KRİTİK ALTI SU İLE FINDIK ATIKLARINDAN ANTİOKSİDAN BİLEŞİKLERİN EKSTRAKSİYONU
Year 2018,
Volume: 43 Issue: 2, 211 - 221, 20.02.2018
Ali Oğuz Büyükkileci
,
Ece Sürek
Abstract
Türkiye fındık üretim ve ihracatında dünya lideridir.
Fındığın tarımı ve işlenmesi sırasında büyük miktarda kabuk, zuruf ve dal gibi
atıklar açığa çıkmaktadır. Bu atıkların çevre dostu bir teknoloji ile işlenmesi
ve önemli ürünlerin üretilmesi katma değer sağlayabilir. Bu çalışmada, fındık
atıklarının farklı sıcaklık (150-200°C) ve sürelerde (0-45 dk) kritik altı su ekstraksiyonu
ile elde edilen likörlerinin toplam fenolik madde içeriği (TFİ) ve toplam
antioksidan aktiviteleri (TAA) incelenmiştir. Genel olarak, kritik altı su
ekstraksiyonu ile aseton ve metanol ekstraksiyonuna göre daha yüksek verim elde
edilmiştir. Sıcaklık arttıkça fındık kabuğundan elde edilen TFİ ve TAA
artmıştır. Süre artışı 180°C’de
istatistiksel olarak önemli bir fark yaratmazken, 190°C’de
TFİ süre arttıkça yükselmiştir (P
<0.05). Bu iki koşulun fındık kabuğu üzerine etkisi şiddet faktörünün
logaritmik değeri (log Ro)
hesaplanarak tek bir parametrede de incelenmiştir. log Ro arttıkça TFİ (905.3-2115.7 mg GAE/100 g kabuk) ve TAA
(8163.9-12261.5 mg TE/100 g kabuk) değerleri yükselmiştir.
References
- Agourram, A., Ghirardello, D., Rantsiou, K., Zeppa, G., Belviso, S., Romane, A., Oufdou, K., Giordano, M. (2012). Phenolic content, antioxidant potential and antimicrobial activities of fruit and vegetable by-product extracts. Int J Food Prop, 16(5): 1092-1104. doi:10.1080/10942912.2011.576446
- Alasalvar, C., Karamać, M., Kosińska, A., Rybarczyk, A., Shahidi, F., Amarowicz, R. (2009). Antioxidant activity of hazelnut skin phenolics. J Agric Food Chem, 57(11), 4645–4650. doi:10.1021/jf900489d
- Alkaya, E., Altay, T., Ata, A., Çakar, S. O., Durtas, P. (2010). Tarımsal atıklardan yüksek katma değerli biyoürün üretimi. İleri Teknoloji Projeleri Destek Programı Raporu, Türkiye Teknoloji Geliştirme Vakfı, Ankara, Türkiye, s. 35.
