Research Article
BibTex RIS Cite

EFFECT OF H2O2 OXIDATION STRESS ON CAROTENOID PRODUCTION IN CHLAMYDOMONAS REINHARDTII AND ITS ANTIOXIDANT ACTIVITY

Year 2021, Volume: 46 Issue: 4, 903 - 913, 17.05.2021
https://doi.org/10.15237/gida.GD20143

Abstract

The effect of H2O2 oxidation stress on carotenoid production in C. reinhardtii and its antioxidant properties were investigated in this study. For this purpose, the amount of carotenoids determined by HPLC-DAD, total of phenolic contents and antioxidant capacities determined by Folin and CHROMAC methods respectively, in different oxidative stress conditions were studied. When the concentration of H2O2 was increased during the incubation period, total of phenolic content and antioxidant capacity value were decreased. In the same incubation period, HPLC-PDA results showed highest amounts of carotenoids in microalgae exposed to 1 μM H2O2 oxidative stress and it was thought that toxic dose might be in 20 μM oxidation media for microalgae. Thus, when the oxidative stress conditions were changed, the amounts of carotenoids and the structure of carotenoids could be changed. This study is important that the relationship between carotenoid and the power of oxidation stress in microalgae system.

Supporting Institution

Scientific Research Projects Foundation of the Uludag University of Turkey

Project Number

OUAP (F)-2013/12

References

  • Abd El Baky, H. H., El-Baroty, G. S. (2013). Healthy Benefit of Microalgal Bioactive Substances. Journal of Aquatic Science, 1(1), 11-22. https://doi.org/10.12691/jas-1-1-3.
  • Apel, K., Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701
  • Butnariu, M. (2016). Methods of analysis (extraction, separation, identification and quantification) of carotenoids from natural products. Journal of Ecosystem & Ecography, 6, 193. https://doi.org/10.4172/2157-7625.1000193
  • Cazzonelli, C. I. (2011). Carotenoids in nature: insights from plants and beyond. Functional Plant Biology, 38, 833–847. https://doi.org/10.1071/FP11192.
  • Cordero, B. F., Couso, I., León, R., Rodríguez, H., Vargas, M. Á. (2011). Enhancement of carotenoids biosynthesis in Chlamydomonas reinhardtii by nuclear transformation using a phytoene synthase gene isolated from Chlorella zofingiensis. Applied Microbiology Biotechnology, 91, 341–351. https://doi.org/10.1007/s00253-011-3262-y.
  • Çakmak, Z. E., Ölmez, T. T., Çakmak, T., Menemen, Y., Tekinay, T. (2015). Antioxidant response of Chlamydomonas reinhardtii grown under different element regimes. Phycological Research, 63, 202–211. https://doi.org/10.1111/pre.12096.
  • El-Bahr, S. M. (2013). Biochemistry of free radicals and oxidative stres. Science International, 1(5), 111-117. https://doi.org/10.17311/sciintl.2013.111.117.
  • Erdoğan, A., Çağır, A., Dalay, M. C., Eroğlu, A. E. (2015). Composition of carotenoids in Scenedesmus protuberans: application of chromatographic and spectroscopic methods. Food Analytical Methods, 8, 1970–1978. https://doi.org/10.1007/s12161-015-0088-8.
  • Goiris, K., Colen, W. V., Wilches, I., León-Tamariz, F., Cooman, L. D., Muylaert, K. (2015). Impact of nutrient stress on antioxidant production in three species of microalgae. Algal Research, 7: 51–57. https://doi.org/10.1016/j.algal.2014.12.002.
  • Guedes, A. C., Amaro, H. M., Malcata, F. X. (2011). Microalgae as sources of carotenoids. Marine Drugs, 9, 625-644. https://doi.org/10.3390/md9040625
  • Güçlü K., Altun M., Özyürek M., Karademir S. E., Apak R. (2006). Antioxidant capacity of fresh, sun- and sulphited-dried Malatya apricot (Prunus armeniaca) assayed by CUPRAC, ABTS/TEAC and folin methods. International Journal of Food Science and Technology, 41, 76–85. https://doi.org/10.1111/j.1365-2621.2006.01347.x
  • Hoham, R.W., Bonome, T.A., Martin, C.W., Leebens-Mack, J.H. (2002). A combined 18S rDNA and rbcL phylogenetic analysis of Chloromonas and Chlamydomonas (Chlorophyceae, Volvocales) emphasizing snow and other cold-temperature habitats. Journal of Phycology, 38,1051–1064. https://doi.org/10.1046/j.1529-8817.2002.t01-1-01227.x
  • Işık, E., Şahin, S., Demir, C. (2013). Development of a new chromium reducing antioxidant capacity (CHROMAC) assay for plants and fruits. Talanta, 111, 119–124. https://doi.org/10.1016/j.talanta.2013.02.053
