Research Article
BibTex RIS Cite

GLİSEROLUN KİTOSAN BAZLI İKİ KATMANLI FİLMLER ÜZERİNE ETKİSİ

Year 2020, Volume: 45 Issue: 4, 763 - 773, 21.06.2020
https://doi.org/10.15237/gida.GD20054

Abstract

Kitosan (CH) filmler, bir plastikleştirici olarak gliserol ile ve gliserolsüz hazırlanmış ve iki katmanlı filmler oluşturmak için polikaprolakton (PCL) ve sikloolefin kopolimer (COC) ile kaplanmıştır. İkinci bir katman olarak PCL ve COC uygulamasının CH filmlerinin fiziko-mekanik özellikleri üzerine etkileri belirlenmiştir. CH film üzerine kaplandığında PCL ve COC film çözeltilerinin yüzey adezyonu temas açısı ile araştırılmıştır. PCL film çözeltilerinin temas açısı COC film çözeltilerinden daha düşük bulunmuştur (P <0.05). Taramalı elektron mikroskopi analizi, CH ve PCL arasında daha iyi bir adezyon olduğunu gösterirken, CH/COC iki katmanlı filmlerde faz ayrımı gözlenmiştir. İki katmanlı filmler, CH filmlere oranla suya karşı daha yüksek direnç gösterirken (P <0.05), iki katmanlı filmlerin mekanik özelliklerinde bir azalma gözlenmiştir. İki katmanlı filmler, tek katmanlı filmler ile benzer optik özellikler göstermiştir (P >0.05). CH filmlerin fizikomekanik özellikleri, gliserol ilavesinden ve ikinci katmanın uygulanmasından önemli ölçüde etkilenmiştir.