- Alvira, P., Tomás-Pejó, E., Ballesteros, M., Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour Technol, 101(13), 4851–4861. doi:10.1016/j.biortech.2009.11.093
- Amendola, D., De Faveri, D. M., Egües, I., Serrano, L., Labidi, J., Spigno, G. (2012). Autohydrolysis and organosolv process for recovery of hemicelluloses, phenolic compounds and lignin from grape stalks. Bioresour Technol, 107, 267–274. doi:10.1016/j.biortech.2011.12.108
- Carvalheiro, F., Esteves, M. P., Parajó, J. C., Pereira, H., Gírio, F. M. (2004). Production of oligosaccharides by autohydrolysis of brewery’s spent grain. Bioresour Technol, 91(1), 93–100. doi:10.1016/S0960-8524(03)00148-2
- Carvalheiro, F., Silva-Fernandes, T., Duarte, L. C., Gírio, F. M. (2009). Wheat straw autohydrolysis: Process optimization and products characterization. Appl Biochem Biotechnol, 153(1–3), 84–93. doi:10.1007/s12010-008-8448-0
- Carvalho, A. F. A., Neto, P. D. O., da Silva, D. F., Pastore, G. M. (2013). Xylo-oligosaccharides from lignocellulosic materials: Chemical structure, health benefits and production by chemical and enzymatic hydrolysis. Food Res Int, 51(1), 75–85. doi:10.1016/j.foodres.2012.11.021
- Conde, E., Cara, C., Moure, A., Ruiz, E., Castro, E., Domínguez, H. (2009). Antioxidant activity of the phenolic compounds released by hydrothermal treatments of olive tree pruning. Food Chem, 114(3), 806–812. doi:10.1016/j.foodchem.2008.10.017
- Çöpür, Y., Tozluoglu, A., Özkan, M. (2013). Evaluating pretreatment techniques for converting hazelnut husks to bioethanol. Bioresour Technol, 129, 182–190. doi:10.1016/j.biortech.2012.11.058
- Del Rio, D., Calani, L., Dall’Asta, M., Brighenti, F. (2011). Polyphenolic composition of hazelnut skin. J Agric Food Chem, 59(18), 9935–9941. doi:10.1021/jf202449z
FAOSTAT (2017). Production of hazelnuts with shell. http://faostat3.fao.org/faostat-gateway/go/to/download/Q/QC/E (Erişim tarihi: 01.06.2017)
- Guney, M. S. (2013). Utilization of hazelnut husk as biomass. Sustainable Energy Technol Assess, 4, 72–77. doi:10.1016/j.seta.2013.09.004
- Hendriks, A. T. W. M., Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol, 100(1), 10–18.
doi:10.1016/j.biortech.2008.05.027
- Ho, A. L., Carvalheiro, F., Duarte, L. C., Roseiro, L. B., Charalampopoulos, D., Rastall, R. A. (2014). Production and purification of xylooligosaccharides from oil palm empty fruit bunch fibre by a non-isothermal process. Bioresour Technol, 152, 526–529. doi:10.1016/j.biortech.2013.10.114
- Ibañez, E., Kubátová, A., Señoráns, F. J., Cavero, S., Reglero, G., Hawthorne, S. B. (2003). Subcritical water extraction of antioxidant compounds from rosemary plants. J Agric Food Chem, 51(2), 375–382. doi:10.1021/jf025878j
- Jo, E.-K., Heo, D.-J., Kim, J.-H., Lee, Y.-H., Ju, Y.-C., Lee, S.-C. (2013). The effects of subcritical water treatment on antioxidant activity of golden oyster mushroom. Food Bioprocess Technol, 6(9), 2555–2561. doi:10.1007/s11947-012-0793-x
- Khuwijitjaru, P., Sayputikasikorn, N., Samuhasaneetoo, S., Penroj, P., Siriwongwilaichat, P., Adachi, S. (2012). Subcritical water extraction of flavoring and phenolic compounds from cinnamon bark (Cinnamomum zeylanicum). J Oleo Sci, 61(6), 349–355. doi:10.5650/jos.61.349
- Kim, J. W., Nagaoka, T., Ishida, Y., Hasegawa, T., Kitagawa, K., Lee, S. C. (2009). Subcritical water extraction of nutraceutical compounds from citrus pomaces. Sep Sci Technol, 44(11), 2598–2608. doi:10.1080/01496390903014375
- Miller, N. J., Rice-Evans, C. A. (1997). Factors influencing the antioxidant activity determined by the ABTS.+ radical cation assay. Free Radical Res, 26(3), 195–199. doi:10.3109/10715769709097799
- Overend, R. P., Chornet, E., Gascoigne, J. A. (1987). Fractionation of lignocellulosics by steam-aqueous pretreatments. Phil Trans R Soc A, 321(1561): 523-536.