  • Kessler, E. 1976. Comparative physiology, biochemistry, and taxonomy of Chlorella (Chlorophyceae). Plant Systematics and Evolution, 125, 129–138. https://doi.org/10.1007/BF00986146.
  • Minhas, A. K., Hodgson, P., Barrow, C. J., Adholeya, A. (2016). A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Frontiers in Microbiology, 7, 546. https://doi.org/10.3389/fmicb.2016.00546.
  • Mittler, R. (2002). Oxidative stress antioxidants and stress tolerance. Trends Plant Science, 7, 405–410. https://doi.org/10.1016/s1360-1385(02)02312-9.
  • Mittler, R., Vanderauwera, S., Gollery, M., Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends Plant Science, 9, 490–498. https://doi.org/10.1016/j.tplants.2004.08.009
  • Moran, N. A., Jarvik, T. (2010). Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science, 30, 328(5978):624-627. https://doi.org/10.1126/science.1187113
  • Nasır, N. T. B. M., Şahin, S., Çakmak, Z. E., Çakmak, T. (2017). Optimization of ultrasonic-assisted extraction via multiresponse surface for high antioxidant recovery from Chlorella vulgaris (Chlorophyta). Phycologia, 56 , 561–569. https://doi.org/10.2216/16-132.1
  • Neill, S. J., Desikan, R., Clarke, A., Hurst, R.D., Hancock, J.T. (2002). Hydrogen peroxide and nitric oxide as signalling molecules in plants. Journal of Experimental Botany, 53, 1237–1247. https://doi.org/10.1093/jexbot/53.372.1237.
  • Nikulina, K., Chunaev, A.S., Boschetti, A. (2016). Accumulation of zeta-carotene in Chlamydomonas reinhardtii under control of the ac5 nuclear gene. Plant Cell Reports, 19, 37-42. https://doi.org/10.1007/s002990050707.
  • Olasehinde, T. A., Olaniran, A. O., Okoh, A. I. (2017). Therapeutic potentials of microalgae in the treatment of alzheimer’s disease. Molecules, 22, E480. https://doi.org/10.3390/molecules22030480
  • Rao, A. V., Rao, L. G. (2007). Carotenoids and human health. Pharmacological Research, 55, 207–216. https://doi.org/10.1016/j.phrs.2007.01.012
  • Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M., Stanier, R.Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology, 111, 1–61. https://doi.org/10.1099/00221287-111-1-1
  • Rochaix, J. D. (1995). Chlamydomonas reinhardtii as the photosynthetic yeast. Annual Review of Genetics, 29, 209-230. https://doi.org/10.1146/annurev.ge.29.120195.001233
  • Siems, W., Wiswedel, I., Salerno, C., Crifo, C., Augustin, W., Schild, L., Langhans, C.D., Sommerburg, O. (2005). β-carotene breakdown products may impair mitochondrialfunctions - potential side effects of high-dose β-carotene supplementation. Journal of Nutritional Biochemistry, 16, 385–397. https://doi.org/10.1016/j.jnutbio.2005.01.009.
  • Şahin, S., Aybastier, Ö., Işık, E. (2013). Optimisation of ultrasonic assisted extraction of antioxidant compounds from Artemisia absinthium using response surface methodology. Food Chemistry, 141, 1361–1368. https://doi.org/10.1016/j.foodchem.2013.04.003
  • Woodall, A.A., Lee, S.W.M., Weesie, R.J., Jackson, M.J., Britton, G., (1997). Oxidation of carotenoids by free radicals: relationship between structure and reactivity. Biochimica et Biophysica Acta, 1336, 33–42.

H2O2 OKSİDASYON STRESİNİN CHLAMYDOMONAS REINHARDTİİ MİKROALGİNİN KAROTENOİD ÜRETİMİ VE ANTİOKSİDAN AKTİVİTESI ÜZERİNE ETKİSİ

Year 2021, Volume: 46 Issue: 4, 903 - 913, 17.05.2021
https://doi.org/10.15237/gida.GD20143

Abstract

Bu çalışmada C. reinhardtii mikroalginin karotenoid üretimi ve antioksidan özellikleri üzerine H2O2 molekülünün oksidasyon etkisi incelenmiştir. Bu amaçla karotenoid miktarları HPLC-DAD cihazı ile, toplam fenolik madde ve antioksidan kapasite miktarları sırasıyla Folin ve CHROMAC yöntemleri ile tayin edilmiştir. Oksidatif stress süresi arttıkça karotenoid miktarlarında da artma görülmüştür. İnkübasyon süresi boyunca H2O2 konsantrasyonu arttırıldığında, toplam fenolik madde ve antioksidan kapasite değeri azalmıştır. Aynı inkübasyon süresi boyunca HPLC-DAD sonuçlarına göre, 1 μM H2O2 oksidatif strese maruz kalan mikroalglerde en yüksek miktarda karotenoid sentezlendiği ve mikroalgler için toksik dozun 20 μM oksidasyon ortamında olabileceği anlaşılmıştır. Böylece, oksidatif stres koşulları değiştiğinde, karotenoidlerin miktarları ve karotenoidlerin yapısı değiştirilebilir. Bu çalışma, mikroalg sisteminde, karotenoid sentezi ile oksidasyon stresi arasındaki ilişkinin açıklanması açısından önemlidir.