References

  • Arnon, H., Zaitsev, Y., Porat, R., Poverenov, E., Poverenov, E. (2014). Effects of carboxymethyl cellulose and chitosan bilayer edible coating on postharvest quality of citrus fruit. Postharvest Biol Tech, 87: 21–26.
  • ASTM. (1995). Standard test methods for water vapor transmission of materials: E96/E96M-16. In Annual book of American Society for Testing and Materials Standards (Vol. 04.06, pp. 14). West Conshohocken, PA: ASTM.
  • ASTM. (1999). Standard test method for specular gloss. Standard designation: D523. In annual book of American Society for Testing and Materials Standards, 06.01. Philadelphia: ASTM.
  • ASTM. (2001). Standard test method for tensile properties of thin plastic sheeting: D882. In Annual book of American Society for Testing and Materials standards (Vol. 08.01, pp. 12). PA: ASTM.
  • ASTM (2002). Standard test method for oxygen gas transmission rate through plastic film and sheeting using a coulometric sensor. Standard Designations: 3985-95. In Annual book of American Society for Testing and Materials Standards. Philadelphia, PA: ASTM.
  • Avella, M., Errico, M. E., Laurienzo, P., Martuscelli, E., Raimo, M., Rimedio, R. (2000). Preparation and characterization of compatibilised polycaprolactone/starch composites. Polymer, 41: 3875–3881.
  • Averous, L., Moro, L., Dole, P., & Fringant, C. (2000). Properties of thermoplastic blends: Starch polycaprolactone. Polymer, 41(11): 4157–4167.
  • Bertuzzi, M.A., Armada, M., Gottifredi, J.C. (2007). Physicochemical characterization of starch-based films. J Food Eng, 82: 17–25.
  • Bonilla, J., Atares, L., Vargas, M., Chiralt, A. (2013). Properties of wheat starch film-forming dispersions and films as affected by chitosan addition. J Food Eng, 114(3): 303–312.
  • Bonilla, J., Fortunati, E., Atares, L, Chiralt, A., Kenny, J.M. (2014). Physical, structural and antimicrobial properties of poly vinyl alcohol-chitosan biodegradable films. Food Hydrocolloid, 35: 463-470.
  • Bonilla, J., Vargas, M., Atares, L., Chiralt, A. (2011). Physical properties of chitosan-basil essential oil edible films as affected by oil content and homogenization conditions. Proc Food Sci, 1: 50-56.
  • Bourtoom, T. Chinnan, M.S. (2008). Preparation and properties of rice starch–chitosan blend biodegradable film. LWT-Food Sci Technol, 41: 1633–1641.
  • Farris, S., Introzzi, L., Biagioni, P., Holz, T., Schiraldi, A., Piergiovanni, L. (2011). Wetting of biopolymer coatings: Contact angle kinetics and image analysis investigation. Langmuir, 27: 7563–7574.
  • Ferreira, A.R.V., Torres, C.A.V., Freitas, F., Sevri, C., Grandfils, C., Reis, M.A.M., Alves, V.D., Coelhoso, I.M. (2016). Development and characterization of bilayer films of FucoPol and chitosan. Carbohyd Polym, 147: 8-15.
  • Ferreira, C.O., Nunes C.A., Delgadillo, I., and Lopes-da-Silva, J.A. (2009). Characterisation of chitosan-whey protein films at acid pH. Food Res Int, 42: 807-813.
  • Hassan, B., Chatha, S.A.S., Hussain, A.I., Zia, K.M., Akhtar, N. (2018). Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. Int J Biol Macromol, 109: 1095-1107.
  • Kurek, M., Galus, S., Debeaufort, F. (2014). Surface mechanical and barrier properties of bio based composite films based on chitosan and whey protein. Food Packaging and Shelf Life, 1(1): 56-67.
  • Kurita, K. (2001). Controlled functionalization of the polysaccharide chitin. Prog Polym Sci, 26: 1921-1971.
  • Liu, Y., Wang, S., Lan, W., Qin, W. (2017). Fabrication and Testing of PVA/Chitosan Bilayer Films for Strawberry Packaging. Coatings, 7: 109-125.
