Review
BibTex RIS Cite

TAHIL VE PSEUDO-TAHILLARIN ISLAK ÖĞÜTME TEKNOLOJİSİ

Year 2021, Volume: 46 Issue: 2, 463 - 473, 23.03.2021
https://doi.org/10.15237/gida.GD20147

Abstract

Öğütmenin amacı; tohumu meydana getiren başlıca kısımları, öğütme yöntemine göre ayırarak, gıda endüstrisi veya diğer endüstrilerde kullanmaktır. Öğütme, genel olarak kuru ve ıslak öğütme olarak sınıflandırılabilir. Islak öğütmede amaç; nişasta, protein, besinsel lif ve ham yağ gibi tohumun başlıca kimyasal bileşenlerini ayırmak iken; kuru öğütmede amaç tanenin anatomik kısımları olan endosperm, ruşeym ve kepeği ayırmaktır. Islak öğütmede her bileşen mümkün olan en saf haliyle ayrılırken; kuru öğütmede, yüksek kalitede rafine veya tam tane unu elde edilir. Islak öğütme, tahıl veya pseudo-tahılların temel bileşenlerini fiziksel, kimyasal, biyokimyasal ve mekanik işlemler ile ayıran endüstriyel bir işlemdir. Islak öğütme, ıslatma işlemi ile başlar, ardından mekanik ayırma işlemi gelir. Islak öğütme işlemi sanayide, çoğunlukla buğday ve mısıra uygulanırken, sorgum, arpa, yulaf ve pirinç gibi tahıllara da uygulanmaktadır. Karabuğday, kinoa ve amarant pseudo-tahıllarının ıslak öğütmesi ile ilgili çalışmalar henüz laboratuvar ölçeğindedir. Tahıl veya pseudo-tahılların ıslak öğütme koşulları tamamen nişasta verimini ve fizikokimyasal özelliklerini etkilemektedir.