Project Number

OUAP (F)-2013/12

References

  • Abd El Baky, H. H., El-Baroty, G. S. (2013). Healthy Benefit of Microalgal Bioactive Substances. Journal of Aquatic Science, 1(1), 11-22. https://doi.org/10.12691/jas-1-1-3.
  • Apel, K., Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701
  • Butnariu, M. (2016). Methods of analysis (extraction, separation, identification and quantification) of carotenoids from natural products. Journal of Ecosystem & Ecography, 6, 193. https://doi.org/10.4172/2157-7625.1000193
  • Cazzonelli, C. I. (2011). Carotenoids in nature: insights from plants and beyond. Functional Plant Biology, 38, 833–847. https://doi.org/10.1071/FP11192.
  • Cordero, B. F., Couso, I., León, R., Rodríguez, H., Vargas, M. Á. (2011). Enhancement of carotenoids biosynthesis in Chlamydomonas reinhardtii by nuclear transformation using a phytoene synthase gene isolated from Chlorella zofingiensis. Applied Microbiology Biotechnology, 91, 341–351. https://doi.org/10.1007/s00253-011-3262-y.
  • Çakmak, Z. E., Ölmez, T. T., Çakmak, T., Menemen, Y., Tekinay, T. (2015). Antioxidant response of Chlamydomonas reinhardtii grown under different element regimes. Phycological Research, 63, 202–211. https://doi.org/10.1111/pre.12096.
  • El-Bahr, S. M. (2013). Biochemistry of free radicals and oxidative stres. Science International, 1(5), 111-117. https://doi.org/10.17311/sciintl.2013.111.117.
  • Erdoğan, A., Çağır, A., Dalay, M. C., Eroğlu, A. E. (2015). Composition of carotenoids in Scenedesmus protuberans: application of chromatographic and spectroscopic methods. Food Analytical Methods, 8, 1970–1978. https://doi.org/10.1007/s12161-015-0088-8.
  • Goiris, K., Colen, W. V., Wilches, I., León-Tamariz, F., Cooman, L. D., Muylaert, K. (2015). Impact of nutrient stress on antioxidant production in three species of microalgae. Algal Research, 7: 51–57. https://doi.org/10.1016/j.algal.2014.12.002.
  • Guedes, A. C., Amaro, H. M., Malcata, F. X. (2011). Microalgae as sources of carotenoids. Marine Drugs, 9, 625-644. https://doi.org/10.3390/md9040625
  • Güçlü K., Altun M., Özyürek M., Karademir S. E., Apak R. (2006). Antioxidant capacity of fresh, sun- and sulphited-dried Malatya apricot (Prunus armeniaca) assayed by CUPRAC, ABTS/TEAC and folin methods. International Journal of Food Science and Technology, 41, 76–85. https://doi.org/10.1111/j.1365-2621.2006.01347.x
  • Hoham, R.W., Bonome, T.A., Martin, C.W., Leebens-Mack, J.H. (2002). A combined 18S rDNA and rbcL phylogenetic analysis of Chloromonas and Chlamydomonas (Chlorophyceae, Volvocales) emphasizing snow and other cold-temperature habitats. Journal of Phycology, 38,1051–1064. https://doi.org/10.1046/j.1529-8817.2002.t01-1-01227.x
  • Işık, E., Şahin, S., Demir, C. (2013). Development of a new chromium reducing antioxidant capacity (CHROMAC) assay for plants and fruits. Talanta, 111, 119–124. https://doi.org/10.1016/j.talanta.2013.02.053
  • Kessler, E. 1976. Comparative physiology, biochemistry, and taxonomy of Chlorella (Chlorophyceae). Plant Systematics and Evolution, 125, 129–138. https://doi.org/10.1007/BF00986146.
  • Minhas, A. K., Hodgson, P., Barrow, C. J., Adholeya, A. (2016). A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Frontiers in Microbiology, 7, 546. https://doi.org/10.3389/fmicb.2016.00546.
  • Mittler, R. (2002). Oxidative stress antioxidants and stress tolerance. Trends Plant Science, 7, 405–410. https://doi.org/10.1016/s1360-1385(02)02312-9.
  • Mittler, R., Vanderauwera, S., Gollery, M., Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends Plant Science, 9, 490–498. https://doi.org/10.1016/j.tplants.2004.08.009
  • Moran, N. A., Jarvik, T. (2010). Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science, 30, 328(5978):624-627. https://doi.org/10.1126/science.1187113
  • Nasır, N. T. B. M., Şahin, S., Çakmak, Z. E., Çakmak, T. (2017). Optimization of ultrasonic-assisted extraction via multiresponse surface for high antioxidant recovery from Chlorella vulgaris (Chlorophyta). Phycologia, 56 , 561–569. https://doi.org/10.2216/16-132.1
  • Neill, S. J., Desikan, R., Clarke, A., Hurst, R.D., Hancock, J.T. (2002). Hydrogen peroxide and nitric oxide as signalling molecules in plants. Journal of Experimental Botany, 53, 1237–1247. https://doi.org/10.1093/jexbot/53.372.1237.
  • Nikulina, K., Chunaev, A.S., Boschetti, A. (2016). Accumulation of zeta-carotene in Chlamydomonas reinhardtii under control of the ac5 nuclear gene. Plant Cell Reports, 19, 37-42. https://doi.org/10.1007/s002990050707.
  • Olasehinde, T. A., Olaniran, A. O., Okoh, A. I. (2017). Therapeutic potentials of microalgae in the treatment of alzheimer’s disease. Molecules, 22, E480. https://doi.org/10.3390/molecules22030480
  • Rao, A. V., Rao, L. G. (2007). Carotenoids and human health. Pharmacological Research, 55, 207–216. https://doi.org/10.1016/j.phrs.2007.01.012
  • Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M., Stanier, R.Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology, 111, 1–61. https://doi.org/10.1099/00221287-111-1-1
  • Rochaix, J. D. (1995). Chlamydomonas reinhardtii as the photosynthetic yeast. Annual Review of Genetics, 29, 209-230. https://doi.org/10.1146/annurev.ge.29.120195.001233
  • Siems, W., Wiswedel, I., Salerno, C., Crifo, C., Augustin, W., Schild, L., Langhans, C.D., Sommerburg, O. (2005). β-carotene breakdown products may impair mitochondrialfunctions - potential side effects of high-dose β-carotene supplementation. Journal of Nutritional Biochemistry, 16, 385–397. https://doi.org/10.1016/j.jnutbio.2005.01.009.
  • Şahin, S., Aybastier, Ö., Işık, E. (2013). Optimisation of ultrasonic assisted extraction of antioxidant compounds from Artemisia absinthium using response surface methodology. Food Chemistry, 141, 1361–1368. https://doi.org/10.1016/j.foodchem.2013.04.003
  • Woodall, A.A., Lee, S.W.M., Weesie, R.J., Jackson, M.J., Britton, G., (1997). Oxidation of carotenoids by free radicals: relationship between structure and reactivity. Biochimica et Biophysica Acta, 1336, 33–42.
There are 28 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Articles
Authors

