Review
BibTex RIS Cite

GIDA ENDÜSTRİSİNDE NANOSİSTEMLERİN KULLANIMI

Year 2020, Volume: 45 Issue: 3, 517 - 529, 15.06.2020
https://doi.org/10.15237/gida.GD20012

Abstract

Nanosistemler, sağlık, gıda, enerji, tekstil, otomotiv, iletişim teknolojileri, tarım, silah ve uzay endüstrisi gibi birçok alanda kullanılmakta ve hayatımıza önemli gelişmeler kazandırmaktadır. Son yıllarda, nanosistemleri kullanarak, gıda ürünlerini atomik ve moleküler seviyelerde kontrol etmenin yollarını araştırmak için birçok çalışma yapılmaktadır. Bu çalışmalar, yeşil paketleme sistemleri, oxo-biyobozunur paketleme sistemleri, gübre kullanımının sona ermesi, gıda takibi, izleme, marka koruması, biyosensörler, akıllı etiketler, lezzet hataları oluşturma, tat değişimi ve hızlı bakteri tespiti gibi başlıkları içermektedir. Bu çalışmaların yanı sıra, sağlık alanında ilaç sektörü ve hastalıkların teşhis ve tedavisinde, hastanın konforunu önemli ölçüde arttırmakta ve ömrünü uzatmaktadır. Bu derleme çalışması, nanosistemlerin ve nanopartiküllerin kullanım alanlarını, gıda uygulamalarını, nanopartikül bileşenlerini (karbon nanotüpler, manyetik nanopartiküller, altın nanopartiküller, gümüş nanopartiküller ve kuantum noktalar), nanosensörleri, gıda ambalaj sistemlerinde akıllı paketleme metotlarını ve biyosensörleri başlıklarını içermektedir.