References

  • Alexandre, A.P.S., Castanha, N., Calori-Domingues, M.A., Augusto, P.E.D. (2017). Ozonation of whole wheat flour and wet milling effluent: Degradation of deoxynivalenol (DON) and rheological properties. J Environ Sci Health, 52, 516-524.
  • Al-Hakkak, J., Al-Hakkak, F. (2007). New non-destructive method using gluten to isolate starch from plant materials other than wheat. Starch, 59:117-124.
  • Arslan, A., Gil, J.V., Fernández-Espınar, M.T., Haros, C.M. (2016). Quinoa wet-milling: Effect of steeping on isolation, pasting and thermal properties of starch. ICC-Cereal and Bread Congress, İstanbul, Turkey.
  • Ballester-Sánchez, J., Fernández-Espinar, M.T., Haros, C.M. (2020). Isolation of red quinoa fibre by wet and dry milling and application as a potential functional bakery ingredient. Food Hydrocoll, 101:105513.
  • Ballester-Sánchez, J., Gil, J.V., Fernández-Espinar, M.T., Haros, C.M. (2019). Quinoa wet-milling: Effect of steeping conditions on starch recovery and quality. Food Hydrocoll, 89:837-843.
  • Bet, C.D., Soltovski de Oliveira, C., Colman, T.A.D., Marinho, M.T., Lacerda, L.G., Ramos, A.P., Schnitzler, E. (2018). Organic amaranth starch: A study of its technological properties after heat-moisture treatment. Food Chem, 264:435-442.
  • Chew-Guevara, A.A., Pérez-Carrillo, E., Serna-Saldívar, S.R.O., Rosa-Millán, J. (2016). Effect of decortication and protease treatment on physicochemical and functional characteristics of red sorghum (Sorghum bicolor) and yellow maize (Zea maiz) starches. Starch, 68:1-8.
  • Chhikara, N., Abdulahi, B., Munezero, C., Kaur, R., Singh, G., Panghal, A. (2019). Exploring the nutritional and phytochemical potential of sorghum in food processing for food security. Nutr & Food Sci, 49(2):318-332.
  • El Halal, S.L.M., Kringel, D.H., Zavareze, E.R., Dias, A.R.G. (2019). Methods for extracting cereal starches from different sources: A review. Starch, 71(11-12):1900128.
  • Espinosa-Solis, V., García-Tejeda, Y.V., Leal-Castañeda, E.J., Barrera-Figueroa, V. (2020). Effect of the degree of substitution on the hydrophobicity, crystallinity, and thermal properties of lauroylated amaranth starch. Polymers, 12:2548.
  • Fernández-López, J., Lucas-González, R., Viuda-Martos, M., Sayas-Barberá, E., Ballester-Sánchez, J., Haros, C.M., Martínez-Mayoral, A., Pérez-Álvarez, A. (2020). Chemical and technological properties of bologna-type sausages with added black quinoa wet-milling coproducts as binder replacer. Food Chem, 310:125936.
  • Gao, J., Vasanthan, T., Hoover, R. (2009). Isolation and characterization of high-purity starch isolates from regular, waxy, and high-amylose hulless barley grains. Cereal Chem, 86:157-163.
  • Guan, L., Seib, P.A., Graybosch, R.A., Bean, S., Shi, Y.C. (2009). Dough rheology and wet milling of hard waxy wheat flours. J Agric Food Chem, 57:7030-7038.
  • Haros, C.M., Wronkowska, M. (2017). Pseudocereal Dry and Wet Milling: Processes, Products and Applications. In: Pseudocereals: Chemistry and Technology, Edts: C.M. Haros, R. Schoenlechner, Wiley-Blackwell, pp.140-162.
  • Hung, P.V., Trinh, L.N.D., Thuy, N.T.X., Morita, N. (2020). Changes in nutritional composition, enzyme activities and bioactive compounds of germinated buckwheat (Fagopyrum esculentum M.) under unchanged air and humidity conditions. Int J Food Sci Technology. Jan, K.N., Panesar, P.S., Singh, S. (2017). Process standardization for isolation of quinoa starch and its characterization in comparison with other starches. Food Measure, 11:1919-1927.
  • Jan, K.N., Panesar, P.S., Singh, S. (2019). Effect of moisture content on the physical and mechanical properties of quinoa seeds. Int Agrophys, 33(1):41-48.
