Review
BibTex RIS Cite

NOVEL APPROACHES FOR A SUSTAINABLE MEAT PRODUCTION

Year 2021, Volume: 46 Issue: 2, 408 - 427, 23.03.2021
https://doi.org/10.15237/gida.GD20137

Abstract

The impact of traditional meat production on the environment has prompted the search for alternative production approaches geared towards sustainable operations. Examples of these novel approaches so-called green technologies include artificial meat, meat analogs, new protein sources like from insects. In the meat sector, smart farms where online herd monitoring is performed using Internet of Things technology are becoming widespread. These farms use genome-wide selection approaches producing high yield animals. To process the raw material produced with these systems using innovative processing and preservation technologies is a promising way to ensure a meat supply in a sustainable framework. Artificial meat, meat analogs and the usage of meat protein alternatives have limited consumer acceptance. These innovative green and sound approaches should be better integrated into the meat sector considering the positive impact on social, economic and sustainability principles. These new opportunities should be embraced by consumers as a good way to improve the quality of life while protecting the environment through sustainable production of meat and meat-like products.

References

  • Acevedo, C., Orellana, N., Avarias, K., Ortiz, R., Benavente, D., Prieto, P. (2018). Micropatterning technology to design an edible film for in vitro. Food and Bioprocess Technology, 11: 1267-1273, doi: 10.1007/s11947-018-2095-4.
  • Ademek, M., Adamkova, A., Mlcek, J., Borkovcova, M., Bednarova, M. (2018). Acceptability and sensory evaluation of energy bars and protein bars enriched with edible insect. Potravinarstvo Slovak Journal of Food Sciences, 12(1): 431-437, doi: 10.5219/925.
  • Alarcon-Rojo A.D., Carrillo-Lopez, L.M., Reyes-Villagrana, R., Huerta-Jiménez, M., Garcia-Galicia, I.A. (2019)
  • Andonovic, I., Michie, C., Cousin, P., Janati, A., Pham, C., Diop, M. (2018). Precision livestock farming technologies. Global Internet of Things Summit. 4-7 June, Bilbao, Spain.
  • Anonymous (2019a). Plastics- the Facts 2019. Plastics Europe.
  • Anonymous (1987). Our common future. World Commission on Environment and Development. Oxford University Press.
  • Anonymous (2018). The rise of plant based meats. Health and Nutrition Letter. Tufts University.
  • Anonymous (2019b). www.gardein.com/beefless/and/porkless/classics/meatless/meatballs (Accessed: 27 March 2020).
  • Anonymous (2020a). www.beyondmeat.com/about/our-ingredients/ (Accessed: 27 March 2019).
  • Anonymous (2020b). www.impossiblefoods.com/burger/ (Accessed:27 March 2019).
  • Anonymous (2020c). www.morningstarfarms.com/en_US/products/burgers/morningstar-farms-grillers-prime-veggie-burgers-product.html (Accessed: 27 March 2020).
  • Arora, B., Kamal, S., Sharma, V.P. (2017). Effect of binding agents on quality characteristics of mushroom based sausage analogue. Journal of Food Processing and Preservation, 41(5), doi: 10.1111/jfpp.13134.
  • Barbosa-Cánovas, G.V., Yildiz, S., Oner, M.E., Candoğan, K. (2020). Selected novel food processing technologies used as hurdles. In: Food Safety Engineering, Demirci A., Feng H., Krishnamurthy K. (eds). Food Engineering Series. Springer, Cham, pp. 629-657. doi:10.1007/978-3-030-42660-6_24.
  • Bessa, L.W., Pieterse, E., Sigge, G., Hoffman, L.C. (2019). An exploratory study into the use of black soldier fly (hermetia illucens) larvae in the production of a vienna-style sausage. Meat and Muscle Biolog, 3(1), doi: 10.22175/mmb2018.11.0038.
  • Bhat, Z.F., Morton, J.D., Mason, S.L., Bekhit, A. (2019). Current and future prospects for the use of pulsed electric field in the meat industry. Food Science and Nutrition, 59(10): 1660-1674, doi: 10.1080/10408398.2018.1425825
  • Bodiou, V., Moutsatsou, P., Post, M. (2020). Microcarriers for upscalling cultured meat production. Frontiers in Nutrition, 7:10, doi: 10.3389/fnut.2020.00010.
  • Bohrer, B. (2019). An investigation of the formulation and nutritional composition of modern meat analogue products. Food Science and Human Wellness, 8(4): 320-329, doi: 10.1016/j.fshw.2019.11.006.
  • Bonny, S.P.F., Gardner, G.E., Pethick, D.W., Hocquette, J.F. (2015). What is artificial meat and what does it mean for the future of the meat industry? Journal of Integrative Agriculture, 14(2): 255-263, doi: 10.1016/S2095-3119(14)60888-1.
  • Broad, G.M. (2020). Making meat, better: the metaphors of plant-based and cell-based meat innovation. Environmental Communication, 14(7): 919-932, doi: 10.1080/17524032.2020.172 5085.
  • Bryant, C., Barnett, J. (2018). Consumer acceptance of cultured meat: a systematic review. Meat Science, 143: 8-17, doi: 10.1016/j.meatsci.2018.04.008.
  • Bryant, C., Dillard, C. (2019). The impact of framing on acceptance of cultured meat. Frontier in Nutrition, 6: 103, doi: 10.3389/fnut.2019.00103.
  • Choi, Y., Kim, T., Choi, H., Park, J., Sung, J., Jeon, K., Paik, H., Kim, Y. (2017). Optimization of replacing pork meat with yellow worm (Tenebrio molitor L.) for frankfurters. Korean Journal Food Science Animal Resources, 37(5): 617–625, doi: 10.5851/kosfa.2017.37.5.617.
  • Cremiato, R., Mastellone, M.L., Tagliaferri, C., Zaccariello, L., Lettieri, P.E. (2018). Environmental impact o municipal solid waste management using life cycle assessment: the effect of anaerobic digestion, materials recovery and secondary fuels production. Renewable Energy, 124; 180-188, doi: 10.1016/j.renene.2017.06.033.
  • Dick, A., B. Bhandari, S., Prakash. (2019). 3D Printing of meat. Meat Science, 153: 35-44, doi: 10.1016/j.meatsci.2019.03.005.
  • Dong, M., Xu, Y., Zhang, Y., Han, M., Wang, P., Xu, X., Zhou, G. (2020). Physicochemical and structural properties of myofibrillar proteins isolated from pale, soft, exudative (PSE)-like chicken breast meat: Effects of pulsed electric field (PEF). Innovative Food Science & Emerging Technologies, 59, doi: 10.1016/j.ifset.2019.102277.
  • Driessen, C., Korthals, M. (2012). Pig towers and in vitro meat: disclosing moral worlds by design. Social Studies of Science, 42(6): 797 –820, doi: /10.1177/0306312712457110.
  • Egolf, A., Hartmann, C., Siegrist, M., (2019). When evolution works against the future: disgust’s contributions tothe acceptance of new food technologies. Risk Analysis, 39(7): 1546–1559, doi: 10.1111/risa.13279.
  • FAO 2013. Tackling climate change through livestock: A global assessment of emissions and mitigation opportunities. Rome, Italy.
  • FAO 2019. The State of Food and Agriculture. Rome.