References

  • 1. Ahmad, L., Salmon, L., Korri-Youssoufi, H. (2019) Electrochemical detection of the human cancer biomarker ‘autocrine motility factor-phosphoglucose isomerase’ based on a biosensor formed with a monosaccharidic inhibitör. Sensors & Actuators: B. Chemical, 299: 1269332. Veglia, A.V., Guillermo Bracamonte, A.(2019). β-Cyclodextrin grafted gold nanoparticles with short molecular spacers applied for nanosensors based on plasmonic effects. Microchemical Journal, 148:277–2843. Arman, A., Üzer, A., Sağlam, Ş., Erçağ, E., Apak, R. (2019). Indirect electrochemical determination of antioxidant capacity with hexacyanoferrate(III) reduction using a gold nanoparticle-coated ophenylenediamine- aniline copolymer electrode. Analytical Letters, 52(8):1282-12974. Aydın, E. B., Aydın, M., Sezgintürk, M.K. (2019). Biosensors and the evaluation of food contaminant biosensors in terms of their performance criteria. Internatıonal Journal of Envıronmental Analytıcal Chemıstry, https://doi.org/10.1080/03067319.2019.16726755. Bockuvienea, A., Sereikaite, J. (2019). Preparation and characterisation of novel water-soluble β-carotenechitooligosaccharides Complexes. Carbohydrate Polymers, 225:1152266. Chandrakasan, G., Rodrı´guez-Herna´ndez, A.I., Rocı´o Lo´pez-Cuellar,M.D., Palma-Rodrı´guez, H.M., Chavarrı´a-Herna´ndez, N. (2019). Bacteriocin encapsulation for food and pharmaceutical applications: advances in the past 20 years, Biotechnol Lett, 41:453–469.7. Chawda, P. J., Shi, J., Xue, S., Young Quek, S. (2017). Co-encapsulation of bioactives for food applications. Food Quality and Safety, 1(4):302–309, doi:10.1093/fqsafe/fyx0288. Dang, T., Hu, W., Zhang, W., Song, Z., Wang, Y., Chen, M., Xu, H., Liu, G.L. (2019). Protein binding kinetics quantification via coupled plasmonic-photonic resonance nanosensors in generic microplate reader. Biosensors and Bioelectronics, 142: 111494.9. Dhull, N., Kaur, G., Jain, P., Mishra, P., Singh, D., Ganju, L., Gupta, V., Tomar, M. (2019). Label-free amperometric biosensor for Escherichia coli O157:H7 detection. Applied Surface Science, 495:143548.10. Elahi, N., Kamali, M., Hadi Baghersad, M., Amini, B. (2019). A fluorescence Nano-biosensors immobilization on Iron (MNPs) and gold (AuNPs) nanoparticles for detection of Shigella spp. Materials Science & Engineering C, 105:11011311. Guillermo Fuertes, Ismael Soto, Raúl Carrasco, Manuel Vargas, Jorge Sabattin, and Carolina Lagos. (2016). Intelligent Packaging Systems: Sensors and Nanosensors to Monitor Food Quality and Safety. Journal of Sensors, 2016:8, http://dx.doi.org/10.1155/2016/4046061 12. Gök, V., Batu, A., Telli, R. (2006). Akıllı Paketleme Teknolojisi, Türkiye 9. Gıda Kongresi; 24-26 Mayıs, Bolu13. Gök, V., (2007). Gıda Paketleme Sanayinde Akıllı Paketleme Teknolojisi, Gıda Teknolojileri Elektronik Dergisi, (1): 45-58.14. Gong, X., Wang, H., Liu, Y., Hu, Q., Gao, Y., Yang, Z., Shuang, S., Dong, C. (2019). A di-functional and label-free carbon-based chem-nanosensor for real-time monitoring of pH fluctuation and quantitative determining of Curcumin. Anal Chim Acta, 30;1057:132-144, doi: 10.1016/j.aca.2019.01.01215. Irvine, G.W., Tan, S.N., Stillman, M.J. (2017). A Simple Metallothionein-Based Biosensor for Enhanced Detection of Arsenic and Mercury. Biosensors, 7:1416. Jiménez-López, J., Rodrigues, S.S.M., Ribeiro, D.S.M., Ortega-Barrales P., Ruiz-Medina, A., Santos, J.L.M. (2019). Exploiting the fluorescence resonance energy transfer (FRET) between17. CdTe quantum dots and Au nanoparticles for the determination of bioactive thiols. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 212: 246–25418. Kaadea, W., Ferrandoa, M., Khanmohammedb, A., Torrasa, C., De Lamo-Castellvia, S., Guell, C. (2019). Low-energy high-throughput emulsification with nickel micro-sieves for essential oils encapsulation. Journal of Food Engineering, 263:326–33619. Khan, N.I., Maddaus, A.G., Song, E. (2018). A Low‐Cost Inkjet‐Printed Aptamer‐Based Electrochemical Biosensor for the Selective Detection of Lysozyme. Biosensors. 