  • Joaqui, B.A., Bolaños-Monilla, A., Bravo-Gomez, J.E., Solanilla-Duque, J.F., Roa-Acosta, D.F. (2020). Wet milling of the amaranth grain: Relationship between the secondary structure of the protein and its ability to form gel. Sylwan, 164(5):31-48.
  • Kringel, D.H., El Halal, S.L.M., Zavareze, E.R., Dias, A.R.G. (2020). Methods for the extraction of roots, tubers, pulses, pseudocereals, and other unconventional starches sources: A review. Starch, 72(11-12): 1900234.
  • Leal-Castañeda, E.J., García-Tejeda, Y., Hernández-Sánchez, H., Alamilla-Beltrán, L., Téllez-Medina, D.I., Calderón-Domínguez, G., García, H.S., Gutiérrez-López, G.F. (2018). Pickering emulsions stabilized with native and lauroylated amaranth starch. Food Hydrocoll, 80:177-185.
  • Leewatchararongjaroen, J., Anuntagool, J. (2016). Effects of dry-milling and wet-milling on chemical, physical and gelatinization properties of rice flour. Rice Sci, 23(5):274-281.
  • Li, G., Wang, S., Zhu, F. (2016). Physicochemical properties of quinoa starch. Carbohyd Polym, 137:328-338.
  • Li, G., Zhu, F. (2018). Effect of high pressure on rheological and thermal properties of quinoa and maize starches. Food Chem, 241:380-386.
  • Loubes, M.A., Resio, A.N.C., Tolaba, M.P., Suarez, C. (2012). Mechanical and thermal characteristics of amaranth starch isolated by acid wet-milling procedure. Food Sci Technol-LEB, 46 (2):519-524.
  • Magallanes López, A.M., Manthey, F.A., Simsek, S. (2018). Wet-milling impact on starch and gluten fractions. LACC/IGW. 13th Int. Gluten Workshop Proceedings, 97-100 p.
  • Magallanes López, A.M., Manthey, F.A., Simsek, S. (2019). Wet milling of deoxynivalenol-contaminated wheat: Effect on physicochemical properties of starch. Cereal Chem, 97(2):293-303.
  • Magallanes López, A.M., Ohm, J.B., Manthey, F.A., Rao, J., Simsek, S. (2021). Gluten extraction from deoxynivalenol contaminated wheat by wet milling. Food Control, 120:107513.
  • Malik, M.A., Saxena, D.C. (2016). Effect on physicochemical and thermal properties of buckwheat (Fagopyrum esculentum) starch by acid hyrdolysis combined with heat moisture treatment. J Food Process Pres, 40:1352-1363.
  • Mufari, J.R., Miranda-Villa, P.P., Calandri, E.L. (2018). Quinoa germ and starch separation by wet milling, performance and characterization of the fractions. Food Sci Technol-LEB, 96:527-534.
  • Park, C.S., Baik, B.K. (2010). Recovery and purity of isolated barley starch and protein as affected by fractionation water temperature. Cereal Chem, 87: 561–565. Punia, S., Sandhu, K.S., Dhull, S.B., Siroha, A.K., Purewal, S.S., Kaur, M., Kidwai, M.K. (2020). Oat starch: Physico-chemical, morphological, rheological characteristics and its applications-A Review. Int J Biol Macromol, 154:493-498.
  • Reguera, M., Haros, C.M. (2017). Structure and composition of kernels. In: Pseudocereals: Chemistry and Technology, Edts: C.M. Haros, R. Schoenlechner, Wiley-Blackwell, pp.28-43.
  • Resio, A.N.C., Tolaba, M.P., Suarez, C. (2006). Effects of steeping conditions on wet-milling attributes of amaranth. Int J Food Sci Technology, 41:70-76.
  • Resio, A.N.C., Tolaba, M.P., Suarez, C. (2009). Correlations between wet-milling characteristics of amaranth grain. J Food Eng, 92:275-279.
  • Rosentrater, K.A., Evers, A.D. (2018). Wet milling. In: Kent’s Technology of Cereals, Fifth Edition, Elsevier, pp. 839-860.
  • Qi, Y., Du, F., Jiang, Z., Qiu, B., Guan, Q., Liu, J., Xu, T. (2018). Optimization of starch isolation from red sorghum using response surface methodology. Food Sci Technol-LEB, 91:242-248.
  • Sayaslan, A. (2004). Wet-milling of wheat flour: Industrial processes and small-scale test methods. Food Sci Technol-LEB, 37: 499-515.
