Research Article
BibTex RIS Cite

INVESTIGATION OF PHENOLIC COMPOSITION OF ORGANICALLY-GROWN STRAWBERRY AND BLUEBERRY

Year 2019, Volume: 44 Issue: 5, 794 - 801, 17.08.2019
https://doi.org/10.15237/gida.GD19049

Abstract

The present study aimed to investigate phenolic
compounds of strawberry which is organically-grown in Bursa region and
blueberry in Trabzon region. The phenolic acids and flavonoids were detected by
RP-HPLC according to their retention times with the help of diode array
detector at 280 nm, 320 nm and 360 nm. Investigated compounds were gallic acid,
epigallocatechin, catechin, epicatechin, epicatechin gallate, 2 coumaric acid,
3 coumaric acid, 4 coumaric acid, chlorogenic acid, cafeic acid, neochlorogenic
acid, trans resveratrol, ferulic acid, quercetin, kaempferol and myricetin. According to results it was determined that
bluberry fruit contains high amounts of chlorogenic acid (644.25 mg/kg) and
among the phenolic acids in strawberries, 4 coumaric acid is regarded as major
phenolic compound (3.76 mg/kg).
  The
highest level of myricetin compounds was measured in blueberry (14.41 mg/kg),
on the contrary, myricetin was not identified in strawberry fruits but this
fruit is especially rich in catechins (58.34 mg/kg).