  • Fernandes, A.M., Teixeira O., Revillion, J.P.P., Souza, A.R. (2019). Conceptual evolution and scientific approaches about synthetic meat. Journal of Food Science and Technology, 57(6):1991-1999, doi: 10.1007/s13197-019-04155-0.
  • Fraser, R., Brown, P.O., Karr, J., Holz-Schietinger, C., Cohn, E. (2017). Methods and compositions for affecting the flavor and aroma profile of consumables. US Patents US9700067B2.
  • Fuller, A., Fan, Z., Day, C., Barlow, C. (2020). Digital twin: enabling technologies, challenges and open research. IEEE Access, 8, doi: 10.1109/ACCESS.2020.2998358.
  • Gedik, Y. (2020). Sosyal, ekonomik ve çevresel boyutlarla sürdürülebilirlik ve sürdürülebilir kalkınma. International Journal of Economics, Politics, Humanities & Social Sciences 3(3): 197-215.
  • Ghosh, S., Gillis, A., Levkov, K., Vitkin, E., Golberg, A. (2020). Saving energy on meat air convection drying with pulsed electric field coupled to mechanical press water removal. Innovative Food Science & Emerging Technologies, 66, doi: 10.1016/j.ifset.2020.102509.
  • Gomez-Luciano, C.A., Loyola, I.E.D.E.S., Vriesekoop, F., Urbano, B. (2019). Towards food security of alternative dietary proteins: A comparison between Spain and the Dominican Republic. Food Security, 21(51): 393-407, doi: 10.24818/EA/2019/51/393.
  • Grandin, T. (2019). Principles for commercial supply chain managers of livestock and poultry. In: Sustainable meat production and processing, Galanakis, C.M. (chief ed.), Academic Press, pp. 1-15.
  • Gravel, A., Doyen, A. (2020). The use of edible insect proteins in food: challenges and issues related to their functional properties. Innovative Food Science and Emerging Technologies, 59, doi: 10.1016/j.ifset.2019.102272.
  • Handral, H.K., Tay, S.H., Chan, W.W., Choudhury, H. (2020). 3D printing of cultured meat products. Critical Reviews in Food Science and Nutrition, 1-10, doi: 10.1080/10408398.2020.1815172.
  • He, J., Evans, N.M., Liu, H., Shao, S. (2020). A review of research on plant‐based meat alternatives: Driving forces, history, manufacturing, and consumer attitudes. Food Science and Food Safety, 19(5): 2639-2656, doi: 10.1111/1541-4337.12610. Jo, K., Lee, S., Yong, H., Choi, Y., Jung, S. (2020). Nitrite sources for cured meat products. LWT, 129, doi: 10.1016/j.lwt.2020.109583.
  • Jo, S.K., Park, D., Park, H., Kim, S. (2018). Smart livestock farms using digital twin: feasibility study. 2018 International Conference on Information and Communication Technology Convergence, 17-19 October, Jeju, South Korea.
  • Khalil, M., Berawi, M., Heryanto, R., Rizalie, A. (2019). Waste to energy technology: the potential of sustainable biogas production from animal waste in Indonesia. Renewable and Sustainable Energy Reviews, 105: 323-331, doi: 10.1016/j.rser.2019.02.011.
  • Kiiru, S.M., Kinyuru, J.N., Kiage, B.N., Marel, A.K. (2020). Partial substitution of soy protein isolates with cricket flour during extrusion affects firmness and in vitro protein digestibility. Journal of Insect as Food and Feed, 6(2): 169-177, doi: 10.3920/JIFF2019.0024.
  • Kim, H., Setyabrata, D., Lee, Y., Jones, O, Kim, Y. (2017). Effect of house cricket (Acheta domesticus) flour addition on physicochemical and textural properties of meat emulsion under various formulations. Journal of Food Science, 82(12): 2787-2793 doi: 10.1111/1750-3841.13960.
  • Kim, H., Setyabrata, D., Lee, Y., Jones, O., Kim, Y. (2016). Pre-treated mealworm larvae and silkworm pupae as a novel protein ingredient in emulsion sausages. Innovative Food Science & Emerging Technologies, 38: 116-123, doi: 10.1016/j.ifset.2016.09.023.
  • Koning, W., Dean, D., Vriesekoop, F., Aguiar, L.K., Anderson, M., Mongondry, P., Oppong-Gyamfi, M., Urbano, B., Luciano, C.A.G, Jiang, B., Hao, W., Eastwick, E., Jiang, Z., Boereboom, A. (2020). Drivers and inhibitors in the acceptance of meat alternatives: the case of plant and insect-based proteins. Foods, 9(9), doi: 10.3390/foods9091292.
  • Korhonen H. (2002). Technology options for new nutritional concepts. International Journay of Dairy Technology, 55(2): 79-88, doi: 10.1046/j.1471-0307.2002.00050.x.
  • Kouřimská, L., Adámková, A. (2016). Nutritional and sensory quality of edible insects. NFS Journal, 4: 22-26, doi: 10.1016/j.nfs.2016.07.001.
  • Krauß, M., Drastig, K., Prochnow, A., Rose-Meierhöfer, S., Kraatz, S. (2016). Drinking and cleaning water use in a dairy cow barn. Water, 8(7): 302, doi: 10.3390/w8070302.
  • Kumar, P., Chatli, M.K., Mehta, N., Singh, P., Malav, O.P., Verma, A. (2017). Meat analogues: health promising sustainable meat substitues. Food Science and Nutrition, 57(5): 923-932, doi: 10.1080/10408398.2014.939739.
  • Kyriakopoulou, K., Dekkers, B., Van der Goot, A.J. (2019). Plant based meat analogues in sustainable meat production and processing. In: Sustainable meat production and processing, Galanakis, C.M. (chief ed.), Academic Press, pp. 103-126.
  • Ladjal-Ettoumi, Y., Boudries, H., Chibane, M., Romero, A. (2016). Pea, chickpea and lentil protein isolates: physicochemical characterization and emulsifying properties. Food Biophysics, 11: 43-51, doi: 10.1007/s11483-015-9411-6.
  • Lang, M. (2020). Consumer acceptance of blending plant-based ingredients into traditional meat-based foods: Evidence from the meat-mushroom blend. Food Quality and Preference, 79, doi: 10.1016/j.foodqual.2019.103758.
  • Lee, J., Lee, C.W., Yong, H., Lee, H.J., Jo, C., Jung, S. (2017). Use of atmospheric pressure cold plasma for meat industry. Korean Journal of Food Science Animal Resources, 37(4): 477-485, doi: 10.5851/kosfa.2017.37.4.477.
  • Looy, H., Dunkel, F. V., Wood, J. R. (2014). How then shall we eat? Insect-eating attitudes and sustainable foodways. Agriculture and Human Values, 31(1): 131-141, doi: 10.1007/s10460-013-9450-x.
  • Malav, O.P., Talukder, S., Gokulakrıshnan, P. (2015). Meat analog: a review. Food Science and Nutrition, 55: 1241-1245, doi: 10.1080/10408398.2012.689381.
  • Mancini, M.C., Antonioli, F. (2019). Exploring consumers’ attitude towards cultured meat in Italy. Meat Science, 150, 101-110, doi: 10.1016/j.meatsci.2018.12.014.
  • Melzener, L., Verzijden, K., Buijs, J., Post, M., Flacka, J. (2020). Cultured beef: from small biopsy to substantial quantity. Journal of The Science of Food and Agriculture, doi: 10.1002/jsfa.10663.
  • Michel, F., Hartmann, C., Siegrist, M. (2021). Consumers’ associations, perceptions and acceptance of meat and plant-based meat alternatives. Food Quality and Preference, 87, doi: 10.1016/j.foodqual.2020.104063.
  • Mora, L., Reig, M., Toldrá, F. (2014). Bioactive peptides generated from meat industry by-products. Food Research International, 64: 344-349, doi: 10.1016/j.foodres.2014.09.014.