  • Sayaslan, A., Seib, P.A., Chung, O.K. (2005). Wet-milling of flours from red, white and low-polyphenol oxidase white wheats. Food Sci Technol Int, 11:243-249.
  • Sayaslan, A., Seib, P.A., Chung, O.K. (2006). Wet-milling properties of waxy wheat flours by two laboratory methods. J Food Eng, 72:167-178.
  • Sayaslan, A., Seib, P.A., Chung, O.K. (2012). A bench-scale high-shear wet-milling test for wheat flour. J Food Eng, 111:305-317.
  • Schoenlechner, R. (2017). Quinoa: Its unique nutritional and health-promoting attributes. In: Gluten-Free Ancient Grains, Edts: John R.N. Taylor, Joseph M. Awika, Elsevier, First Edition, pp. 105-129.
  • Shah, A., Masoodi, F.A., Gani, A., Ashwar, B.A. (2017). Physicochemical, rheological and structural characterization of acetylated oat starches. Food Sci Technol-LEB, 80:19-26. Sharma, P., Tejinder, S. (2014). Extraction of starch from hulled and hull-less barley with papain and aqueous sodium hydroxide. J Food Sci Technol, 51:3870–3877.
  • Sharma, P., Kotari, S.L. (2017). Barley: Impact of processing on physicochemical and thermal properties – A Review. Food Rev Int, 33(4):359-381.
  • Skendi, A., Zinoviadou, K.G., Papageorgiou, M., Rocha, J.M. (2020). Advances on the valorisation and functionalization of by-products and wastes from cereal-based processing industry. Foods, 9(9):1243.
  • Steeneken, P.A.M., Helmens, H.J. (2009). Laboratory-scale dry/wet-milling process for the extraction of starch and gluten from wheat. Starch, 61:389-397.
  • Tong, L.T., Gao, X., Lin, L., Liu, Y., Zhong, K., Liu, L., Zhou, X., Wang, L., Zhou, S. (2015). Effects of semi-dry flour milling on the quality attributes of rice flour and rice noodles in China. J Cereal Sci, 62:45-49.
  • Uriarte-Aceves, P.M., Cuevas-Rodríguez, E.O., Gutiérrez-Dorado, R., Mora-Rochín, S., Reyes-Moreno, C., Puangpraphant, S., Milán-Carrillo, J. (2015). Physical, compositional, and wet-milling characteristics of Mexican Blue Maize (Zea mays L.) Landrace. Cereal Chem, 92(5):491-496.
  • Uriarte-Aceves, P.M., Milán-Carrillo, J., Cuevas-Rodríguez, E.O., Gutierrez-Dorado, R., Reyes-Moreno, C., Milán-Noris, E.M. (2018). In vitro digestion properties of native isolated starches from Mexican blue maize (Zea mays L.) landrace. Food Sci Technol-LEB, 93:384.389.
  • Uriarte-Aceves, P.M., Sopade, P.A., Rangel-Pereza, J.G. (2019). Physical, chemical and wet-milling properties of commercial white maize hybrids cultivated in México. J Food Process Pres, 43(7):e13998.
  • Wronkowska, M. (2016). Wet-milling of cereals. J Food Process Pres, 40:572-580. Wronkowska, M., Haros, M. (2014). Wet-milling of buckwheat with hull and dehulled-The properties of the obtained starch fraction. J Cereal Sci, 60:477-483.
  • Wu, T., Wang, L., Li, Y., Qian, H., Liu, L., Tong, L., Zhou, X., Wang, L., Zhou, S. (2019). Effect of milling methods on the properties of rice flour and gluten-free rice bread. Food Sci Technol-LEB, 108:137-144. Yu, D., Chen, J., Ma, J., Sun, H., Yuan, Y., Ju, Q., Teng, Y., Yang, M., Li, W., Fujita, K., Tatsumi, E., Luan, G. (2018). Effects of different milling methods on physicochemical properties of common buckwheat flour. Food Sci Technol-LEB, 92:220-226.
  • Yu, W., Tan, X., Zou, W., Hu, Z., Fox, G.P., Gidley, M.J., Gilbert, R.G. (2017). Relationships between protein content, starch molecular structure and grain size in barley. Carbohyd Polym, 155:271-279.
  • Zhu, F. (2017a). Barley starch: Composition, structure, properties, and modifications. Compr Rev Food Sci F, 16:558-579.
  • Zhu, F. (2017b). Structures, properties, modifications, and uses of oat starch. Food Chem, 229:329-340.