References

  • Aaby, K., Ekeberg, D., & Skrede, G., (2007). Characterization of phenolic compounds in strawberry (Fragaria x ananassa) fruits by different HPLC detectors and contribution of individual compounds to total antioxidant capacity. Journal of Agricultural and Food Chemistry, 55(11), 4395–4406.
  • Amakura, Y., Umino, Y., Tsuji, S., & Tonogai, Y. (2000). Influence of jam processing on the radical scavenging activity and phenolic content in berries. Journal of Agriculture and Food Chemistry, 48, 6292–6297.
  • Arts,I. C.W, Putte B. and Hollman, P.C.H (2000). Catechin Contents of Foods Commonly Consumed in The Netherlands. 1. Fruits, Vegetables, Staple Foods, and Processed Foods. J. Agric. Food Chem. 2000, 48, 1746−1751.
  • Asami, D. K., Hong, Y. J., Barrett, D. M., & Mitchell, A. E., (2005). Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic and sustainable agricultural practices. Journal of Agriculture and Food Chemistry, 51, 1237–1241.
  • Basu, A., Nguyen, A., Betts, N. M., & Lyons, T. J., (2014). Strawberry as a functional food: An evidence-based review. Critical Reviews in Food Science and Nutrition, 54, 790–806.
  • Bomser, J., Madhavi, D. L., Singletary, K., & Smith, M. A. L., (1996). In vitro anticancer activity of fruit extracts from Vaccinium species. Planta Medica, 62, 212−216.
  • Bourn, D., & Prescott, J. A., (2002). Comparison of the nutritional value, sensory qualities, and food safety of organically and conventionally produced foods. Critical Reviews in Food Science and Nutrition, 42, 1–34.
  • Brambilla, A., Lo Scalzo, R., Bertolo, G., & Torreggiani, D., (2008). Steam-bleached highbush blueberry (Vaccinium corymbosum L.) juice: Phenolic profile and antioxidant capacity in relation to cultivar selection. Journal of Agricultural and Food Chemistry, 56, 2643–2648.
  • Buendia, B., Gil, M. I., Tudela, J. A., Gady, A. L., Medina, J. J., Soria, C., et al., (2010). HPLC-MS analysis of proanthocyanidin oligomers and other phenolics in strawberry cultivars. Journal of Agricultural and Food Chemistry, 58, 3916–3926.
  • Contessa, C., Mellano, M. G., Beccaro, G. L., Giusiano, A., Botta, Roberto. (2013). Total antioxidant capacity and total phenolic and Anthocyanin contents in fruit species grown in Northwest Italy. Scientia Horticulturae 160, 351–357.
  • Clifford, M. N. (1999). Chlorogenic acids and other cinnamates—Nature, occurrence and dietary burden. Journal of the Science of Food and Agriculture, 79, 362–372.
  • Correa-Betanzo, J., Allen-Vercoe, E., McDonald, J., Schroeter, K., Corredig, M., & Paliyath, G. (2014). Stability and biological activity of wild blueberry (Vaccinium angustifolium) polyphenols during simulated in vitro gastrointestinal digestion. Food Chemistry, 165, 522–531.
  • Da Silva Pinto, M., Lajolo, F. M., & Genovese, M. I. (2008). Bioactive compounds and quantification of total ellagic acid in strawberries (Fragaria x ananassa Duch.). Food Chemistry, 107, 1629–1635.
  • Del Bubba, M., Checchini, L., Chiuminatto, U., Doumett, S., Fibbi, D., & Giordani, E. (2012). Liquid chromatographic/ electrospray ionization tandem mass spectrometric study of polyphenolic composition of four cultivars of Fragaria vesca L. berries and their comparative evaluation. Journal of Mass Spectrometry,47, 1207–1220.
  • FAO (2017). Food and Agriculture Organization of the United Nations (FAOSTAT). http://www.fao.org/faostat/en/#data/QC.
  • Hakkinen, S. H., & Torronen, A. R. (2000). Content of flavonols and selected phenolic acids in strawberries and Vaccinium species: Influence of cultivar, cultivation site and technique. Food Research International, 33, 517–524 p.
  • Heinonen, I. M., Meyer, A. S., & Frankel, E. N. (1998). Antioxidant activity of berry phenolics on human low-density lipoprotein and liposome oxidation. Journal of Agricultural and Food Chemistry, 46, 4107−4112 p.
  • Kraujalyte, V., Venskutonis, P. R., Pukalskas, A., Cesoniene, L., Daubaras, R. (2015). Antioxidant properties, phenolic composition and potentiometric sensor array evaluation of commercial and new blueberry (Vaccinium corymbosum) and bog blueberry (Vaccinium uliginosum) genotypes Food Chemistry 188 (2015) 583–590 p.
  • Määtta, R., Kamal-Eldin, R., Kaisu, A., & Törronen, A. R. (2004). Identification and quantification of phenolic compounds in berries of fragaria and rubus species (Family Rosacea). Journal of Agricultural and Food Chemistry, 52, 6178–6187.
  • Mattila, P., Hellstrom, J., & Torronen, R. (2006). Phenolic acids in berries, fruits, and beverages. Journal of Agricultural and Food Chemistry, 54, 7193–7199.
  • Mitchell, A. E., Hong, Y. J., Koh, E., Barrett, D. M., Bryant, D. E., Denison, R. F., et al. (2007). Ten-year comparison of the influence of organic and conventional crop management practices on the content of flavonoids in tomatoes. Journal of Agriculture and Food Chemistry, 55, 6154–6159.
  • Mulero, J.,Pardo, F., Zafrilla, P. (2010). Antiokxidant activity and phenolic composition of organic and conventional grapes and wines. Journal of Food Composition and Analysis, 23:569-574.
  • Olsson, M. E., Andersson, C. S., Oredsson, S., Berglund, R. H., & Gustavsson, K. (2006). Antioxidant levels and inhibition of cancer cell proliferation in vitro by extracts from organically and conventionally cultivated strawberries. Journal of Agriculture and Food Chemistry, 54, 1248–1255.
  • Rodriguez-Mateos, A., Cifuentes-Gomez, T., Tabatabaee, S., Lecras, C., & Spencer, J. P. E. (2012). Procyanidin, anthocyanin, and chlorogenic acid contents of highbush and lowbush blueberries. Journal of Agricultural and Food Chemistry, 60, 5772–5778.
  • Scalzo, J., Stevenson, D., & Hedderley, D. (2013). Blueberry estimated harvest from seven new cultivars: Fruit and anthocyanins. Food Chemistry, 139, 44–50.
  • Velioğlu, S. (2007). Farklı çay ekstraktlarının antioksidan, antibakteriyel etkileri ve Fenolik madde dağılımının HPLC ile belirlenmesi. Ankara Üniversitesi, 2006-07-45-016 HPD nolu BAP kesin raporu. Ankara (acikarsiv.ankara.edu.tr/browse/2109/2780.pdf)
  • Cardeñosa V.,⇑, Vilaplana A. G., Muriel J. L., Moreno D. A., Rojas J. M. M., (2016). Influence of genotype, cultivation system and irrigation regime on antioxidant capacity and selected phenolics of blueberries (Vaccinium corymbosum L.). Food Chemistry 202 (2016) 276–283 p.
  • Wang, S. Y., Chen, C. T., Sciarappa, W., Wang, C. Y., & Camp, M. J., (2008). Fruit quality, antioxidant capacity, and flavonoid content of organically and conventionally grown blueberries. Journal of Agriculture and Food Chemistry, 56, 5788–5794.