  • Nogales-Merida, S., Gobbi, P., Jozefiak, D., Mazurkiewicz, J., Dudek, K., Rawski, M., Kieronczyk, B., Jozefiak, A. (2019). Insect meals in fish nutrition. Aquaculture, 11(4): 1080-1103, doi: 10.1111/raq.12281.
  • OECD/FAO (2019). OECD-FAO Agricultural Outlook 2019-2028, OECD Publishing, Paris/Food and Agriculture Organization of the United Nations, Rome, doi: 10.1787/agr_outlook-2019-en.
  • Orellana, N., Sanchez, E., Benavente, D., Prieto, P., Enrione, J., Acevedo, C. (2020). A new edible film to produce in vitro meat. Foods, 9(2), doi: 10.3390/foods9020185.
  • Orsi, L., Voege, L. and Straineri, S. (2019). Eating edible insects as sustainable food? Exploring the determinants of consumer acceptance in Germany. Food Research International, 125, doi: 10.1016/j.foodres.2019.108573.
  • Pan, L., Xu, M., Xi, L. (2016). Research of livestock farming ıot system based on restful web services. 5th International Conference on Computer Science and Network Technology, 10-11 December, Changchun, China.
  • Park, Y., Choi, Y., Hwang, K., Kim, T., Lee, C., Shin, D., Han, S. (2017). Physicochemical properties of meat batter added with edible silkworm pupae (Bombyx mori) and transglutaminase. Korean Journal Food Science Animal Resources, 37(3): 351–359, doi: 10.5851/kosfa.2017.37.3.351.
  • Poortvliet, P.M, Van der Pas, L., Mulder, B., Fogliano, V. (2019). Healthy, but disgusting: an ınvestigation ınto consumers’ willingness to try ınsect meat. Journal of Economic Entomology, 112(3): 1005-1010, doi: 10.1093/jee/toz043.
  • Popova, T., Petkov, E., Ignatova, M. 2020. Effect of black soldier fly (Hermetia illucens) meals on the meat quality in broilers. Agricultural and Food Science, 29(3): 177-188, doi: 10.23986/afsci.88098.
  • Post, M. (2012). Cultured meat from stem cell: challenges and prospects. Meat Science, 92: 297-301, doi: 10.1016/j.meatsci.2012.04.008.
  • Rehrah, D., Ahmedna, M., Göktepe, İ., Yu, J. (2009). Extrusion parameters and consumer acceptability of a peanut‐based meat analogue. International Journal of Food Science and Technology, 44(10): 2075-2084, doi: 10.1111/j.1365-2621.2009.02035.x.
  • Rumpold, B.A., Schluter, O.K. (2013). Nutritional composition and safety aspects of edible insects. Molecular Nutrition and Food Research, 57(5): 802-823, doi: 10.1002/mnfr.201200735.
  • Rolland, N.C.M., Markus, C.R., Post, M.J. (2020). The effect of information content on acceptance of cultured meat in a tasting context. PLoS one, 15(10), doi: 10.1371/journal.pone.0231176.
  • Sales-Campos, H., Reis de Souza, P., Crema Peghini, B., Santana da Silva, J., Ribeiro Cardoso, C. (2013). An overview of the modulatory effects of oleic acid in health and disease. Medicinal Chemistry, 13(2): 201-210, doi: 10.2174/138955713804805193.
  • Schoenfeld, B.J., Aragon, A.A. (2018). How much protein can the body use in a single meal for muscle-building? Implications for daily protein distribution. Journal of the International Society of Sports Nutrition, 15(10), doi: 10.1186/s12970-018-0215-1.
  • Scholliers, J., Steen, L., Fraeye, I. (2020). Structure and physical stability of hybrid model systems containing pork meat and superworm (Zophobas morio larvae): The influence of heating regime and insect: meat ratio. Innovative Food Science & Emerging Technologies, 65, doi: 10.1016/j.ifset.2020.102452.
  • Singh, M., Novoa, R.E., Kataria, J., Leone, C., Thippareddi, H. (2020). Emerging meat processing technologies for microbiological safety of meat and meat products. Meat and Muscle Biology, 4(2), doi: 10.22175/mmb.11180. Stamer, A. (2015). Insect proteins–a new source for animal feed. EMBO Reports,16: 676-680, doi: 10.15252/embr.201540528.
  • Tait-Burkard, C., Doeschl-Wilson, A., McGrew, M.J., Archibald, A.J., Sang, H., Houston, R.D., Whitelaw, C.B., Watson, M. (2020). Livestock 2.0–genome editing for fitter, healthier, and more productive farmed animals. Genome Biology, 19, doi: 10.1186/s13059-018-1583-1.
  • Tang, C., Yang, D., Liao, H., Sun, H., Liu, C., Wei, L., Li, F. (2019). Edible insects as a food source: a review. Food Production, Processing and Nutrition, 1-8, doi: 10.1186/s43014-019-0008-1.
  • Thompson, H.O., Önnig, G., Holmgren, K., Strandler, H.S., Hultberg, M. (2020). Fermantation of cauliflower and white beans with Lactobacillus plantarum impact on levels of ribolavin, folate, vitamin B12 and amino acid composition. Plant Foods for Human Nutrition, 5: 236-242, doi: 0.1007/s11130-020-00806-2.
  • Tisdell, C. (2003). Socioeconomic causes of loss of animal genetic diversity: analysis and assessment. Ecological Economics, 45(3): 365-376, doi: 10.1016/S0921-8009(03)00091-0.
  • Tuomisto, H., Mattos, M. (2011). Environmental impacts of cultured meat production. Environmental Science and Technology, 45(14): 6117-6123, doi: 10.1021/es200130u.
  • Tuomisto, H., Roy, A. (2012). Could cultured meat reduce environmental impact of agriculture in Europe? 8th International Conference on LCA in the Agri-Food Sector, 2-4 October, Rennes, France.
  • Valente, J.D.P.S., Fiedler, R.A., Heidemann, M.S., Molento, C.F.M. (2019). First glimpse on attitudes of highly educated consumers towards cell-based meat and related issues in Brazil. PLoS one, 14(8): 1-12, doi: 10.1371/journal.pone.0221129.
  • Venne, T., Pinckaers, P., Loon, J., Loon, L. (2017). Consideration of insects as a source of dietary protein for human consumption. Nutrition Reviews, 75(12): 1035-1045, doi: 10.1093/nutrit/nux057.
  • Vranken, E., Berckmans, D. (2017). Precision livestock farming for pigs. Animal Frontiers, 7(1): 32-37, doi: 10.2527/af.2017.0106.
  • Weinrich, R., Strack, M., Neugebauer, F. (2020). Consumer acceptance of cultured meat in Germany. Meat Science, 162, doi: 10.1016/j.meatsci.2019.107924.
  • Woolf, E., Zhu, Y., Emory, K., Zhao, J., Liu, C. (2019). Willingness to consume insect-containing foods: A survey in the United States. LWT, 102: 100-105, doi: /10.1016/j.lwt.2018.12.010.
  • Xueliang, L., Zhang, G., Zhao, X., Zhou, J., Du, G., Chen, J. (2020). A conceptual air-lift reactor design or large scale animal cell cultivation in the context of in vitro meat production. Chemical Engineering Science, 211, doi: 10.1016/j.ces.2019.115269.
  • Zhang, G., Zhao, X., Li, X., Du, G., Zhou, J., Chen, J. (2020a). Challenges and possibilities for bio-manufacturing cultured meat. Trends in Food Science & Technology, 97: 443-450, doi: 10.1016/j.tifs.2020.01.026.
  • Zhang, M., Li, L., Bai, J. (2020b). Consumer acceptance of cultured meat in urban areas of three cities in China. Food Control, 118, doi: 10.1016/j.foodcont.2020.107390.
  • Zin, T.T., Misawa, S., Pwint, M.Z., Thant, S., Seint, P.T., Sumi, K., Yoshida, K. (2020). Cow ıdentification system using ear tag recognition. IEEE 2nd Global Conference on Life Sciences and Technologies, 10-12 March, Kyoto, Japan.