WET MILLING TECHNOLOGY OF CEREAL AND PSEUDOCEREALS

Year 2021, Volume: 46 Issue: 2, 463 - 473, 23.03.2021
https://doi.org/10.15237/gida.GD20147

Abstract

The purpose of the milling is to separate the main fractions of the grain due to milling method and is to use them for food or other industries. The milling can be classified as dry and wet milling. The purpose of the wet milling is to separate the main chemical constituents of the grain, such as starch, protein, dietary fibre and crude oil; the purpose of the dry milling is to separate the endosperm, germ and bran parts of the grain. All constituents can be separated with the highest purity in the wet milling; on the contrary the principle of the dry milling is to obtain the refine or wholegrain flour with the highest quality. The wet milling, which is an industrial process, separates the essential fractions of cereal or pseudo-cereals using physical, chemical, biochemical and mechanical processes. The wet milling starts with steeping process, and then the grain constituents are separated with mechanic splitting. The wet milling process is mostly applied to wheat and corn, besides it is also employed for some cereals like sorghum, barley, oat and rice. The wet milling of pseudo-cereals such as buckwheat, quinoa and amaranth is still carried out in a laboratory scale. The wet milling conditions of cereal/pseudo-cereals completely affect the starch yield and its physicochemical properties.

References

  • Alexandre, A.P.S., Castanha, N., Calori-Domingues, M.A., Augusto, P.E.D. (2017). Ozonation of whole wheat flour and wet milling effluent: Degradation of deoxynivalenol (DON) and rheological properties. J Environ Sci Health, 52, 516-524.
  • Al-Hakkak, J., Al-Hakkak, F. (2007). New non-destructive method using gluten to isolate starch from plant materials other than wheat. Starch, 59:117-124.
  • Arslan, A., Gil, J.V., Fernández-Espınar, M.T., Haros, C.M. (2016). Quinoa wet-milling: Effect of steeping on isolation, pasting and thermal properties of starch. ICC-Cereal and Bread Congress, İstanbul, Turkey.
  • Ballester-Sánchez, J., Fernández-Espinar, M.T., Haros, C.M. (2020). Isolation of red quinoa fibre by wet and dry milling and application as a potential functional bakery ingredient. Food Hydrocoll, 101:105513.
  • Ballester-Sánchez, J., Gil, J.V., Fernández-Espinar, M.T., Haros, C.M. (2019). Quinoa wet-milling: Effect of steeping conditions on starch recovery and quality. Food Hydrocoll, 89:837-843.
  • Bet, C.D., Soltovski de Oliveira, C., Colman, T.A.D., Marinho, M.T., Lacerda, L.G., Ramos, A.P., Schnitzler, E. (2018). Organic amaranth starch: A study of its technological properties after heat-moisture treatment. Food Chem, 264:435-442.
  • Chew-Guevara, A.A., Pérez-Carrillo, E., Serna-Saldívar, S.R.O., Rosa-Millán, J. (2016). Effect of decortication and protease treatment on physicochemical and functional characteristics of red sorghum (Sorghum bicolor) and yellow maize (Zea maiz) starches. Starch, 68:1-8.
  • Chhikara, N., Abdulahi, B., Munezero, C., Kaur, R., Singh, G., Panghal, A. (2019). Exploring the nutritional and phytochemical potential of sorghum in food processing for food security. Nutr & Food Sci, 49(2):318-332.
  • El Halal, S.L.M., Kringel, D.H., Zavareze, E.R., Dias, A.R.G. (2019). Methods for extracting cereal starches from different sources: A review. Starch, 71(11-12):1900128.
  • Espinosa-Solis, V., García-Tejeda, Y.V., Leal-Castañeda, E.J., Barrera-Figueroa, V. (2020). Effect of the degree of substitution on the hydrophobicity, crystallinity, and thermal properties of lauroylated amaranth starch. Polymers, 12:2548.
  • Fernández-López, J., Lucas-González, R., Viuda-Martos, M., Sayas-Barberá, E., Ballester-Sánchez, J., Haros, C.M., Martínez-Mayoral, A., Pérez-Álvarez, A. (2020). Chemical and technological properties of bologna-type sausages with added black quinoa wet-milling coproducts as binder replacer. Food Chem, 310:125936.
  • Gao, J., Vasanthan, T., Hoover, R. (2009). Isolation and characterization of high-purity starch isolates from regular, waxy, and high-amylose hulless barley grains. Cereal Chem, 86:157-163.