ORGANİK OLARAK YETİŞTİRİLEN ÇİLEK VE YABANMERSİNİ MEYVELERİNİN FENOLİK BİLEŞEMİNİN İNCELENMESİ

Year 2019, Volume: 44 Issue: 5, 794 - 801, 17.08.2019
https://doi.org/10.15237/gida.GD19049

Abstract

Bu çalışmada, Bursa yöresinde organik olarak yetişen
çilek ve Trabzon yöresinde organik olarak yetiştişen yaban mersini meyvelerinin
fenolik bileşenlerinin araştırılması amaçlanmıştır. Fenolik asitler ve
flavonoidler, RP-HPLC tarafından tutma sürelerine göre 280 nm, 320 nm ve 360
​​nm'de DAD detektörü yardımıyla tespit edilmiştir.
İncelenen bileşikler, gallik asit, epigallokateşin, kateşin, epikateşin,
epikateşin gallat, 2 kumarik asit, 3 kumarik asit, 4 kumarik asit, klorogenik
asit, kafeik asit, neoklorogenik asit, trans resveratrol, ferulik asit,
kuarsetin, kamferol ve mirisetin’dir. Elde edilen sonuçlara göre, yaban mersini
meyvesinin yüksek miktarda klorogenik asit (644.25 mg/kg) içerdiği ve
çileklerde fenolik asitler arasında 4 kumarik asidin başlıca fenolik bileşik
(3.76 mg/kg) olduğu belirlenmiştir. En yüksek mirisetin miktarı yaban mersini
meyvesinde (14.41 mg/kg) olarak ölçülmüş, tam aksine çilek meyvelerinde
mirisetin saptanmamıştır, ancak bu meyve özellikle kateşinler bakımından
zengindir (58.34 mg / kg).