8: 7.20. Kocaman, N., Sarımehmetoğlu, B. (2010). Gıdalarda Akıllı Ambalaj Kullanımı. Vet Hekim Der Dergisi 81(2): 67-72.21. Kumar, V., Guleria, P., Kumar Mehta, S. (2017). Nanosensors for food quality and safety assessment. Environ Chem Lett,15:165–177, DOI 10.1007/s10311-017-0616-4.22. Koç, M., Sakin, M., Kaymak-Ertekin, F. (2010). Microencapsulation and its Applications in Food Technology. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 16(1):77-8623. Li, Y., Zhang, Z., Tao, Z., Gao, X., Wang, S., Liu, Y. (2019). A Asp/Ce nanotube-based colorimetric nanosensor for H2O2-free and enzyme-free detection of cysteine, Talanta 196:556–56224. Li, Y., Hou, L., Shan, F., Zhang, Z., Li, Y., Liu Qiuchen Peng, Y., He, J., Li, K. (2019). A Novel Aggregation-Induced Emission Luminogen Based Molecularly Imprinted Fluorescence Sensor for Ratiometric Determination of Rhodamine B in Food Samples. Materials Science inc. Nanomaterials & Polymers, Chemistry Select, 4:11256– 11261, DOI: 10.1002/slct.201903141 25. Lupan, O., Postica, V., Pauporté, T., Viana, B., Terasa, M.I., Adelung, R. (2019). Room temperature gas nanosensors based on individual and multiple networked Au-modified ZnO nanowires. Sensors & Actuators: B. Chemical, 299:126977.26. Lupan, O., Postica, V., Wolff, N., Su, J., Labat, F., Ciofini, I., Cavers, H., Adelung, R., Polonskyi, O., Faupel, F., Kienle, L., Viana, B., Pauporté, T. (2019). Low-Temperature Solution Synthesis of Au-Modified ZnO Nanowires for Highly Efficient Hydrogen Nanosensors. ACS Appl. Mater. Interfaces, 11(35): 32115-3212627. Mahmoudpoura, M., Ezzati Nazhad Dolatabadid, J., Torbatib, M., Pirpour Tazehkande, A., Homayouni-Radb, A., De la Guardia, M. (2019). Nanomaterials and new biorecognition molecules based surface plasmon resonance biosensors for mycotoxin detection. Biosensors and Bioelectronics, 143:11160328. Marín, D., Aleman, A., Montero, P., Gomez-Guillen, M.C. (2018).Encapsulation of food waste compounds in soy phosphatidylcholine liposomes: Effect of freeze-drying, storage stability and functional aptitude. Journal of Food Engineering, 223:132-143.29. Maruthupandy, M., Seo, J. (2019). Allyl isothiocyanate encapsulated halloysite covered with polyacrylate as a potential antibacterial agent against food spoilage bacteria. Materials Science & Engineering C, 105:11001630. Miguela, G. A., Jacobsena, C., Prietob, C., Kempenc, P. J., Lagaronb, J. M., Chronakisa, I. S., García-Moreno, P. J. (2019). Oxidative stability and physical properties of mayonnaise fortified with zein electrosprayed capsules loaded with fish oil. Journal of Food Engineering, 263:348–35831. Mukdasai, S., Uppachaib P., Srijaranai, S. (2019). A novel colorimetric paper sensor based on the layer-by-layer assembled multilayers of surfactants for the sensitive and selective determination of total antioxidant capacity. RSC Adv., 9: 2859832. Niu, B., Yan, Z., Shao, P., Kang, J., Chen, H. (2018). Encapsulation of Cinnamon Essential Oil for Active Food Packaging Film with Synergistic Antimicrobial Activity. Nanomaterials, 8:598; doi:10.3390/nano808059833. Özkan, A., Atar, N., Yola, M.L. (2019). Enhanced surface plasmon resonance (SPR) signals based on immobilization of core-shell nanoparticles incorporated boron nitride nanosheets: Development of molecularly imprinted SPR nanosensor for anticancer drug, Etoposide. Biosensors and Bioelectronics. 130:293–298.34. Park, J., Kuo, Y., Li, J., Huang, Y.L., Miller, E. W., Weiss, S. (2019). Improved Surface Functionalization and Characterization of Membrane Targeted Semiconductor Voltage Nanosensors. J. Phys. Chem. Lett. 10 (14): 3906-3913.35. Peng, D., Kavanagh, O., Gao, H., Zhang, X., Deng, S., Chen, D., Liu, Z., Xie, C., Situ, C., Yuan, Z. (2019). Surface plasmon resonance biosensor for the determination of 3-methylquinoxaline- 2-carboxylic acid, the marker residue of olaquindox, in swine Tissues. Food Chemistry, 302:12462336. Raeisia, S., Ojagha, S. M., Quekb, S.Y., Pourashouria, P., Salaun, F. (2019). Nano-encapsulation of fish oil and garlic essential oil by a novel composition of wall material: Persian gum-chitosan. LWT - Food Science and Technology, 