  • Guan, L., Seib, P.A., Graybosch, R.A., Bean, S., Shi, Y.C. (2009). Dough rheology and wet milling of hard waxy wheat flours. J Agric Food Chem, 57:7030-7038.
  • Haros, C.M., Wronkowska, M. (2017). Pseudocereal Dry and Wet Milling: Processes, Products and Applications. In: Pseudocereals: Chemistry and Technology, Edts: C.M. Haros, R. Schoenlechner, Wiley-Blackwell, pp.140-162.
  • Hung, P.V., Trinh, L.N.D., Thuy, N.T.X., Morita, N. (2020). Changes in nutritional composition, enzyme activities and bioactive compounds of germinated buckwheat (Fagopyrum esculentum M.) under unchanged air and humidity conditions. Int J Food Sci Technology. Jan, K.N., Panesar, P.S., Singh, S. (2017). Process standardization for isolation of quinoa starch and its characterization in comparison with other starches. Food Measure, 11:1919-1927.
  • Jan, K.N., Panesar, P.S., Singh, S. (2019). Effect of moisture content on the physical and mechanical properties of quinoa seeds. Int Agrophys, 33(1):41-48.
  • Joaqui, B.A., Bolaños-Monilla, A., Bravo-Gomez, J.E., Solanilla-Duque, J.F., Roa-Acosta, D.F. (2020). Wet milling of the amaranth grain: Relationship between the secondary structure of the protein and its ability to form gel. Sylwan, 164(5):31-48.
  • Kringel, D.H., El Halal, S.L.M., Zavareze, E.R., Dias, A.R.G. (2020). Methods for the extraction of roots, tubers, pulses, pseudocereals, and other unconventional starches sources: A review. Starch, 72(11-12): 1900234.
  • Leal-Castañeda, E.J., García-Tejeda, Y., Hernández-Sánchez, H., Alamilla-Beltrán, L., Téllez-Medina, D.I., Calderón-Domínguez, G., García, H.S., Gutiérrez-López, G.F. (2018). Pickering emulsions stabilized with native and lauroylated amaranth starch. Food Hydrocoll, 80:177-185.
  • Leewatchararongjaroen, J., Anuntagool, J. (2016). Effects of dry-milling and wet-milling on chemical, physical and gelatinization properties of rice flour. Rice Sci, 23(5):274-281.
  • Li, G., Wang, S., Zhu, F. (2016). Physicochemical properties of quinoa starch. Carbohyd Polym, 137:328-338.
  • Li, G., Zhu, F. (2018). Effect of high pressure on rheological and thermal properties of quinoa and maize starches. Food Chem, 241:380-386.
  • Loubes, M.A., Resio, A.N.C., Tolaba, M.P., Suarez, C. (2012). Mechanical and thermal characteristics of amaranth starch isolated by acid wet-milling procedure. Food Sci Technol-LEB, 46 (2):519-524.
  • Magallanes López, A.M., Manthey, F.A., Simsek, S. (2018). Wet-milling impact on starch and gluten fractions. LACC/IGW. 13th Int. Gluten Workshop Proceedings, 97-100 p.
  • Magallanes López, A.M., Manthey, F.A., Simsek, S. (2019). Wet milling of deoxynivalenol-contaminated wheat: Effect on physicochemical properties of starch. Cereal Chem, 97(2):293-303.
  • Magallanes López, A.M., Ohm, J.B., Manthey, F.A., Rao, J., Simsek, S. (2021). Gluten extraction from deoxynivalenol contaminated wheat by wet milling. Food Control, 120:107513.
  • Malik, M.A., Saxena, D.C. (2016). Effect on physicochemical and thermal properties of buckwheat (Fagopyrum esculentum) starch by acid hyrdolysis combined with heat moisture treatment. J Food Process Pres, 40:1352-1363.
  • Mufari, J.R., Miranda-Villa, P.P., Calandri, E.L. (2018). Quinoa germ and starch separation by wet milling, performance and characterization of the fractions. Food Sci Technol-LEB, 96:527-534.
  • Park, C.S., Baik, B.K. (2010). Recovery and purity of isolated barley starch and protein as affected by fractionation water temperature. Cereal Chem, 87: 561–565. Punia, S., Sandhu, K.S., Dhull, S.B., Siroha, A.K., Purewal, S.S., Kaur, M., Kidwai, M.K. (2020). Oat starch: Physico-chemical, morphological, rheological characteristics and its applications-A Review. Int J Biol Macromol, 154:493-498.
  • Reguera, M., Haros, C.M. (2017). Structure and composition of kernels. In: Pseudocereals: Chemistry and Technology, Edts: C.M. Haros, R. Schoenlechner, Wiley-Blackwell, pp.28-43.
  • Resio, A.N.C., Tolaba, M.P., Suarez, C. (2006). Effects of steeping conditions on wet-milling attributes of amaranth. Int J Food Sci Technology, 41:70-76.
  • Resio, A.N.C., Tolaba, M.P., Suarez, C. (2009). Correlations between wet-milling characteristics of amaranth grain. J Food Eng, 92:275-279.