SÜRDÜRÜLEBİLİR ET ÜRETİMİ İÇİN YENİLİKÇİ YAKLAŞIMLAR

Year 2021, Volume: 46 Issue: 2, 408 - 427, 23.03.2021
https://doi.org/10.15237/gida.GD20137

Abstract

Geleneksel et üretiminin iklime, doğaya ve dolayısıyla çevreye olan olumsuz etkisi, et ürünlerine olan talebin sürdürülebilir boyutlarda karşılanabilmesi için bazı yeşil teknolojiler, yapay et, böcek proteini ve et analogları gibi yenilikçi uygulamaları gündeme getirmiştir. Et endüstrisinde genetik seçilime uğramış, verimi yüksek hayvan üretiminin ve nesnelerin interneti teknolojisi kullanılarak çevrimiçi sürü takibinin yapılabildiği, etkili atık bertarafına sahip akıllı çiftlik tasarımları yaygınlaşmaktadır. Sınırlı kaynakların verimli kullanılması ilkesiyle üretilen hammaddenin çevre dostu yenilikçi işleme ve muhafaza teknolojileriyle et tedarik zincirinde yer alması da çiftlikten çatala sürdürülebilir et teminini sağlayabilecek uygulamalardandır. Geleceğin umut veren gıdası olarak görülen, ancak, sağlık üzerine etkileri yeterince araştırılmamış, yüksek maliyetli yapay etin, alternatif protein kaynağı olarak böceklerin veya et analoglarının tüketiminin yaygınlaştırılması gibi çözüm yollarının ise tüketici kabul edilirliği sınırlıdır. Gelecek nesillerin yaşam kalitesinin artırılmasında, güncel araştırmalara konu olan yenilikçi yeşil uygulamaların, ekonomik, sosyal ve çevresel sürdürülebilirlik ilkeleri göz önünde bulundurularak bütünsel yaklaşımla sektöre kazandırılması sektördeki tüm paydaşların sorumluluğudur.