- Rodríguez-Meizoso, I., Marin, F. R., Herrero, M., Señorans, F. J., Reglero, G., Cifuentes, A., Ibáñez, E. (2006). Subcritical water extraction of nutraceuticals with antioxidant activity from oregano. Chemical and functional characterization. J Pharm Biomed Anal, 41(5), 1560–1565. doi:10.1016/j.jpba.2006.01.018
- Shahidi, F., Alasalvar, C., Liyana-Pathirana, C. M. (2007). Antioxidant phytochemicals in hazelnut kernel (Corylus avellana L.) and hazelnut byproducts. J Agric Food Chem, 55, 1212–1220. doi:10.1021/jf062472o
- Singh, P. P., Saldana, M. D. A. (2011). Subcritical water extraction of phenolic compounds from potato peel. Food Res Int, 44(8), 2452–2458. doi:10.1016/J.FOODRES.2011.02.006
- Singleton, V. L., Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic, 16(3), 144-158.
- Sluiter, A., Hames, B., Hyman, D., Payne, C., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Wolfe, J. (2008). Determination of total solids in biomass and total dissolved solids in liquid process samples. National Renewable Energy Laboratory, Golden, CO, NREL Technical Report No. NREL/TP-510-42621, 1-6.
- Surek, E., Buyukkileci, A. O. (2017). Production of xylooligosaccharides by autohydrolysis of hazelnut (Corylus avellana L.) shell. Carbohydr Polym, 174, 565–571. doi:10.1016/j.carbpol.2017.06.109
- Wataniyakul, P., Pavasant, P., Goto, M., Shotipruk, A. (2012). Microwave pretreatment of defatted rice bran for enhanced recovery of total phenolic compounds extracted by subcritical water. Bioresour Technol, 124, 18–22. doi:10.1016/J.BIORTECH.2012.08.053
- Xu, Y., Sismour, E. N., Parry, J., Hanna, M. A., Li, H. (2012). Nutritional composition and antioxidant activity in hazelnut shells from US-grown cultivars. Int J Food Sci Technol, 47(5), 940–946. doi:10.1111/j.1365-2621.2011.02925.x
- Zakaria, S. M., Kamal, S. M. M. (2016). Subcritical water extraction of bioactive compounds from plants and algae: Applications in pharmaceutical and food ingredients. Food Eng Rev, 8(1), 23–34. doi:10.1007/s12393-015-9119-x
EXTRACTION OF ANTIOXIDANT COMPOUNDS FROM HAZELNUT WASTES USING SUBCRITICAL WATER
Year 2018,
Volume: 43 Issue: 2, 211 - 221, 20.02.2018
Ali Oğuz Büyükkileci
,
Ece Sürek
Abstract
Turkey is the world leader in
hazelnut production and export. Large amount of wastes such as shell, husk and
prunings are produced during the agriculture and processing of hazelnuts.
Treatment of hazelnut wastes using an eco-friendly technology and production of
valuable products can add value to those. In this study, total phenolic content
(TPC) and total antioxidant activity (TAA) in the liquors of hazelnut wastes
from subcritical water extraction at different temperature (150-200°C) and time (0-45 min.) values were analyzed. Generally, higher yields were obtained by subcritical
water extraction compared to solvent extraction. As temperature increased, TPC and TAA
obtained from shells increased. Increase in time did not have a statistically
significant effect at 180°C; however, TPC increased
significantly with time at 190°C (P <0.05). The combined effect of
temperature and time on hazelnut shells was examined in a single variable by
calculating logarithmic value of severity factor (log Ro). TPC (905.3-2115.7 mg GAE/100 g
shell) and TAA (8163.9-12261.5 mg TE/100 g shell) increased with log Ro.