116:10849437. Rios-Meraa, J. D., Saldañaa, E., Ramírezb, Y., Auquiñivínb, E. A., Alvimc, I. D., Contreras-Castillo, C. J. (2019). Encapsulation optimization and pH- and temperature-stability of the complex coacervation between soy protein isolate and inulin entrapping fish oil. LWT - Food Science and Technology, 116:10855538. Rezende, J.P., Dias Ferreira, G.M., Mendes da Silva, L.H., Hepanhol da Silva, M.C., Pinto, M.S., Santos Pires, A.C.D.S. (2017). Polydiacetylene/triblock copolymer nanosensor for the detection of native and free bovine serum albümin. Materials Science and Engineering C, 70:535–543.39. Satapathi, S., Kumar, V., Kumar Chini, M.K., Bera, R., Halder, K.K., Patra. A. (2018). Highly sensitive detection and removal of mercury ion using a multimodal nanosensor. Nano-Structures & Nano-Objects. 16:120–126.40. Selvolinia, G., Lettieria, M., Tassonib, L., Gastaldellob, S., Grillob, M., Maranb, C., Marrazza, G. (2019). Electrochemical enzyme-linked oligonucleotide array for aflatoxin B1 Detection. Talanta, 203:49–5741. Simionato, I., Domingues, F.C., Nerín, C., Silva, F. (2019). Encapsulation of cinnamon oil in cyclodextrin nanosponges and their potential use for antimicrobial food packaging. Food and Chemical Toxicology, 132:11064742. Shtay, R., Keppler, J. K., Schrader, K., Schwarz, K. (2019). Encapsulation of (─)-epigallocatechin-3-gallate (EGCG) in solid lipid nanoparticles for food applications. Journal of Food Engineering, 244: 91–100.43. Srivastava, A. K., Dev, A., Karmakar, S., (2018). Nanosensors and nanobiosensors in food and agriculture. Environmental Chemistry Letters, 16:161–182.44. Qian, J., Wang, K., Wang, C., Ren, C., Liu, Q., Hao, N., Wang, K. (2017). Ratiometric fluorescence nanosensor for selective and visualdetection of cadmium ions using quencher displacement-inducedfluorescence recovery of CdTe quantum dots-based hybrid probe. Sensors and Actuators B, 241:1153–116045. Qian, L., Wang, K., Zhu, W., Han, C., Yan, C. (2019). Enhanced sensing ability in a single-layer guided-mode resonant optical biosensor with deep grating, Optics Communications, 452: 273–280.46. Teixeira, A., Hernández-Rodríguez, J. F., Wu L., Oliveira, K., Kant, K., Piairo, P., Diéguez, L., Abalde-Cela, S. (2019). Microfluidics-Driven Fabrication of a Low Cost and Ultrasensitive SERS-Based Paper Biosensor. Appl. Sci., 9:1387, doi:10.3390/app907138747. TÜYLEK, Z. (2017). Biyosensörler ve Nanoteknolojik Etkileşim, BEU Journal of Science 6(2), 71-80. 48. Wang, H., Rao, H., Luo, M., Xue, X., Xue, Z., Lu, X. (2019). Noble metal nanoparticles growth-based colorimetric strategies: From monocolorimetric to multicolorimetric sensors. Coordination Chemistry Reviews, 398:11300349. Yin, Y., Cadwallader, K. R. (2019). Spray-chilling encapsulation of 2-acetyl-1-pyrroline zinc chloride using hydrophobic materials: Storage stability and flavor application in food. Food Chemistry, 278:738–74350. Wu, J., Zeng, L., Li, N., Liu, C., Chen, J. (2019). A wash-free and label-free colorimetric biosensor for naked-eye detection of aflatoxin B1 using G-quadruplex as the signal reporter. Food Chemistry, 298:125034.51. Xiang, Y., Camarada, M.B., Wen, Y., Wu, H., Chen, J., Li, M., Liao, X. (2018). Simple voltammetric analyses of ochratoxin A in food samples using highly-stable and anti-fouling black phosphorene nanosensor. Electrochimica Acta. 282: 490-498.52. Varhan, E., Koç, M. (2018). Gıda Bileşenlerinin Sprey Soğutma Yöntemi İle Enkapsülasyonu, Food And Health, 4(3), 202-212.53. Ziyaina, M., Rasco, B., Coffey, T., Ünlü, G., Sablani, S. S. (2019). Colorimetric detection of volatile organic compounds for shelf-life monitoring of milk. Food Control, 100: 220–226. 54. Zhou, Y., Ding, L., Wu, Y., Huang, X., Lai, W., Xiong, Y. (2019). Emerging strategies to develop sensitive AuNP-based ICTS Nanosensors. Trends in Analytical Chemistry, 112:147-160.55. Zhao, Y., Gosai, A., Shrotriya, P. (2019). Effect of receptor attachment on sensitivity of label free microcantilever based biosensor using malachite green aptamer, Sensors & Actuators: B. Chemical, 300:126963.