References

  • Acevedo, C., Orellana, N., Avarias, K., Ortiz, R., Benavente, D., Prieto, P. (2018). Micropatterning technology to design an edible film for in vitro. Food and Bioprocess Technology, 11: 1267-1273, doi: 10.1007/s11947-018-2095-4.
  • Ademek, M., Adamkova, A., Mlcek, J., Borkovcova, M., Bednarova, M. (2018). Acceptability and sensory evaluation of energy bars and protein bars enriched with edible insect. Potravinarstvo Slovak Journal of Food Sciences, 12(1): 431-437, doi: 10.5219/925.
  • Alarcon-Rojo A.D., Carrillo-Lopez, L.M., Reyes-Villagrana, R., Huerta-Jiménez, M., Garcia-Galicia, I.A. (2019)
  • Andonovic, I., Michie, C., Cousin, P., Janati, A., Pham, C., Diop, M. (2018). Precision livestock farming technologies. Global Internet of Things Summit. 4-7 June, Bilbao, Spain.
  • Anonymous (2019a). Plastics- the Facts 2019. Plastics Europe.
  • Anonymous (1987). Our common future. World Commission on Environment and Development. Oxford University Press.
  • Anonymous (2018). The rise of plant based meats. Health and Nutrition Letter. Tufts University.
  • Anonymous (2019b). www.gardein.com/beefless/and/porkless/classics/meatless/meatballs (Accessed: 27 March 2020).
  • Anonymous (2020a). www.beyondmeat.com/about/our-ingredients/ (Accessed: 27 March 2019).
  • Anonymous (2020b). www.impossiblefoods.com/burger/ (Accessed:27 March 2019).
  • Anonymous (2020c). www.morningstarfarms.com/en_US/products/burgers/morningstar-farms-grillers-prime-veggie-burgers-product.html (Accessed: 27 March 2020).
  • Arora, B., Kamal, S., Sharma, V.P. (2017). Effect of binding agents on quality characteristics of mushroom based sausage analogue. Journal of Food Processing and Preservation, 41(5), doi: 10.1111/jfpp.13134.
  • Barbosa-Cánovas, G.V., Yildiz, S., Oner, M.E., Candoğan, K. (2020). Selected novel food processing technologies used as hurdles. In: Food Safety Engineering, Demirci A., Feng H., Krishnamurthy K. (eds). Food Engineering Series. Springer, Cham, pp. 629-657. doi:10.1007/978-3-030-42660-6_24.
  • Bessa, L.W., Pieterse, E., Sigge, G., Hoffman, L.C. (2019). An exploratory study into the use of black soldier fly (hermetia illucens) larvae in the production of a vienna-style sausage. Meat and Muscle Biolog, 3(1), doi: 10.22175/mmb2018.11.0038.
  • Bhat, Z.F., Morton, J.D., Mason, S.L., Bekhit, A. (2019). Current and future prospects for the use of pulsed electric field in the meat industry. Food Science and Nutrition, 59(10): 1660-1674, doi: 10.1080/10408398.2018.1425825
  • Bodiou, V., Moutsatsou, P., Post, M. (2020). Microcarriers for upscalling cultured meat production. Frontiers in Nutrition, 7:10, doi: 10.3389/fnut.2020.00010.
  • Bohrer, B. (2019). An investigation of the formulation and nutritional composition of modern meat analogue products. Food Science and Human Wellness, 8(4): 320-329, doi: 10.1016/j.fshw.2019.11.006.
  • Bonny, S.P.F., Gardner, G.E., Pethick, D.W., Hocquette, J.F. (2015). What is artificial meat and what does it mean for the future of the meat industry? Journal of Integrative Agriculture, 14(2): 255-263, doi: 10.1016/S2095-3119(14)60888-1.
  • Broad, G.M. (2020). Making meat, better: the metaphors of plant-based and cell-based meat innovation. Environmental Communication, 14(7): 919-932, doi: 10.1080/17524032.2020.172 5085.
  • Bryant, C., Barnett, J. (2018). Consumer acceptance of cultured meat: a systematic review. Meat Science, 143: 8-17, doi: 10.1016/j.meatsci.2018.04.008.
  • Bryant, C., Dillard, C. (2019). The impact of framing on acceptance of cultured meat. Frontier in Nutrition, 6: 103, doi: 10.3389/fnut.2019.00103.
  • Choi, Y., Kim, T., Choi, H., Park, J., Sung, J., Jeon, K., Paik, H., Kim, Y. (2017). Optimization of replacing pork meat with yellow worm (Tenebrio molitor L.) for frankfurters. Korean Journal Food Science Animal Resources, 37(5): 617–625, doi: 10.5851/kosfa.2017.37.5.617.
  • Cremiato, R., Mastellone, M.L., Tagliaferri, C., Zaccariello, L., Lettieri, P.E. (2018). Environmental impact o municipal solid waste management using life cycle assessment: the effect of anaerobic digestion, materials recovery and secondary fuels production. Renewable Energy, 124; 180-188, doi: 10.1016/j.renene.2017.06.033.
  • Dick, A., B. Bhandari, S., Prakash. (2019). 3D Printing of meat. Meat Science, 153: 35-44, doi: 10.1016/j.meatsci.2019.03.005.
  • Dong, M., Xu, Y., Zhang, Y., Han, M., Wang, P., Xu, X., Zhou, G. (2020). Physicochemical and structural properties of myofibrillar proteins isolated from pale, soft, exudative (PSE)-like chicken breast meat: Effects of pulsed electric field (PEF). Innovative Food Science & Emerging Technologies, 59, doi: 10.1016/j.ifset.2019.102277.
  • Driessen, C., Korthals, M. (2012). Pig towers and in vitro meat: disclosing moral worlds by design. Social Studies of Science, 42(6): 797 –820, doi: /10.1177/0306312712457110.
  • Egolf, A., Hartmann, C., Siegrist, M., (2019). When evolution works against the future: disgust’s contributions tothe acceptance of new food technologies. Risk Analysis, 39(7): 1546–1559, doi: 10.1111/risa.13279.
  • FAO 2013. Tackling climate change through livestock: A global assessment of emissions and mitigation opportunities. Rome, Italy.
  • FAO 2019. The State of Food and Agriculture. Rome.
  • Fernandes, A.M., Teixeira O., Revillion, J.P.P., Souza, A.R. (2019). Conceptual evolution and scientific approaches about synthetic meat. Journal of Food Science and Technology, 57(6):1991-1999, doi: 10.1007/s13197-019-04155-0.
  • Fraser, R., Brown, P.O., Karr, J., Holz-Schietinger, C., Cohn, E. (2017). Methods and compositions for affecting the flavor and aroma profile of consumables. US Patents US9700067B2.
  • Fuller, A., Fan, Z., Day, C., Barlow, C. (2020). Digital twin: enabling technologies, challenges and open research. IEEE Access, 8, doi: 10.1109/ACCESS.2020.2998358.
  • Gedik, Y. (2020). Sosyal, ekonomik ve çevresel boyutlarla sürdürülebilirlik ve sürdürülebilir kalkınma. International Journal of Economics, Politics, Humanities & Social Sciences 3(3): 197-215.
  • Ghosh, S., Gillis, A., Levkov, K., Vitkin, E., Golberg, A. (2020). Saving energy on meat air convection drying with pulsed electric field coupled to mechanical press water removal. Innovative Food Science & Emerging Technologies, 66, doi: 10.1016/j.ifset.2020.102509.