References
- Agourram, A., Ghirardello, D., Rantsiou, K., Zeppa, G., Belviso, S., Romane, A., Oufdou, K., Giordano, M. (2012). Phenolic content, antioxidant potential and antimicrobial activities of fruit and vegetable by-product extracts. Int J Food Prop, 16(5): 1092-1104. doi:10.1080/10942912.2011.576446
- Alasalvar, C., Karamać, M., Kosińska, A., Rybarczyk, A., Shahidi, F., Amarowicz, R. (2009). Antioxidant activity of hazelnut skin phenolics. J Agric Food Chem, 57(11), 4645–4650. doi:10.1021/jf900489d
- Alkaya, E., Altay, T., Ata, A., Çakar, S. O., Durtas, P. (2010). Tarımsal atıklardan yüksek katma değerli biyoürün üretimi. İleri Teknoloji Projeleri Destek Programı Raporu, Türkiye Teknoloji Geliştirme Vakfı, Ankara, Türkiye, s. 35.
- Alvira, P., Tomás-Pejó, E., Ballesteros, M., Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour Technol, 101(13), 4851–4861. doi:10.1016/j.biortech.2009.11.093
- Amendola, D., De Faveri, D. M., Egües, I., Serrano, L., Labidi, J., Spigno, G. (2012). Autohydrolysis and organosolv process for recovery of hemicelluloses, phenolic compounds and lignin from grape stalks. Bioresour Technol, 107, 267–274. doi:10.1016/j.biortech.2011.12.108
- Carvalheiro, F., Esteves, M. P., Parajó, J. C., Pereira, H., Gírio, F. M. (2004). Production of oligosaccharides by autohydrolysis of brewery’s spent grain. Bioresour Technol, 91(1), 93–100. doi:10.1016/S0960-8524(03)00148-2
- Carvalheiro, F., Silva-Fernandes, T., Duarte, L. C., Gírio, F. M. (2009). Wheat straw autohydrolysis: Process optimization and products characterization. Appl Biochem Biotechnol, 153(1–3), 84–93. doi:10.1007/s12010-008-8448-0
- Carvalho, A. F. A., Neto, P. D. O., da Silva, D. F., Pastore, G. M. (2013). Xylo-oligosaccharides from lignocellulosic materials: Chemical structure, health benefits and production by chemical and enzymatic hydrolysis. Food Res Int, 51(1), 75–85. doi:10.1016/j.foodres.2012.11.021
- Conde, E., Cara, C., Moure, A., Ruiz, E., Castro, E., Domínguez, H. (2009). Antioxidant activity of the phenolic compounds released by hydrothermal treatments of olive tree pruning. Food Chem, 114(3), 806–812. doi:10.1016/j.foodchem.2008.10.017
- Çöpür, Y., Tozluoglu, A., Özkan, M. (2013). Evaluating pretreatment techniques for converting hazelnut husks to bioethanol. Bioresour Technol, 129, 182–190. doi:10.1016/j.biortech.2012.11.058
- Del Rio, D., Calani, L., Dall’Asta, M., Brighenti, F. (2011). Polyphenolic composition of hazelnut skin. J Agric Food Chem, 59(18), 9935–9941. doi:10.1021/jf202449z
FAOSTAT (2017). Production of hazelnuts with shell. http://faostat3.fao.org/faostat-gateway/go/to/download/Q/QC/E (Erişim tarihi: 01.06.2017)
- Guney, M. S. (2013). Utilization of hazelnut husk as biomass. Sustainable Energy Technol Assess, 4, 72–77. doi:10.1016/j.seta.2013.09.004
- Hendriks, A. T. W. M., Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol, 100(1), 10–18.
