transglutaminase in Celiac Disease: Treat or Trick, Intern J Celiac Disease, 3(1): 1-6.
  • 39. Haraszi R, Chassaigne H, Maquet A, Ulberth F. 2011. Analytical Methods for Detection of Gluten in Food—Method Developments in Support of Food Labeling Legislation, J AOAC Int, 94(4): 1006-1025.
  • 40. Cabrera-Chavez F, Rouzaud-Sandez O, Sotelo-Cruz N, Calderon De La Barca AM. 2008. Transglutaminase Treatment of Wheat and Maize Prolamins of Bread Increases the Serum IgA Reactivity of Celiac Disease Patients, J Agric Food Chem, 56: 1387-1391.
  • 41. Brzozowski B. 2016. Immunoreactivity of wheat proteins modified by hydrolysis and polymerisation, Eur Food Res Technol, 242: 1025-1040.
  • 42. Gianfrani, C, Siciliano RA, Facchiano AM, Camarca A, Mazzeo MF, Constantini S, Salvati VM, Maurano F, Mazzarella G, Iaquinto G, Bergamo P, Rossi M, 2007. Transamidation of Wheat Flour Inhibits the Response to Gliadin of Intestinal T Cells in Celiac Disease, Gastroenterology, 133(3): 780-789.
  • 43. Heredia, N., Chavez, F. C., Islas-Rubio, A., Calderon, A. M., 2014. Transamidation of Gluten Proteins During the Bread-Making Process of Wheat Flour to Produce Breads with Less Immunoreactive Gluten, Food Funct, 5: 1813-1818.
  • 44. Bergamo P, Gianfrani C, Capobianco F, Moscaritolo S, Rossi M. 2011. Transamidation of Wheat: An enzyme strategy to detoxify gluten, Proceedings of the 24th Meeting of Working Group on Prolamin Analysis and Toxicity, 30 Sep-2 Oct, Ancona, Italy, 91-94 p.
  • 45. Cui C, Zhao H, Zhao M, Chai H. 2011. Effects of Extrusion Treatment on Enzymatic Hydrolysis Properties of Wheat Gluten, J Food Process Eng, 34(2011): 187-203.
  • 46. Rahaman T, Vasiljevic T, Ramchandran L. 2016. Shear, heat and pH induced conformational changes of wheat gluten – Impact on antigenicity, Food Chem, 196 (2016): 180-188.
  • 47. Colgravea ML, Goswamia H, Blundellb M, Howittb CA, Tannerb GJ. 2014. Using mass spectrometry to detect hydrolysed gluten in beer that is responsible for false negatives by ELISA, J Chromatogr A, 1370 (2014): 105–114.
  • 48. Hager AS, Taylor JP, Waters DM, Arendt EK. 2014. Gluten free beer-A review, Trends Food Sci Tech, 36 (2014): 44-54.
  • 49. Comino I, Real A, Moreno ML, Montes R, Cebolla A, Sousa C. 2013. Immunological determination of gliadin 33-mer equivalent peptides in beers as a specific and practical analytical method to assess safety for celiac patients. J Sci Food Agric, 93, 933-943.
  • 50. Pinto A, Nadal P, Henry O, Svobodova M. 2013. Label-Free Detection of Gliadin Food Allergen Mediated by Real-Time Apta-PCR, Anal Bioanal Chem, 406:515–524.
  • 51. Mujico JR, Lombardía M, Mena MC, Méndez E, Albar JP. 2011. A highly sensitive real-time PCR system for quantification of wheat contamination in gluten-free food for celiac patients, Food Chem, 128(2011): 795–801.
There are 51 citations in total.

Details

Journal Section Articles
Authors

Ezgi Karademir, Erkan Yalçın

Publication Date April 15, 2017
Published in Issue Year 2017 Volume: 42 Issue: 2

Cite

APA Erkan Yalçın, E. K. (2017). TOKSİK GLUTEN PEPTİTLERİN DETOKSİFİKASYONUNDA YENİ YÖNTEMLER VE GLUTEN TOKSİSİTESİNİN BELİRLENMESİ. Gıda, 42(2), 177-185.
AMA Erkan Yalçın EK. TOKSİK GLUTEN PEPTİTLERİN DETOKSİFİKASYONUNDA YENİ YÖNTEMLER VE GLUTEN TOKSİSİTESİNİN BELİRLENMESİ. The Journal of Food. April 2017;42(2):177-185.
Chicago Erkan Yalçın, Ezgi Karademir,. “TOKSİK GLUTEN PEPTİTLERİN DETOKSİFİKASYONUNDA YENİ YÖNTEMLER VE GLUTEN TOKSİSİTESİNİN BELİRLENMESİ”. Gıda 42, no. 2 (April 2017): 177-85.
EndNote Erkan Yalçın EK (April 1, 2017) TOKSİK GLUTEN PEPTİTLERİN DETOKSİFİKASYONUNDA YENİ YÖNTEMLER VE GLUTEN TOKSİSİTESİNİN BELİRLENMESİ. Gıda 42 2 177–185.
IEEE E. K. Erkan Yalçın, “TOKSİK GLUTEN PEPTİTLERİN DETOKSİFİKASYONUNDA YENİ YÖNTEMLER VE GLUTEN TOKSİSİTESİNİN BELİRLENMESİ”, The Journal of Food, vol. 42, no. 2, pp. 177–185, 2017.
ISNAD Erkan Yalçın, Ezgi Karademir,. “TOKSİK GLUTEN PEPTİTLERİN DETOKSİFİKASYONUNDA YENİ YÖNTEMLER VE GLUTEN TOKSİSİTESİNİN BELİRLENMESİ”. Gıda 42/2 (April 2017), 177-185.
JAMA Erkan Yalçın EK. TOKSİK GLUTEN PEPTİTLERİN DETOKSİFİKASYONUNDA YENİ YÖNTEMLER VE GLUTEN TOKSİSİTESİNİN BELİRLENMESİ. The Journal of Food. 2017;42:177–185.
MLA Erkan Yalçın, Ezgi Karademir,. “TOKSİK GLUTEN PEPTİTLERİN DETOKSİFİKASYONUNDA YENİ YÖNTEMLER VE GLUTEN TOKSİSİTESİNİN BELİRLENMESİ”. Gıda, vol. 42, no. 2, 2017, pp. 177-85.
Vancouver Erkan Yalçın EK. TOKSİK GLUTEN PEPTİTLERİN DETOKSİFİKASYONUNDA YENİ YÖNTEMLER VE GLUTEN TOKSİSİTESİNİN BELİRLENMESİ. The Journal of Food. 2017;42(2):177-85.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/