  • Gomez-Luciano, C.A., Loyola, I.E.D.E.S., Vriesekoop, F., Urbano, B. (2019). Towards food security of alternative dietary proteins: A comparison between Spain and the Dominican Republic. Food Security, 21(51): 393-407, doi: 10.24818/EA/2019/51/393.
  • Grandin, T. (2019). Principles for commercial supply chain managers of livestock and poultry. In: Sustainable meat production and processing, Galanakis, C.M. (chief ed.), Academic Press, pp. 1-15.
  • Gravel, A., Doyen, A. (2020). The use of edible insect proteins in food: challenges and issues related to their functional properties. Innovative Food Science and Emerging Technologies, 59, doi: 10.1016/j.ifset.2019.102272.
  • Handral, H.K., Tay, S.H., Chan, W.W., Choudhury, H. (2020). 3D printing of cultured meat products. Critical Reviews in Food Science and Nutrition, 1-10, doi: 10.1080/10408398.2020.1815172.
  • He, J., Evans, N.M., Liu, H., Shao, S. (2020). A review of research on plant‐based meat alternatives: Driving forces, history, manufacturing, and consumer attitudes. Food Science and Food Safety, 19(5): 2639-2656, doi: 10.1111/1541-4337.12610. Jo, K., Lee, S., Yong, H., Choi, Y., Jung, S. (2020). Nitrite sources for cured meat products. LWT, 129, doi: 10.1016/j.lwt.2020.109583.
  • Jo, S.K., Park, D., Park, H., Kim, S. (2018). Smart livestock farms using digital twin: feasibility study. 2018 International Conference on Information and Communication Technology Convergence, 17-19 October, Jeju, South Korea.
  • Khalil, M., Berawi, M., Heryanto, R., Rizalie, A. (2019). Waste to energy technology: the potential of sustainable biogas production from animal waste in Indonesia. Renewable and Sustainable Energy Reviews, 105: 323-331, doi: 10.1016/j.rser.2019.02.011.
  • Kiiru, S.M., Kinyuru, J.N., Kiage, B.N., Marel, A.K. (2020). Partial substitution of soy protein isolates with cricket flour during extrusion affects firmness and in vitro protein digestibility. Journal of Insect as Food and Feed, 6(2): 169-177, doi: 10.3920/JIFF2019.0024.
  • Kim, H., Setyabrata, D., Lee, Y., Jones, O, Kim, Y. (2017). Effect of house cricket (Acheta domesticus) flour addition on physicochemical and textural properties of meat emulsion under various formulations. Journal of Food Science, 82(12): 2787-2793 doi: 10.1111/1750-3841.13960.
  • Kim, H., Setyabrata, D., Lee, Y., Jones, O., Kim, Y. (2016). Pre-treated mealworm larvae and silkworm pupae as a novel protein ingredient in emulsion sausages. Innovative Food Science & Emerging Technologies, 38: 116-123, doi: 10.1016/j.ifset.2016.09.023.
  • Koning, W., Dean, D., Vriesekoop, F., Aguiar, L.K., Anderson, M., Mongondry, P., Oppong-Gyamfi, M., Urbano, B., Luciano, C.A.G, Jiang, B., Hao, W., Eastwick, E., Jiang, Z., Boereboom, A. (2020). Drivers and inhibitors in the acceptance of meat alternatives: the case of plant and insect-based proteins. Foods, 9(9), doi: 10.3390/foods9091292.
  • Korhonen H. (2002). Technology options for new nutritional concepts. International Journay of Dairy Technology, 55(2): 79-88, doi: 10.1046/j.1471-0307.2002.00050.x.
  • Kouřimská, L., Adámková, A. (2016). Nutritional and sensory quality of edible insects. NFS Journal, 4: 22-26, doi: 10.1016/j.nfs.2016.07.001.
  • Krauß, M., Drastig, K., Prochnow, A., Rose-Meierhöfer, S., Kraatz, S. (2016). Drinking and cleaning water use in a dairy cow barn. Water, 8(7): 302, doi: 10.3390/w8070302.
  • Kumar, P., Chatli, M.K., Mehta, N., Singh, P., Malav, O.P., Verma, A. (2017). Meat analogues: health promising sustainable meat substitues. Food Science and Nutrition, 57(5): 923-932, doi: 10.1080/10408398.2014.939739.
  • Kyriakopoulou, K., Dekkers, B., Van der Goot, A.J. (2019). Plant based meat analogues in sustainable meat production and processing. In: Sustainable meat production and processing, Galanakis, C.M. (chief ed.), Academic Press, pp. 103-126.
  • Ladjal-Ettoumi, Y., Boudries, H., Chibane, M., Romero, A. (2016). Pea, chickpea and lentil protein isolates: physicochemical characterization and emulsifying properties. Food Biophysics, 11: 43-51, doi: 10.1007/s11483-015-9411-6.
  • Lang, M. (2020). Consumer acceptance of blending plant-based ingredients into traditional meat-based foods: Evidence from the meat-mushroom blend. Food Quality and Preference, 79, doi: 10.1016/j.foodqual.2019.103758.
  • Lee, J., Lee, C.W., Yong, H., Lee, H.J., Jo, C., Jung, S. (2017). Use of atmospheric pressure cold plasma for meat industry. Korean Journal of Food Science Animal Resources, 37(4): 477-485, doi: 10.5851/kosfa.2017.37.4.477.
  • Looy, H., Dunkel, F. V., Wood, J. R. (2014). How then shall we eat? Insect-eating attitudes and sustainable foodways. Agriculture and Human Values, 31(1): 131-141, doi: 10.1007/s10460-013-9450-x.
  • Malav, O.P., Talukder, S., Gokulakrıshnan, P. (2015). Meat analog: a review. Food Science and Nutrition, 55: 1241-1245, doi: 10.1080/10408398.2012.689381.
  • Mancini, M.C., Antonioli, F. (2019). Exploring consumers’ attitude towards cultured meat in Italy. Meat Science, 150, 101-110, doi: 10.1016/j.meatsci.2018.12.014.
  • Melzener, L., Verzijden, K., Buijs, J., Post, M., Flacka, J. (2020). Cultured beef: from small biopsy to substantial quantity. Journal of The Science of Food and Agriculture, doi: 10.1002/jsfa.10663.
  • Michel, F., Hartmann, C., Siegrist, M. (2021). Consumers’ associations, perceptions and acceptance of meat and plant-based meat alternatives. Food Quality and Preference, 87, doi: 10.1016/j.foodqual.2020.104063.
  • Mora, L., Reig, M., Toldrá, F. (2014). Bioactive peptides generated from meat industry by-products. Food Research International, 64: 344-349, doi: 10.1016/j.foodres.2014.09.014.
  • Nogales-Merida, S., Gobbi, P., Jozefiak, D., Mazurkiewicz, J., Dudek, K., Rawski, M., Kieronczyk, B., Jozefiak, A. (2019). Insect meals in fish nutrition. Aquaculture, 11(4): 1080-1103, doi: 10.1111/raq.12281.
  • OECD/FAO (2019). OECD-FAO Agricultural Outlook 2019-2028, OECD Publishing, Paris/Food and Agriculture Organization of the United Nations, Rome, doi: 10.1787/agr_outlook-2019-en.
  • Orellana, N., Sanchez, E., Benavente, D., Prieto, P., Enrione, J., Acevedo, C. (2020). A new edible film to produce in vitro meat. Foods, 9(2), doi: 10.3390/foods9020185.