References

  • Aaby, K., Ekeberg, D., & Skrede, G., (2007). Characterization of phenolic compounds in strawberry (Fragaria x ananassa) fruits by different HPLC detectors and contribution of individual compounds to total antioxidant capacity. Journal of Agricultural and Food Chemistry, 55(11), 4395–4406.
  • Amakura, Y., Umino, Y., Tsuji, S., & Tonogai, Y. (2000). Influence of jam processing on the radical scavenging activity and phenolic content in berries. Journal of Agriculture and Food Chemistry, 48, 6292–6297.
  • Arts,I. C.W, Putte B. and Hollman, P.C.H (2000). Catechin Contents of Foods Commonly Consumed in The Netherlands. 1. Fruits, Vegetables, Staple Foods, and Processed Foods. J. Agric. Food Chem. 2000, 48, 1746−1751.
  • Asami, D. K., Hong, Y. J., Barrett, D. M., & Mitchell, A. E., (2005). Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic and sustainable agricultural practices. Journal of Agriculture and Food Chemistry, 51, 1237–1241.
  • Basu, A., Nguyen, A., Betts, N. M., & Lyons, T. J., (2014). Strawberry as a functional food: An evidence-based review. Critical Reviews in Food Science and Nutrition, 54, 790–806.
  • Bomser, J., Madhavi, D. L., Singletary, K., & Smith, M. A. L., (1996). In vitro anticancer activity of fruit extracts from Vaccinium species. Planta Medica, 62, 212−216.
  • Bourn, D., & Prescott, J. A., (2002). Comparison of the nutritional value, sensory qualities, and food safety of organically and conventionally produced foods. Critical Reviews in Food Science and Nutrition, 42, 1–34.
  • Brambilla, A., Lo Scalzo, R., Bertolo, G., & Torreggiani, D., (2008). Steam-bleached highbush blueberry (Vaccinium corymbosum L.) juice: Phenolic profile and antioxidant capacity in relation to cultivar selection. Journal of Agricultural and Food Chemistry, 56, 2643–2648.
  • Buendia, B., Gil, M. I., Tudela, J. A., Gady, A. L., Medina, J. J., Soria, C., et al., (2010). HPLC-MS analysis of proanthocyanidin oligomers and other phenolics in strawberry cultivars. Journal of Agricultural and Food Chemistry, 58, 3916–3926.
  • Contessa, C., Mellano, M. G., Beccaro, G. L., Giusiano, A., Botta, Roberto. (2013). Total antioxidant capacity and total phenolic and Anthocyanin contents in fruit species grown in Northwest Italy. Scientia Horticulturae 160, 351–357.
  • Clifford, M. N. (1999). Chlorogenic acids and other cinnamates—Nature, occurrence and dietary burden. Journal of the Science of Food and Agriculture, 79, 362–372.
  • Correa-Betanzo, J., Allen-Vercoe, E., McDonald, J., Schroeter, K., Corredig, M., & Paliyath, G. (2014). Stability and biological activity of wild blueberry (Vaccinium angustifolium) polyphenols during simulated in vitro gastrointestinal digestion. Food Chemistry, 165, 522–531.
  • Da Silva Pinto, M., Lajolo, F. M., & Genovese, M. I. (2008). Bioactive compounds and quantification of total ellagic acid in strawberries (Fragaria x ananassa Duch.). Food Chemistry, 107, 1629–1635.
  • Del Bubba, M., Checchini, L., Chiuminatto, U., Doumett, S., Fibbi, D., & Giordani, E. (2012). Liquid chromatographic/ electrospray ionization tandem mass spectrometric study of polyphenolic composition of four cultivars of Fragaria vesca L. berries and their comparative evaluation. Journal of Mass Spectrometry,47, 1207–1220.
  • FAO (2017). Food and Agriculture Organization of the United Nations (FAOSTAT). http://www.fao.org/faostat/en/#data/QC.
  • Hakkinen, S. H., & Torronen, A. R. (2000). Content of flavonols and selected phenolic acids in strawberries and Vaccinium species: Influence of cultivar, cultivation site and technique. Food Research International, 33, 517–524 p.
  • Heinonen, I. M., Meyer, A. S., & Frankel, E. N. (1998). Antioxidant activity of berry phenolics on human low-density lipoprotein and liposome oxidation. Journal of Agricultural and Food Chemistry, 46, 4107−4112 p.
  • Kraujalyte, V., Venskutonis, P. R., Pukalskas, A., Cesoniene, L., Daubaras, R. (2015). Antioxidant properties, phenolic composition and potentiometric sensor array evaluation of commercial and new blueberry (Vaccinium corymbosum) and bog blueberry (Vaccinium uliginosum) genotypes Food Chemistry 188 (2015) 583–590 p.
  • Määtta, R., Kamal-Eldin, R., Kaisu, A., & Törronen, A. R. (2004). Identification and quantification of phenolic compounds in berries of fragaria and rubus species (Family Rosacea). Journal of Agricultural and Food Chemistry, 52, 6178–6187.
  • Mattila, P., Hellstrom, J., & Torronen, R. (2006). Phenolic acids in berries, fruits, and beverages. Journal of Agricultural and Food Chemistry, 54, 7193–7199.
  • Mitchell, A. E., Hong, Y. J., Koh, E., Barrett, D. M., Bryant, D. E., Denison, R. F., et al. (2007). Ten-year comparison of the influence of organic and conventional crop management practices on the content of flavonoids in tomatoes. Journal of Agriculture and Food Chemistry, 55, 6154–6159.
  • Mulero, J.,Pardo, F., Zafrilla, P. (2010). Antiokxidant activity and phenolic composition of organic and conventional grapes and wines. Journal of Food Composition and Analysis, 23:569-574.
  • Olsson, M. E., Andersson, C. S., Oredsson, S., Berglund, R. H., & Gustavsson, K. (2006). Antioxidant levels and inhibition of cancer cell proliferation in vitro by extracts from organically and conventionally cultivated strawberries. Journal of Agriculture and Food Chemistry, 54, 1248–1255.
  • Rodriguez-Mateos, A., Cifuentes-Gomez, T., Tabatabaee, S., Lecras, C., & Spencer, J. P. E. (2012). Procyanidin, anthocyanin, and chlorogenic acid contents of highbush and lowbush blueberries. Journal of Agricultural and Food Chemistry, 60, 5772–5778.
  • Scalzo, J., Stevenson, D., & Hedderley, D. (2013). Blueberry estimated harvest from seven new cultivars: Fruit and anthocyanins. Food Chemistry, 139, 44–50.
  • Velioğlu, S. (2007). Farklı çay ekstraktlarının antioksidan, antibakteriyel etkileri ve Fenolik madde dağılımının HPLC ile belirlenmesi. Ankara Üniversitesi, 2006-07-45-016 HPD nolu BAP kesin raporu. Ankara (acikarsiv.ankara.edu.tr/browse/2109/2780.pdf)
  • Cardeñosa V.,⇑, Vilaplana A. G., Muriel J. L., Moreno D. A., Rojas J. M. M., (2016). Influence of genotype, cultivation system and irrigation regime on antioxidant capacity and selected phenolics of blueberries (Vaccinium corymbosum L.). Food Chemistry 202 (2016) 276–283 p.
  • Wang, S. Y., Chen, C. T., Sciarappa, W., Wang, C. Y., & Camp, M. J., (2008). Fruit quality, antioxidant capacity, and flavonoid content of organically and conventionally grown blueberries. Journal of Agriculture and Food Chemistry, 56, 5788–5794.
There are 28 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Huriye Özgül Uçurum 0000-0002-2600-5892