doi:10.1016/j.biortech.2008.05.027
- Ho, A. L., Carvalheiro, F., Duarte, L. C., Roseiro, L. B., Charalampopoulos, D., Rastall, R. A. (2014). Production and purification of xylooligosaccharides from oil palm empty fruit bunch fibre by a non-isothermal process. Bioresour Technol, 152, 526–529. doi:10.1016/j.biortech.2013.10.114
- Ibañez, E., Kubátová, A., Señoráns, F. J., Cavero, S., Reglero, G., Hawthorne, S. B. (2003). Subcritical water extraction of antioxidant compounds from rosemary plants. J Agric Food Chem, 51(2), 375–382. doi:10.1021/jf025878j
- Jo, E.-K., Heo, D.-J., Kim, J.-H., Lee, Y.-H., Ju, Y.-C., Lee, S.-C. (2013). The effects of subcritical water treatment on antioxidant activity of golden oyster mushroom. Food Bioprocess Technol, 6(9), 2555–2561. doi:10.1007/s11947-012-0793-x
- Khuwijitjaru, P., Sayputikasikorn, N., Samuhasaneetoo, S., Penroj, P., Siriwongwilaichat, P., Adachi, S. (2012). Subcritical water extraction of flavoring and phenolic compounds from cinnamon bark (Cinnamomum zeylanicum). J Oleo Sci, 61(6), 349–355. doi:10.5650/jos.61.349
- Kim, J. W., Nagaoka, T., Ishida, Y., Hasegawa, T., Kitagawa, K., Lee, S. C. (2009). Subcritical water extraction of nutraceutical compounds from citrus pomaces. Sep Sci Technol, 44(11), 2598–2608. doi:10.1080/01496390903014375
- Miller, N. J., Rice-Evans, C. A. (1997). Factors influencing the antioxidant activity determined by the ABTS.+ radical cation assay. Free Radical Res, 26(3), 195–199. doi:10.3109/10715769709097799
- Overend, R. P., Chornet, E., Gascoigne, J. A. (1987). Fractionation of lignocellulosics by steam-aqueous pretreatments. Phil Trans R Soc A, 321(1561): 523-536.
- Rodríguez-Meizoso, I., Marin, F. R., Herrero, M., Señorans, F. J., Reglero, G., Cifuentes, A., Ibáñez, E. (2006). Subcritical water extraction of nutraceuticals with antioxidant activity from oregano. Chemical and functional characterization. J Pharm Biomed Anal, 41(5), 1560–1565. doi:10.1016/j.jpba.2006.01.018
- Shahidi, F., Alasalvar, C., Liyana-Pathirana, C. M. (2007). Antioxidant phytochemicals in hazelnut kernel (Corylus avellana L.) and hazelnut byproducts. J Agric Food Chem, 55, 1212–1220. doi:10.1021/jf062472o
- Singh, P. P., Saldana, M. D. A. (2011). Subcritical water extraction of phenolic compounds from potato peel. Food Res Int, 44(8), 2452–2458. doi:10.1016/J.FOODRES.2011.02.006
- Singleton, V. L., Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic, 16(3), 144-158.
- Sluiter, A., Hames, B., Hyman, D., Payne, C., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Wolfe, J. (2008). Determination of total solids in biomass and total dissolved solids in liquid process samples. National Renewable Energy Laboratory, Golden, CO, NREL Technical Report No. NREL/TP-510-42621, 1-6.
- Surek, E., Buyukkileci, A. O. (2017). Production of xylooligosaccharides by autohydrolysis of hazelnut (Corylus avellana L.) shell. Carbohydr Polym, 174, 565–571. doi:10.1016/j.carbpol.2017.06.109
- Wataniyakul, P., Pavasant, P., Goto, M., Shotipruk, A. (2012). Microwave pretreatment of defatted rice bran for enhanced recovery of total phenolic compounds extracted by subcritical water. Bioresour Technol, 124, 18–22. doi:10.1016/J.BIORTECH.2012.08.053
- Xu, Y., Sismour, E. N., Parry, J., Hanna, M. A., Li, H. (2012). Nutritional composition and antioxidant activity in hazelnut shells from US-grown cultivars. Int J Food Sci Technol, 47(5), 940–946. doi:10.1111/j.1365-2621.2011.02925.x
- Zakaria, S. M., Kamal, S. M. M. (2016). Subcritical water extraction of bioactive compounds from plants and algae: Applications in pharmaceutical and food ingredients. Food Eng Rev, 8(1), 23–34. doi:10.1007/s12393-015-9119-x