  • Liu, M.O., Lin, H.F., Yang, M.C., Lai, M.J., Chang, C.C., Shiao, P.L. Chen, I.M. Chen, J.Y. (2007). Thermal, dynamic mechanical and rheological properties of metallocene-catalyzed cycloolefin copolymers (mCOCs) with high glass transition temperature. Mater Lett, 61: 457-462.
  • Matzinos, P., Tserki, V., Kontoyiannis, A., & Panayiotou, C. (2002). Processing and characterization of starch/polycaprolactone products. Polym Degrad Stabil, 77: 17–24.
  • Mensitieri, G., Di Maio, E., Buonocuore, G. G., Nedi, I., Oliviero, M., Sansone, L., et al. (2011). Processing and shelf life issues of selected food packaging materials and structures from renewable resources. Trends Food Sci Tech, 22: 72–80.
  • Ortega-Toro, R., Morey, I., Talens, P., Chiralt, A. (2015). Active bilayer films of thermoplastic starch and polycaprolactoneobtained by compression molding. Carbohyd Polym, 127: 282–290.
  • Priyadarshi, R., Sauraj, Kumar, B., Negi, Y.S. (2018). Chitosan film incorporated with citric acid and glycerol as an active packaging material for extension of green chilli shelf life. Carbohyd Polym, 195(1): 329-338.
  • Sanchez-Gonzalez, L., Chafer, M., Hernandez, M., Chiralt, A., Gonzalez-Martínez, C. (2011). Antimicrobial activity of polysaccharide films containing essential oils. Food Control, 22(8): 1302-1310.
  • Shahbazi, Y. (2017). The properties of chitosan and gelatin films incorporated with ethanolic red grape seed extract and Ziziphora clinopodioides essential oil as biodegradable materials for active food packaging. Int J Biol Macromol, 99: 746-753.
  • Sharmin, N., Khan, R.A., Salmieri, S., Dussault, D., Lacroix, M. (2012). Effectiveness of Silane Monomer on Chitosan Films and PCL-Based Tri-Layer Films. J Appl Polym Sci, 125: 224–232.
  • Sogut, E., Seydim A.C. (2020). Development of Chitosan and Polycaprolactone Based Trilayer Biocomposite Films for Food Packaging Applications. Politeknik Dergisi, *(*): *, (*) (in-press).
  • Sogut E., Seydim A.C. (2018b). Characterization of cyclic olefin copolymer‐coated chitosan bilayer films containing nanocellulose and grape seed extract. Packag Technol Sci, 31: 499–508.
  • Sogut E., Seydim A.C. (2018a). Development of Chitosan and Polycaprolactone based active bilayer films enhanced with nanocellulose and grape seed extract. Carbohyd Polym, 195: 180–188.
  • Suyatma, E.N., Tighzert, L., Copinet, A. (2005). Effects of Hydrophilic Plasticizers on Mechanical, Thermal, and Surface Properties of Chitosan Films. J Agric Food Chem, 53: 3950-3957.
  • Swapna, J.C., Prashanth, H., Rastogi, N.K., Indiramma, A.R., Reddy, Y., Raghavarao, K.S.M.S. (2011). Optimum blend of chitosan and poly-(ε-caprolactone) for fabrication of films for food packaging applications. Food Bioprocess Tech, 4: 1179−1185.
  • Tuhin, M.O., Rahman, N., Haque, M.E., Khan, R.A., Dafader, N.C., Islam, R., Nurnabi, M., Tonny, W. (2012). Modification of mechanical and thermal property of chitosan–starch blend films. Radiat Phys Chem, 81(10): 1659-1668.
  • Valencia-Sullca, C., Vargas, M., Atares, L., Chiralt, A. (2018). Thermoplastic cassava starch-chitosan bilayer films containing essential oils. Food Hydrocolloid, 75: 107–115.
  • Vargas M., Albors A., Chiralt A., Gonzalez-Martinez C. (2009). Characterization of chitosan–oleic acid composite films. Food Hydrocolloid, 23: 536–547.
  • Velickov,a E., Winkelhausen, E., Kuzmanova, S., Moldao-Martins, M., Alves, V.T. (2013). Characterization of multilayered and composite edible films from chitosan and beeswax. Food Sci Technol Int, 21(2): 83–93.
  • Xu, Y.X., Kim, K.M., Hanna, M.A., Nag, D. (2005). Chitosan–starch composite film: preparation and characterization. Ind Crops Prod, 21: 185–192.