  • Orsi, L., Voege, L. and Straineri, S. (2019). Eating edible insects as sustainable food? Exploring the determinants of consumer acceptance in Germany. Food Research International, 125, doi: 10.1016/j.foodres.2019.108573.
  • Pan, L., Xu, M., Xi, L. (2016). Research of livestock farming ıot system based on restful web services. 5th International Conference on Computer Science and Network Technology, 10-11 December, Changchun, China.
  • Park, Y., Choi, Y., Hwang, K., Kim, T., Lee, C., Shin, D., Han, S. (2017). Physicochemical properties of meat batter added with edible silkworm pupae (Bombyx mori) and transglutaminase. Korean Journal Food Science Animal Resources, 37(3): 351–359, doi: 10.5851/kosfa.2017.37.3.351.
  • Poortvliet, P.M, Van der Pas, L., Mulder, B., Fogliano, V. (2019). Healthy, but disgusting: an ınvestigation ınto consumers’ willingness to try ınsect meat. Journal of Economic Entomology, 112(3): 1005-1010, doi: 10.1093/jee/toz043.
  • Popova, T., Petkov, E., Ignatova, M. 2020. Effect of black soldier fly (Hermetia illucens) meals on the meat quality in broilers. Agricultural and Food Science, 29(3): 177-188, doi: 10.23986/afsci.88098.
  • Post, M. (2012). Cultured meat from stem cell: challenges and prospects. Meat Science, 92: 297-301, doi: 10.1016/j.meatsci.2012.04.008.
  • Rehrah, D., Ahmedna, M., Göktepe, İ., Yu, J. (2009). Extrusion parameters and consumer acceptability of a peanut‐based meat analogue. International Journal of Food Science and Technology, 44(10): 2075-2084, doi: 10.1111/j.1365-2621.2009.02035.x.
  • Rumpold, B.A., Schluter, O.K. (2013). Nutritional composition and safety aspects of edible insects. Molecular Nutrition and Food Research, 57(5): 802-823, doi: 10.1002/mnfr.201200735.
  • Rolland, N.C.M., Markus, C.R., Post, M.J. (2020). The effect of information content on acceptance of cultured meat in a tasting context. PLoS one, 15(10), doi: 10.1371/journal.pone.0231176.
  • Sales-Campos, H., Reis de Souza, P., Crema Peghini, B., Santana da Silva, J., Ribeiro Cardoso, C. (2013). An overview of the modulatory effects of oleic acid in health and disease. Medicinal Chemistry, 13(2): 201-210, doi: 10.2174/138955713804805193.
  • Schoenfeld, B.J., Aragon, A.A. (2018). How much protein can the body use in a single meal for muscle-building? Implications for daily protein distribution. Journal of the International Society of Sports Nutrition, 15(10), doi: 10.1186/s12970-018-0215-1.
  • Scholliers, J., Steen, L., Fraeye, I. (2020). Structure and physical stability of hybrid model systems containing pork meat and superworm (Zophobas morio larvae): The influence of heating regime and insect: meat ratio. Innovative Food Science & Emerging Technologies, 65, doi: 10.1016/j.ifset.2020.102452.
  • Singh, M., Novoa, R.E., Kataria, J., Leone, C., Thippareddi, H. (2020). Emerging meat processing technologies for microbiological safety of meat and meat products. Meat and Muscle Biology, 4(2), doi: 10.22175/mmb.11180. Stamer, A. (2015). Insect proteins–a new source for animal feed. EMBO Reports,16: 676-680, doi: 10.15252/embr.201540528.
  • Tait-Burkard, C., Doeschl-Wilson, A., McGrew, M.J., Archibald, A.J., Sang, H., Houston, R.D., Whitelaw, C.B., Watson, M. (2020). Livestock 2.0–genome editing for fitter, healthier, and more productive farmed animals. Genome Biology, 19, doi: 10.1186/s13059-018-1583-1.
  • Tang, C., Yang, D., Liao, H., Sun, H., Liu, C., Wei, L., Li, F. (2019). Edible insects as a food source: a review. Food Production, Processing and Nutrition, 1-8, doi: 10.1186/s43014-019-0008-1.
  • Thompson, H.O., Önnig, G., Holmgren, K., Strandler, H.S., Hultberg, M. (2020). Fermantation of cauliflower and white beans with Lactobacillus plantarum impact on levels of ribolavin, folate, vitamin B12 and amino acid composition. Plant Foods for Human Nutrition, 5: 236-242, doi: 0.1007/s11130-020-00806-2.
  • Tisdell, C. (2003). Socioeconomic causes of loss of animal genetic diversity: analysis and assessment. Ecological Economics, 45(3): 365-376, doi: 10.1016/S0921-8009(03)00091-0.
  • Tuomisto, H., Mattos, M. (2011). Environmental impacts of cultured meat production. Environmental Science and Technology, 45(14): 6117-6123, doi: 10.1021/es200130u.
  • Tuomisto, H., Roy, A. (2012). Could cultured meat reduce environmental impact of agriculture in Europe? 8th International Conference on LCA in the Agri-Food Sector, 2-4 October, Rennes, France.
  • Valente, J.D.P.S., Fiedler, R.A., Heidemann, M.S., Molento, C.F.M. (2019). First glimpse on attitudes of highly educated consumers towards cell-based meat and related issues in Brazil. PLoS one, 14(8): 1-12, doi: 10.1371/journal.pone.0221129.
  • Venne, T., Pinckaers, P., Loon, J., Loon, L. (2017). Consideration of insects as a source of dietary protein for human consumption. Nutrition Reviews, 75(12): 1035-1045, doi: 10.1093/nutrit/nux057.
  • Vranken, E., Berckmans, D. (2017). Precision livestock farming for pigs. Animal Frontiers, 7(1): 32-37, doi: 10.2527/af.2017.0106.
  • Weinrich, R., Strack, M., Neugebauer, F. (2020). Consumer acceptance of cultured meat in Germany. Meat Science, 162, doi: 10.1016/j.meatsci.2019.107924.
  • Woolf, E., Zhu, Y., Emory, K., Zhao, J., Liu, C. (2019). Willingness to consume insect-containing foods: A survey in the United States. LWT, 102: 100-105, doi: /10.1016/j.lwt.2018.12.010.
  • Xueliang, L., Zhang, G., Zhao, X., Zhou, J., Du, G., Chen, J. (2020). A conceptual air-lift reactor design or large scale animal cell cultivation in the context of in vitro meat production. Chemical Engineering Science, 211, doi: 10.1016/j.ces.2019.115269.
  • Zhang, G., Zhao, X., Li, X., Du, G., Zhou, J., Chen, J. (2020a). Challenges and possibilities for bio-manufacturing cultured meat. Trends in Food Science & Technology, 97: 443-450, doi: 10.1016/j.tifs.2020.01.026.
  • Zhang, M., Li, L., Bai, J. (2020b). Consumer acceptance of cultured meat in urban areas of three cities in China. Food Control, 118, doi: 10.1016/j.foodcont.2020.107390.
  • Zin, T.T., Misawa, S., Pwint, M.Z., Thant, S., Seint, P.T., Sumi, K., Yoshida, K. (2020). Cow ıdentification system using ear tag recognition. IEEE 2nd Global Conference on Life Sciences and Technologies, 10-12 March, Kyoto, Japan.
There are 90 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Articles
Authors