THE USE OF NANOSYSTEMS IN THE FOOD INDUSTRY

Year 2020, Volume: 45 Issue: 3, 517 - 529, 15.06.2020
https://doi.org/10.15237/gida.GD20012

Abstract

The nanosystems are used in many fields such as health, food, energy, textile, automotive, communication technologies, agriculture, weapons and space industry and bring important improvements to our lives. In recent years, many studies have been carried out to investigate the ways to control the food products at atomic and molecular levels using nanosystems. These studies include topics such as green packaging systems, oxo-biodegradable packaging systems, end of fertilizer use, food tracking, tracking, brand protection, biosensors, smart labels, flavor defects, taste change and rapid bacterial detection. Besides, nanosystems significantly increase the patient's comfort and prolongs life in the diagnosis and treatment of the pharmaceutical industry and diseases in the field of health. This review study covers the usage areas of nanosystems and nanoparticles, food applications, nanoparticle components (carbon nanotubes, magnetic nanoparticles, gold nanoparticles, silver nanoparticles and quantum dots), nanosensors, smart packaging methods and biosensors in the food packaging systems.

References

  • 1. Ahmad, L., Salmon, L., Korri-Youssoufi, H. (2019) Electrochemical detection of the human cancer biomarker ‘autocrine motility factor-phosphoglucose isomerase’ based on a biosensor formed with a monosaccharidic inhibitör. Sensors & Actuators: B. Chemical, 299: 1269332. Veglia, A.V., Guillermo Bracamonte, A.(2019). β-Cyclodextrin grafted gold nanoparticles with short molecular spacers applied for nanosensors based on plasmonic effects. Microchemical Journal, 148:277–2843. Arman, A., Üzer, A., Sağlam, Ş., Erçağ, E., Apak, R. (2019). Indirect electrochemical determination of antioxidant capacity with hexacyanoferrate(III) reduction using a gold nanoparticle-coated ophenylenediamine- aniline copolymer electrode. Analytical Letters, 52(8):1282-12974. Aydın, E. B., Aydın, M., Sezgintürk, M.K. (2019). Biosensors and the evaluation of food contaminant biosensors in terms of their performance criteria. Internatıonal Journal of Envıronmental Analytıcal Chemıstry, https://doi.org/10.1080/03067319.2019.16726755. Bockuvienea, A., Sereikaite, J. (2019). Preparation and characterisation of novel water-soluble β-carotenechitooligosaccharides Complexes. Carbohydrate Polymers, 225:1152266. Chandrakasan, G., Rodrı´guez-Herna´ndez, A.I., Rocı´o Lo´pez-Cuellar,M.D., Palma-Rodrı´guez, H.M., Chavarrı´a-Herna´ndez, N. (2019). Bacteriocin encapsulation for food and pharmaceutical applications: advances in the past 20 years, Biotechnol Lett, 41:453–469.7. Chawda, P. J., Shi, J., Xue, S., Young Quek, S. (2017). Co-encapsulation of bioactives for food applications. Food Quality and Safety, 1(4):302–309, doi:10.1093/fqsafe/fyx0288. Dang, T., Hu, W., Zhang, W., Song, Z., Wang, Y., Chen, M., Xu, H., Liu, G.L. (2019). Protein binding kinetics quantification via coupled plasmonic-photonic resonance nanosensors in generic microplate reader. Biosensors and Bioelectronics, 142: 111494.9. Dhull, N., Kaur, G., Jain, P., Mishra, P., Singh, D., Ganju, L., Gupta, V., Tomar, M. (2019). Label-free amperometric biosensor for Escherichia coli O157:H7 detection. Applied Surface Science, 495:143548.10. Elahi, N., Kamali, M., Hadi Baghersad, M., Amini, B. (2019). A fluorescence Nano-biosensors immobilization on Iron (MNPs) and gold (AuNPs) nanoparticles for detection of Shigella spp. Materials Science & Engineering C, 105:11011311. Guillermo Fuertes, Ismael Soto, Raúl Carrasco, Manuel Vargas, Jorge Sabattin, and Carolina Lagos. (2016). Intelligent Packaging Systems: Sensors and Nanosensors to Monitor Food Quality and Safety. Journal of Sensors, 2016:8, http://dx.doi.org/10.1155/2016/4046061 12. Gök, V., Batu, A., Telli, R. (2006). Akıllı Paketleme Teknolojisi, Türkiye 9. Gıda Kongresi; 24-26 Mayıs, Bolu13. Gök, V., (2007). Gıda Paketleme Sanayinde Akıllı Paketleme Teknolojisi, Gıda Teknolojileri Elektronik Dergisi, (1): 45-58.14. Gong, X., Wang, H., Liu, Y., Hu, Q., Gao, Y., Yang, Z., Shuang, S., Dong, C. (2019). A di-functional and label-free carbon-based chem-nanosensor for real-time monitoring of pH fluctuation and quantitative determining of Curcumin. Anal Chim Acta, 30;1057:132-144, doi: 10.1016/j.aca.2019.01.01215. Irvine, G.W., Tan, S.N., Stillman, M.J. (2017). A Simple Metallothionein-Based Biosensor for Enhanced Detection of Arsenic and Mercury. Biosensors, 7:1416. Jiménez-López, J., Rodrigues, S.S.M., Ribeiro, D.S.M., Ortega-Barrales P., Ruiz-Medina, A., Santos, J.L.M. (2019). Exploiting the fluorescence resonance energy transfer (FRET) between17. CdTe quantum dots and Au nanoparticles for the determination of bioactive thiols. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 212: 246–25418. Kaadea, W., Ferrandoa, M., Khanmohammedb, A., Torrasa, C., De Lamo-Castellvia, S., Guell, C. (2019). Low-energy high-throughput emulsification with nickel micro-sieves for essential oils encapsulation. Journal of Food Engineering, 263:326–33619. Khan, N.I., Maddaus, A.G., Song, E. (2018). A Low‐Cost Inkjet‐Printed Aptamer‐Based Electrochemical Biosensor for the Selective Detection of Lysozyme. Biosensors. 8: 7.20. Kocaman, N., Sarımehmetoğlu, B. (2010). Gıdalarda Akıllı Ambalaj Kullanımı. Vet Hekim Der Dergisi 81(2): 67-72.21. Kumar, V., Guleria, P., Kumar Mehta, S. (2017). Nanosensors for food quality and safety assessment. Environ Chem Lett,15:165–177, DOI 10.1007/s10311-017-0616-4.22. Koç, M., Sakin, M., Kaymak-Ertekin, F. (2010). Microencapsulation and its Applications in Food Technology. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 16(1):77-8623. Li, Y., Zhang, Z., Tao, Z., Gao, X., Wang, S., Liu, Y. (2019). A Asp/Ce nanotube-based colorimetric nanosensor for H2O2-free and enzyme-free detection of cysteine, Talanta 196:556–56224. Li, Y., Hou, L., Shan, F., Zhang, Z., Li, Y., Liu Qiuchen Peng, Y., He, J., Li, K. (2019). A Novel Aggregation-Induced Emission Luminogen Based Molecularly Imprinted Fluorescence Sensor for Ratiometric Determination of Rhodamine B in Food Samples. Materials Science inc. Nanomaterials & Polymers, Chemistry Select, 4:11256– 11261, DOI: 10.1002/slct.201903141 25. Lupan, O., Postica, V., Pauporté, T., Viana, B., Terasa, M.I., Adelung, R. (2019). Room temperature gas nanosensors based on individual and multiple networked Au-modified ZnO nanowires. Sensors & Actuators: B. Chemical, 299:126977.26. Lupan, O., Postica, V., Wolff, N., Su, J., Labat, F., Ciofini, I., Cavers, H., Adelung, R., Polonskyi, O., Faupel, F., Kienle, L., Viana, B., Pauporté, T. (2019). Low-Temperature Solution Synthesis of Au-Modified ZnO Nanowires for Highly Efficient Hydrogen Nanosensors. ACS Appl. Mater. Interfaces, 11(35): 32115-3212627. Mahmoudpoura, M., Ezzati Nazhad Dolatabadid, J., Torbatib, M., Pirpour Tazehkande, A., Homayouni-Radb, A., De la Guardia, M. (2019). Nanomaterials and new biorecognition molecules based surface plasmon resonance biosensors for mycotoxin detection. Biosensors and Bioelectronics, 143:11160328. Marín, D., Aleman, A., Montero, P., Gomez-Guillen, M.C. (2018).Encapsulation of food waste compounds in soy phosphatidylcholine liposomes: Effect of freeze-drying, storage stability and functional aptitude. Journal of Food Engineering, 223:132-143.29. Maruthupandy, M., Seo, J. (2019). Allyl isothiocyanate encapsulated halloysite covered with polyacrylate as a potential antibacterial agent against food spoilage bacteria. Materials Science & Engineering C, 105:11001630. Miguela, G. A., Jacobsena, C., Prietob, C., Kempenc, P. J., Lagaronb, J. M., Chronakisa, I. S., García-Moreno, P. J. (2019). Oxidative stability and physical properties of mayonnaise fortified with zein electrosprayed capsules loaded with fish oil. Journal of Food Engineering, 263:348–35831. Mukdasai, S., Uppachaib P., Srijaranai, S. (2019). A novel colorimetric paper sensor based on the layer-by-layer assembled multilayers of surfactants for the sensitive and selective determination of total antioxidant capacity. RSC Adv., 9: 2859832. Niu, B., Yan, Z., Shao, P., Kang, J., Chen, H. (2018). Encapsulation of Cinnamon Essential Oil for Active Food Packaging Film with Synergistic Antimicrobial Activity. Nanomaterials, 8:598; doi:10.3390/nano808059833. Özkan, A., Atar, N., Yola, M.L. (2019). Enhanced surface plasmon resonance (SPR) signals based on immobilization of core-shell nanoparticles incorporated boron nitride nanosheets: Development of molecularly imprinted SPR nanosensor for anticancer drug, Etoposide. Biosensors and Bioelectronics. 