THE EFFECT OF GLYCEROL ON THE FORMATION OF CHITOSAN/POLYCAPROLACTONE AND CHITOSAN/CYCLOOLEFIN COPOLYMER BILAYER FILMS

Year 2020, Volume: 45 Issue: 4, 763 - 773, 21.06.2020
https://doi.org/10.15237/gida.GD20054

Abstract

Chitosan (CH) films were prepared with/without glycerol as a plasticizer and coated with polycaprolactone (PCL) and cycloolefin copolymer (COC) to form bilayer films. The effect of the second layer coating on the physicomechanical properties of CH films was determined. The adhesion of PCL and COC solutions, when coated on CH film, was investigated by contact angle measurement. The contact angle of PCL film solutions was lower than COC film solutions (P <0.05). Scanning electron microscopy analysis revealed better compatibility between CH and PCL, while a phase separation was observed for CH/COC bilayers. Bilayers showed higher resistance to water when compared to neat CH film samples (P <0.05), while a reduction was found in tensile properties for bilayer films. Bilayer films had similar transmittance values with monolayer films (P >0.05). The physicomechanical properties of CH films significantly influenced by the addition of glycerol and application of the second layer.

References

  • Arnon, H., Zaitsev, Y., Porat, R., Poverenov, E., Poverenov, E. (2014). Effects of carboxymethyl cellulose and chitosan bilayer edible coating on postharvest quality of citrus fruit. Postharvest Biol Tech, 87: 21–26.
  • ASTM. (1995). Standard test methods for water vapor transmission of materials: E96/E96M-16. In Annual book of American Society for Testing and Materials Standards (Vol. 04.06, pp. 14). West Conshohocken, PA: ASTM.
  • ASTM. (1999). Standard test method for specular gloss. Standard designation: D523. In annual book of American Society for Testing and Materials Standards, 06.01. Philadelphia: ASTM.
  • ASTM. (2001). Standard test method for tensile properties of thin plastic sheeting: D882. In Annual book of American Society for Testing and Materials standards (Vol. 08.01, pp. 12). PA: ASTM.
  • ASTM (2002). Standard test method for oxygen gas transmission rate through plastic film and sheeting using a coulometric sensor. Standard Designations: 3985-95. In Annual book of American Society for Testing and Materials Standards. Philadelphia, PA: ASTM.
  • Avella, M., Errico, M. E., Laurienzo, P., Martuscelli, E., Raimo, M., Rimedio, R. (2000). Preparation and characterization of compatibilised polycaprolactone/starch composites. Polymer, 41: 3875–3881.
  • Averous, L., Moro, L., Dole, P., & Fringant, C. (2000). Properties of thermoplastic blends: Starch polycaprolactone. Polymer, 41(11): 4157–4167.
  • Bertuzzi, M.A., Armada, M., Gottifredi, J.C. (2007). Physicochemical characterization of starch-based films. J Food Eng, 82: 17–25.
  • Bonilla, J., Atares, L., Vargas, M., Chiralt, A. (2013). Properties of wheat starch film-forming dispersions and films as affected by chitosan addition. J Food Eng, 114(3): 303–312.
  • Bonilla, J., Fortunati, E., Atares, L, Chiralt, A., Kenny, J.M. (2014). Physical, structural and antimicrobial properties of poly vinyl alcohol-chitosan biodegradable films. Food Hydrocolloid, 35: 463-470.
  • Bonilla, J., Vargas, M., Atares, L., Chiralt, A. (2011). Physical properties of chitosan-basil essential oil edible films as affected by oil content and homogenization conditions. Proc Food Sci, 1: 50-56.
  • Bourtoom, T. Chinnan, M.S. (2008). Preparation and properties of rice starch–chitosan blend biodegradable film. LWT-Food Sci Technol, 41: 1633–1641.
  • Farris, S., Introzzi, L., Biagioni, P., Holz, T., Schiraldi, A., Piergiovanni, L. (2011). Wetting of biopolymer coatings: Contact angle kinetics and image analysis investigation. Langmuir, 27: 7563–7574.
  • Ferreira, A.R.V., Torres, C.A.V., Freitas, F., Sevri, C., Grandfils, C., Reis, M.A.M., Alves, V.D., Coelhoso, I.M. (2016). Development and characterization of bilayer films of FucoPol and chitosan. Carbohyd Polym, 147: 8-15.
  • Ferreira, C.O., Nunes C.A., Delgadillo, I., and Lopes-da-Silva, J.A. (2009). Characterisation of chitosan-whey protein films at acid pH. Food Res Int, 42: 807-813.
  • Hassan, B., Chatha, S.A.S., Hussain, A.I., Zia, K.M., Akhtar, N. (2018). Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. Int J Biol Macromol, 109: 1095-1107.