  • Rosentrater, K.A., Evers, A.D. (2018). Wet milling. In: Kent’s Technology of Cereals, Fifth Edition, Elsevier, pp. 839-860.
  • Qi, Y., Du, F., Jiang, Z., Qiu, B., Guan, Q., Liu, J., Xu, T. (2018). Optimization of starch isolation from red sorghum using response surface methodology. Food Sci Technol-LEB, 91:242-248.
  • Sayaslan, A. (2004). Wet-milling of wheat flour: Industrial processes and small-scale test methods. Food Sci Technol-LEB, 37: 499-515.
  • Sayaslan, A., Seib, P.A., Chung, O.K. (2005). Wet-milling of flours from red, white and low-polyphenol oxidase white wheats. Food Sci Technol Int, 11:243-249.
  • Sayaslan, A., Seib, P.A., Chung, O.K. (2006). Wet-milling properties of waxy wheat flours by two laboratory methods. J Food Eng, 72:167-178.
  • Sayaslan, A., Seib, P.A., Chung, O.K. (2012). A bench-scale high-shear wet-milling test for wheat flour. J Food Eng, 111:305-317.
  • Schoenlechner, R. (2017). Quinoa: Its unique nutritional and health-promoting attributes. In: Gluten-Free Ancient Grains, Edts: John R.N. Taylor, Joseph M. Awika, Elsevier, First Edition, pp. 105-129.
  • Shah, A., Masoodi, F.A., Gani, A., Ashwar, B.A. (2017). Physicochemical, rheological and structural characterization of acetylated oat starches. Food Sci Technol-LEB, 80:19-26. Sharma, P., Tejinder, S. (2014). Extraction of starch from hulled and hull-less barley with papain and aqueous sodium hydroxide. J Food Sci Technol, 51:3870–3877.
  • Sharma, P., Kotari, S.L. (2017). Barley: Impact of processing on physicochemical and thermal properties – A Review. Food Rev Int, 33(4):359-381.
  • Skendi, A., Zinoviadou, K.G., Papageorgiou, M., Rocha, J.M. (2020). Advances on the valorisation and functionalization of by-products and wastes from cereal-based processing industry. Foods, 9(9):1243.
  • Steeneken, P.A.M., Helmens, H.J. (2009). Laboratory-scale dry/wet-milling process for the extraction of starch and gluten from wheat. Starch, 61:389-397.
  • Tong, L.T., Gao, X., Lin, L., Liu, Y., Zhong, K., Liu, L., Zhou, X., Wang, L., Zhou, S. (2015). Effects of semi-dry flour milling on the quality attributes of rice flour and rice noodles in China. J Cereal Sci, 62:45-49.
  • Uriarte-Aceves, P.M., Cuevas-Rodríguez, E.O., Gutiérrez-Dorado, R., Mora-Rochín, S., Reyes-Moreno, C., Puangpraphant, S., Milán-Carrillo, J. (2015). Physical, compositional, and wet-milling characteristics of Mexican Blue Maize (Zea mays L.) Landrace. Cereal Chem, 92(5):491-496.
  • Uriarte-Aceves, P.M., Milán-Carrillo, J., Cuevas-Rodríguez, E.O., Gutierrez-Dorado, R., Reyes-Moreno, C., Milán-Noris, E.M. (2018). In vitro digestion properties of native isolated starches from Mexican blue maize (Zea mays L.) landrace. Food Sci Technol-LEB, 93:384.389.
  • Uriarte-Aceves, P.M., Sopade, P.A., Rangel-Pereza, J.G. (2019). Physical, chemical and wet-milling properties of commercial white maize hybrids cultivated in México. J Food Process Pres, 43(7):e13998.
  • Wronkowska, M. (2016). Wet-milling of cereals. J Food Process Pres, 40:572-580. Wronkowska, M., Haros, M. (2014). Wet-milling of buckwheat with hull and dehulled-The properties of the obtained starch fraction. J Cereal Sci, 60:477-483.
  • Wu, T., Wang, L., Li, Y., Qian, H., Liu, L., Tong, L., Zhou, X., Wang, L., Zhou, S. (2019). Effect of milling methods on the properties of rice flour and gluten-free rice bread. Food Sci Technol-LEB, 108:137-144. Yu, D., Chen, J., Ma, J., Sun, H., Yuan, Y., Ju, Q., Teng, Y., Yang, M., Li, W., Fujita, K., Tatsumi, E., Luan, G. (2018). Effects of different milling methods on physicochemical properties of common buckwheat flour. Food Sci Technol-LEB, 92:220-226.
  • Yu, W., Tan, X., Zou, W., Hu, Z., Fox, G.P., Gidley, M.J., Gilbert, R.G. (2017). Relationships between protein content, starch molecular structure and grain size in barley. Carbohyd Polym, 155:271-279.
  • Zhu, F. (2017a). Barley starch: Composition, structure, properties, and modifications. Compr Rev Food Sci F, 16:558-579.
  • Zhu, F. (2017b). Structures, properties, modifications, and uses of oat starch. Food Chem, 229:329-340.
There are 52 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Articles
Authors