130:293–298.34. Park, J., Kuo, Y., Li, J., Huang, Y.L., Miller, E. W., Weiss, S. (2019). Improved Surface Functionalization and Characterization of Membrane Targeted Semiconductor Voltage Nanosensors. J. Phys. Chem. Lett. 10 (14): 3906-3913.35. Peng, D., Kavanagh, O., Gao, H., Zhang, X., Deng, S., Chen, D., Liu, Z., Xie, C., Situ, C., Yuan, Z. (2019). Surface plasmon resonance biosensor for the determination of 3-methylquinoxaline- 2-carboxylic acid, the marker residue of olaquindox, in swine Tissues. Food Chemistry, 302:12462336. Raeisia, S., Ojagha, S. M., Quekb, S.Y., Pourashouria, P., Salaun, F. (2019). Nano-encapsulation of fish oil and garlic essential oil by a novel composition of wall material: Persian gum-chitosan. LWT - Food Science and Technology, 116:10849437. Rios-Meraa, J. D., Saldañaa, E., Ramírezb, Y., Auquiñivínb, E. A., Alvimc, I. D., Contreras-Castillo, C. J. (2019). Encapsulation optimization and pH- and temperature-stability of the complex coacervation between soy protein isolate and inulin entrapping fish oil. LWT - Food Science and Technology, 116:10855538. Rezende, J.P., Dias Ferreira, G.M., Mendes da Silva, L.H., Hepanhol da Silva, M.C., Pinto, M.S., Santos Pires, A.C.D.S. (2017). Polydiacetylene/triblock copolymer nanosensor for the detection of native and free bovine serum albümin. Materials Science and Engineering C, 70:535–543.39. Satapathi, S., Kumar, V., Kumar Chini, M.K., Bera, R., Halder, K.K., Patra. A. (2018). Highly sensitive detection and removal of mercury ion using a multimodal nanosensor. Nano-Structures & Nano-Objects. 16:120–126.40. Selvolinia, G., Lettieria, M., Tassonib, L., Gastaldellob, S., Grillob, M., Maranb, C., Marrazza, G. (2019). Electrochemical enzyme-linked oligonucleotide array for aflatoxin B1 Detection. Talanta, 203:49–5741. Simionato, I., Domingues, F.C., Nerín, C., Silva, F. (2019). Encapsulation of cinnamon oil in cyclodextrin nanosponges and their potential use for antimicrobial food packaging. Food and Chemical Toxicology, 132:11064742. Shtay, R., Keppler, J. K., Schrader, K., Schwarz, K. (2019). Encapsulation of (─)-epigallocatechin-3-gallate (EGCG) in solid lipid nanoparticles for food applications. Journal of Food Engineering, 244: 91–100.43. Srivastava, A. K., Dev, A., Karmakar, S., (2018). Nanosensors and nanobiosensors in food and agriculture. Environmental Chemistry Letters, 16:161–182.44. Qian, J., Wang, K., Wang, C., Ren, C., Liu, Q., Hao, N., Wang, K. (2017). Ratiometric fluorescence nanosensor for selective and visualdetection of cadmium ions using quencher displacement-inducedfluorescence recovery of CdTe quantum dots-based hybrid probe. Sensors and Actuators B, 241:1153–116045. Qian, L., Wang, K., Zhu, W., Han, C., Yan, C. (2019). Enhanced sensing ability in a single-layer guided-mode resonant optical biosensor with deep grating, Optics Communications, 452: 273–280.46. Teixeira, A., Hernández-Rodríguez, J. F., Wu L., Oliveira, K., Kant, K., Piairo, P., Diéguez, L., Abalde-Cela, S. (2019). Microfluidics-Driven Fabrication of a Low Cost and Ultrasensitive SERS-Based Paper Biosensor. Appl. Sci., 9:1387, doi:10.3390/app907138747. TÜYLEK, Z. (2017). Biyosensörler ve Nanoteknolojik Etkileşim, BEU Journal of Science 6(2), 71-80. 48. Wang, H., Rao, H., Luo, M., Xue, X., Xue, Z., Lu, X. (2019). Noble metal nanoparticles growth-based colorimetric strategies: From monocolorimetric to multicolorimetric sensors. Coordination Chemistry Reviews, 398:11300349. Yin, Y., Cadwallader, K. R. (2019). Spray-chilling encapsulation of 2-acetyl-1-pyrroline zinc chloride using hydrophobic materials: Storage stability and flavor application in food. Food Chemistry, 278:738–74350. Wu, J., Zeng, L., Li, N., Liu, C., Chen, J. (2019). A wash-free and label-free colorimetric biosensor for naked-eye detection of aflatoxin B1 using G-quadruplex as the signal reporter. Food Chemistry, 298:125034.51. Xiang, Y., Camarada, M.B., Wen, Y., Wu, H., Chen, J., Li, M., Liao, X. (2018). Simple voltammetric analyses of ochratoxin A in food samples using highly-stable and anti-fouling black phosphorene nanosensor. Electrochimica Acta. 282: 490-498.52. Varhan, E., Koç, M. (2018). Gıda Bileşenlerinin Sprey Soğutma Yöntemi İle Enkapsülasyonu, Food And Health, 4(3), 202-212.53. Ziyaina, M., Rasco, B., Coffey, T., Ünlü, G., Sablani, S. S. (2019). Colorimetric detection of volatile organic compounds for shelf-life monitoring of milk. Food Control, 100: 220–226. 54. Zhou, Y., Ding, L., Wu, Y., Huang, X., Lai, W., Xiong, Y. (2019). Emerging strategies to develop sensitive AuNP-based ICTS Nanosensors. Trends in Analytical Chemistry, 112:147-160.55. Zhao, Y., Gosai, A., Shrotriya, P. (2019). Effect of receptor attachment on sensitivity of label free microcantilever based biosensor using malachite green aptamer, Sensors & Actuators: B. Chemical, 300:126963.
There are 1 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Gülay Baysal