  • Kurek, M., Galus, S., Debeaufort, F. (2014). Surface mechanical and barrier properties of bio based composite films based on chitosan and whey protein. Food Packaging and Shelf Life, 1(1): 56-67.
  • Kurita, K. (2001). Controlled functionalization of the polysaccharide chitin. Prog Polym Sci, 26: 1921-1971.
  • Liu, Y., Wang, S., Lan, W., Qin, W. (2017). Fabrication and Testing of PVA/Chitosan Bilayer Films for Strawberry Packaging. Coatings, 7: 109-125.
  • Liu, M.O., Lin, H.F., Yang, M.C., Lai, M.J., Chang, C.C., Shiao, P.L. Chen, I.M. Chen, J.Y. (2007). Thermal, dynamic mechanical and rheological properties of metallocene-catalyzed cycloolefin copolymers (mCOCs) with high glass transition temperature. Mater Lett, 61: 457-462.
  • Matzinos, P., Tserki, V., Kontoyiannis, A., & Panayiotou, C. (2002). Processing and characterization of starch/polycaprolactone products. Polym Degrad Stabil, 77: 17–24.
  • Mensitieri, G., Di Maio, E., Buonocuore, G. G., Nedi, I., Oliviero, M., Sansone, L., et al. (2011). Processing and shelf life issues of selected food packaging materials and structures from renewable resources. Trends Food Sci Tech, 22: 72–80.
  • Ortega-Toro, R., Morey, I., Talens, P., Chiralt, A. (2015). Active bilayer films of thermoplastic starch and polycaprolactoneobtained by compression molding. Carbohyd Polym, 127: 282–290.
  • Priyadarshi, R., Sauraj, Kumar, B., Negi, Y.S. (2018). Chitosan film incorporated with citric acid and glycerol as an active packaging material for extension of green chilli shelf life. Carbohyd Polym, 195(1): 329-338.
  • Sanchez-Gonzalez, L., Chafer, M., Hernandez, M., Chiralt, A., Gonzalez-Martínez, C. (2011). Antimicrobial activity of polysaccharide films containing essential oils. Food Control, 22(8): 1302-1310.
  • Shahbazi, Y. (2017). The properties of chitosan and gelatin films incorporated with ethanolic red grape seed extract and Ziziphora clinopodioides essential oil as biodegradable materials for active food packaging. Int J Biol Macromol, 99: 746-753.
  • Sharmin, N., Khan, R.A., Salmieri, S., Dussault, D., Lacroix, M. (2012). Effectiveness of Silane Monomer on Chitosan Films and PCL-Based Tri-Layer Films. J Appl Polym Sci, 125: 224–232.
  • Sogut, E., Seydim A.C. (2020). Development of Chitosan and Polycaprolactone Based Trilayer Biocomposite Films for Food Packaging Applications. Politeknik Dergisi, *(*): *, (*) (in-press).
  • Sogut E., Seydim A.C. (2018b). Characterization of cyclic olefin copolymer‐coated chitosan bilayer films containing nanocellulose and grape seed extract. Packag Technol Sci, 31: 499–508.
  • Sogut E., Seydim A.C. (2018a). Development of Chitosan and Polycaprolactone based active bilayer films enhanced with nanocellulose and grape seed extract. Carbohyd Polym, 195: 180–188.
  • Suyatma, E.N., Tighzert, L., Copinet, A. (2005). Effects of Hydrophilic Plasticizers on Mechanical, Thermal, and Surface Properties of Chitosan Films. J Agric Food Chem, 53: 3950-3957.
  • Swapna, J.C., Prashanth, H., Rastogi, N.K., Indiramma, A.R., Reddy, Y., Raghavarao, K.S.M.S. (2011). Optimum blend of chitosan and poly-(ε-caprolactone) for fabrication of films for food packaging applications. Food Bioprocess Tech, 4: 1179−1185.
  • Tuhin, M.O., Rahman, N., Haque, M.E., Khan, R.A., Dafader, N.C., Islam, R., Nurnabi, M., Tonny, W. (2012). Modification of mechanical and thermal property of chitosan–starch blend films. Radiat Phys Chem, 81(10): 1659-1668.
  • Valencia-Sullca, C., Vargas, M., Atares, L., Chiralt, A. (2018). Thermoplastic cassava starch-chitosan bilayer films containing essential oils. Food Hydrocolloid, 75: 107–115.
  • Vargas M., Albors A., Chiralt A., Gonzalez-Martinez C. (2009). Characterization of chitosan–oleic acid composite films. Food Hydrocolloid, 23: 536–547.
  • Velickov,a E., Winkelhausen, E., Kuzmanova, S., Moldao-Martins, M., Alves, V.T. (2013). Characterization of multilayered and composite edible films from chitosan and beeswax. Food Sci Technol Int, 21(2): 83–93.
  • Xu, Y.X., Kim, K.M., Hanna, M.A., Nag, D. (2005). Chitosan–starch composite film: preparation and characterization. Ind Crops Prod, 21: 185–192.
There are 37 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Articles
Authors