Prof. Dr. Kezban Candoğan 0000-0002-6721-8835

Gizem Özdemir 0000-0002-1213-8977

Publication Date March 23, 2021
Published in Issue Year 2021 Volume: 46 Issue: 2

Cite

APA Candoğan, P. D. K., & Özdemir, G. (2021). SÜRDÜRÜLEBİLİR ET ÜRETİMİ İÇİN YENİLİKÇİ YAKLAŞIMLAR. Gıda, 46(2), 408-427. https://doi.org/10.15237/gida.GD20137
AMA Candoğan PDK, Özdemir G. SÜRDÜRÜLEBİLİR ET ÜRETİMİ İÇİN YENİLİKÇİ YAKLAŞIMLAR. The Journal of Food. March 2021;46(2):408-427. doi:10.15237/gida.GD20137
Chicago Candoğan, Prof. Dr. Kezban, and Gizem Özdemir. “SÜRDÜRÜLEBİLİR ET ÜRETİMİ İÇİN YENİLİKÇİ YAKLAŞIMLAR”. Gıda 46, no. 2 (March 2021): 408-27. https://doi.org/10.15237/gida.GD20137.
EndNote Candoğan PDK, Özdemir G (March 1, 2021) SÜRDÜRÜLEBİLİR ET ÜRETİMİ İÇİN YENİLİKÇİ YAKLAŞIMLAR. Gıda 46 2 408–427.
IEEE P. D. K. Candoğan and G. Özdemir, “SÜRDÜRÜLEBİLİR ET ÜRETİMİ İÇİN YENİLİKÇİ YAKLAŞIMLAR”, The Journal of Food, vol. 46, no. 2, pp. 408–427, 2021, doi: 10.15237/gida.GD20137.
ISNAD Candoğan, Prof. Dr. Kezban - Özdemir, Gizem. “SÜRDÜRÜLEBİLİR ET ÜRETİMİ İÇİN YENİLİKÇİ YAKLAŞIMLAR”. Gıda 46/2 (March 2021), 408-427. https://doi.org/10.15237/gida.GD20137.
JAMA Candoğan PDK, Özdemir G. SÜRDÜRÜLEBİLİR ET ÜRETİMİ İÇİN YENİLİKÇİ YAKLAŞIMLAR. The Journal of Food. 2021;46:408–427.
MLA Candoğan, Prof. Dr. Kezban and Gizem Özdemir. “SÜRDÜRÜLEBİLİR ET ÜRETİMİ İÇİN YENİLİKÇİ YAKLAŞIMLAR”. Gıda, vol. 46, no. 2, 2021, pp. 408-27, doi:10.15237/gida.GD20137.
Vancouver Candoğan PDK, Özdemir G. SÜRDÜRÜLEBİLİR ET ÜRETİMİ İÇİN YENİLİKÇİ YAKLAŞIMLAR. The Journal of Food. 2021;46(2):408-27.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/