Erkan Yalçın 0000-0002-7417-9088

Ayşenur Arslan 0000-0003-1658-746X

Publication Date March 23, 2021
Published in Issue Year 2021 Volume: 46 Issue: 2

Cite

APA Yalçın, E., & Arslan, A. (2021). TAHIL VE PSEUDO-TAHILLARIN ISLAK ÖĞÜTME TEKNOLOJİSİ. Gıda, 46(2), 463-473. https://doi.org/10.15237/gida.GD20147
AMA Yalçın E, Arslan A. TAHIL VE PSEUDO-TAHILLARIN ISLAK ÖĞÜTME TEKNOLOJİSİ. The Journal of Food. March 2021;46(2):463-473. doi:10.15237/gida.GD20147
Chicago Yalçın, Erkan, and Ayşenur Arslan. “TAHIL VE PSEUDO-TAHILLARIN ISLAK ÖĞÜTME TEKNOLOJİSİ”. Gıda 46, no. 2 (March 2021): 463-73. https://doi.org/10.15237/gida.GD20147.
EndNote Yalçın E, Arslan A (March 1, 2021) TAHIL VE PSEUDO-TAHILLARIN ISLAK ÖĞÜTME TEKNOLOJİSİ. Gıda 46 2 463–473.
IEEE E. Yalçın and A. Arslan, “TAHIL VE PSEUDO-TAHILLARIN ISLAK ÖĞÜTME TEKNOLOJİSİ”, The Journal of Food, vol. 46, no. 2, pp. 463–473, 2021, doi: 10.15237/gida.GD20147.
ISNAD Yalçın, Erkan - Arslan, Ayşenur. “TAHIL VE PSEUDO-TAHILLARIN ISLAK ÖĞÜTME TEKNOLOJİSİ”. Gıda 46/2 (March 2021), 463-473. https://doi.org/10.15237/gida.GD20147.
JAMA Yalçın E, Arslan A. TAHIL VE PSEUDO-TAHILLARIN ISLAK ÖĞÜTME TEKNOLOJİSİ. The Journal of Food. 2021;46:463–473.
MLA Yalçın, Erkan and Ayşenur Arslan. “TAHIL VE PSEUDO-TAHILLARIN ISLAK ÖĞÜTME TEKNOLOJİSİ”. Gıda, vol. 46, no. 2, 2021, pp. 463-7, doi:10.15237/gida.GD20147.
Vancouver Yalçın E, Arslan A. TAHIL VE PSEUDO-TAHILLARIN ISLAK ÖĞÜTME TEKNOLOJİSİ. The Journal of Food. 2021;46(2):463-7.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/