Ece Söğüt 0000-0003-4052-993X

Atıf Can Seydim 0000-0003-3808-509X

Publication Date June 21, 2020
Published in Issue Year 2020 Volume: 45 Issue: 4

Cite

APA Söğüt, E., & Seydim, A. C. (2020). THE EFFECT OF GLYCEROL ON THE FORMATION OF CHITOSAN/POLYCAPROLACTONE AND CHITOSAN/CYCLOOLEFIN COPOLYMER BILAYER FILMS. Gıda, 45(4), 763-773. https://doi.org/10.15237/gida.GD20054
AMA Söğüt E, Seydim AC. THE EFFECT OF GLYCEROL ON THE FORMATION OF CHITOSAN/POLYCAPROLACTONE AND CHITOSAN/CYCLOOLEFIN COPOLYMER BILAYER FILMS. The Journal of Food. June 2020;45(4):763-773. doi:10.15237/gida.GD20054
Chicago Söğüt, Ece, and Atıf Can Seydim. “THE EFFECT OF GLYCEROL ON THE FORMATION OF CHITOSAN/POLYCAPROLACTONE AND CHITOSAN/CYCLOOLEFIN COPOLYMER BILAYER FILMS”. Gıda 45, no. 4 (June 2020): 763-73. https://doi.org/10.15237/gida.GD20054.
EndNote Söğüt E, Seydim AC (June 1, 2020) THE EFFECT OF GLYCEROL ON THE FORMATION OF CHITOSAN/POLYCAPROLACTONE AND CHITOSAN/CYCLOOLEFIN COPOLYMER BILAYER FILMS. Gıda 45 4 763–773.
IEEE E. Söğüt and A. C. Seydim, “THE EFFECT OF GLYCEROL ON THE FORMATION OF CHITOSAN/POLYCAPROLACTONE AND CHITOSAN/CYCLOOLEFIN COPOLYMER BILAYER FILMS”, The Journal of Food, vol. 45, no. 4, pp. 763–773, 2020, doi: 10.15237/gida.GD20054.
ISNAD Söğüt, Ece - Seydim, Atıf Can. “THE EFFECT OF GLYCEROL ON THE FORMATION OF CHITOSAN/POLYCAPROLACTONE AND CHITOSAN/CYCLOOLEFIN COPOLYMER BILAYER FILMS”. Gıda 45/4 (June 2020), 763-773. https://doi.org/10.15237/gida.GD20054.
JAMA Söğüt E, Seydim AC. THE EFFECT OF GLYCEROL ON THE FORMATION OF CHITOSAN/POLYCAPROLACTONE AND CHITOSAN/CYCLOOLEFIN COPOLYMER BILAYER FILMS. The Journal of Food. 2020;45:763–773.
MLA Söğüt, Ece and Atıf Can Seydim. “THE EFFECT OF GLYCEROL ON THE FORMATION OF CHITOSAN/POLYCAPROLACTONE AND CHITOSAN/CYCLOOLEFIN COPOLYMER BILAYER FILMS”. Gıda, vol. 45, no. 4, 2020, pp. 763-7, doi:10.15237/gida.GD20054.
Vancouver Söğüt E, Seydim AC. THE EFFECT OF GLYCEROL ON THE FORMATION OF CHITOSAN/POLYCAPROLACTONE AND CHITOSAN/CYCLOOLEFIN COPOLYMER BILAYER FILMS. The Journal of Food. 2020;45(4):763-7.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/