Publication Date June 15, 2020
Published in Issue Year 2020 Volume: 45 Issue: 3

Cite

APA Baysal, G. (2020). GIDA ENDÜSTRİSİNDE NANOSİSTEMLERİN KULLANIMI. Gıda, 45(3), 517-529. https://doi.org/10.15237/gida.GD20012
AMA Baysal G. GIDA ENDÜSTRİSİNDE NANOSİSTEMLERİN KULLANIMI. The Journal of Food. June 2020;45(3):517-529. doi:10.15237/gida.GD20012
Chicago Baysal, Gülay. “GIDA ENDÜSTRİSİNDE NANOSİSTEMLERİN KULLANIMI”. Gıda 45, no. 3 (June 2020): 517-29. https://doi.org/10.15237/gida.GD20012.
EndNote Baysal G (June 1, 2020) GIDA ENDÜSTRİSİNDE NANOSİSTEMLERİN KULLANIMI. Gıda 45 3 517–529.
IEEE G. Baysal, “GIDA ENDÜSTRİSİNDE NANOSİSTEMLERİN KULLANIMI”, The Journal of Food, vol. 45, no. 3, pp. 517–529, 2020, doi: 10.15237/gida.GD20012.
ISNAD Baysal, Gülay. “GIDA ENDÜSTRİSİNDE NANOSİSTEMLERİN KULLANIMI”. Gıda 45/3 (June 2020), 517-529. https://doi.org/10.15237/gida.GD20012.
JAMA Baysal G. GIDA ENDÜSTRİSİNDE NANOSİSTEMLERİN KULLANIMI. The Journal of Food. 2020;45:517–529.
MLA Baysal, Gülay. “GIDA ENDÜSTRİSİNDE NANOSİSTEMLERİN KULLANIMI”. Gıda, vol. 45, no. 3, 2020, pp. 517-29, doi:10.15237/gida.GD20012.
Vancouver Baysal G. GIDA ENDÜSTRİSİNDE NANOSİSTEMLERİN KULLANIMI. The Journal of Food. 2020;45(3):517-29.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/