Hacer Ekşi This is me

Publication Date August 17, 2019
Published in Issue Year 2019 Volume: 44 Issue: 5

Cite

APA Uçurum, H. Ö., & Ekşi, H. (2019). INVESTIGATION OF PHENOLIC COMPOSITION OF ORGANICALLY-GROWN STRAWBERRY AND BLUEBERRY. Gıda, 44(5), 794-801. https://doi.org/10.15237/gida.GD19049
AMA Uçurum HÖ, Ekşi H. INVESTIGATION OF PHENOLIC COMPOSITION OF ORGANICALLY-GROWN STRAWBERRY AND BLUEBERRY. The Journal of Food. August 2019;44(5):794-801. doi:10.15237/gida.GD19049
Chicago Uçurum, Huriye Özgül, and Hacer Ekşi. “INVESTIGATION OF PHENOLIC COMPOSITION OF ORGANICALLY-GROWN STRAWBERRY AND BLUEBERRY”. Gıda 44, no. 5 (August 2019): 794-801. https://doi.org/10.15237/gida.GD19049.
EndNote Uçurum HÖ, Ekşi H (August 1, 2019) INVESTIGATION OF PHENOLIC COMPOSITION OF ORGANICALLY-GROWN STRAWBERRY AND BLUEBERRY. Gıda 44 5 794–801.
IEEE H. Ö. Uçurum and H. Ekşi, “INVESTIGATION OF PHENOLIC COMPOSITION OF ORGANICALLY-GROWN STRAWBERRY AND BLUEBERRY”, The Journal of Food, vol. 44, no. 5, pp. 794–801, 2019, doi: 10.15237/gida.GD19049.
ISNAD Uçurum, Huriye Özgül - Ekşi, Hacer. “INVESTIGATION OF PHENOLIC COMPOSITION OF ORGANICALLY-GROWN STRAWBERRY AND BLUEBERRY”. Gıda 44/5 (August 2019), 794-801. https://doi.org/10.15237/gida.GD19049.
JAMA Uçurum HÖ, Ekşi H. INVESTIGATION OF PHENOLIC COMPOSITION OF ORGANICALLY-GROWN STRAWBERRY AND BLUEBERRY. The Journal of Food. 2019;44:794–801.
MLA Uçurum, Huriye Özgül and Hacer Ekşi. “INVESTIGATION OF PHENOLIC COMPOSITION OF ORGANICALLY-GROWN STRAWBERRY AND BLUEBERRY”. Gıda, vol. 44, no. 5, 2019, pp. 794-01, doi:10.15237/gida.GD19049.
Vancouver Uçurum HÖ, Ekşi H. INVESTIGATION OF PHENOLIC COMPOSITION OF ORGANICALLY-GROWN STRAWBERRY AND BLUEBERRY. The Journal of Food. 2019;44(5):794-801.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/