Çiğdem Yüksel This is me 0000-0002-7923-9764

Saliha Şahin 0000-0003-2887-5688

Turgay Çakmak 0000-0002-4953-8384

Project Number OUAP (F)-2013/12
Publication Date May 17, 2021
Published in Issue Year 2021 Volume: 46 Issue: 4

Cite

APA Yüksel, Ç., Şahin, S., & Çakmak, T. (2021). EFFECT OF H2O2 OXIDATION STRESS ON CAROTENOID PRODUCTION IN CHLAMYDOMONAS REINHARDTII AND ITS ANTIOXIDANT ACTIVITY. Gıda, 46(4), 903-913. https://doi.org/10.15237/gida.GD20143
AMA Yüksel Ç, Şahin S, Çakmak T. EFFECT OF H2O2 OXIDATION STRESS ON CAROTENOID PRODUCTION IN CHLAMYDOMONAS REINHARDTII AND ITS ANTIOXIDANT ACTIVITY. The Journal of Food. May 2021;46(4):903-913. doi:10.15237/gida.GD20143
Chicago Yüksel, Çiğdem, Saliha Şahin, and Turgay Çakmak. “EFFECT OF H2O2 OXIDATION STRESS ON CAROTENOID PRODUCTION IN CHLAMYDOMONAS REINHARDTII AND ITS ANTIOXIDANT ACTIVITY”. Gıda 46, no. 4 (May 2021): 903-13. https://doi.org/10.15237/gida.GD20143.
EndNote Yüksel Ç, Şahin S, Çakmak T (May 1, 2021) EFFECT OF H2O2 OXIDATION STRESS ON CAROTENOID PRODUCTION IN CHLAMYDOMONAS REINHARDTII AND ITS ANTIOXIDANT ACTIVITY. Gıda 46 4 903–913.
IEEE Ç. Yüksel, S. Şahin, and T. Çakmak, “EFFECT OF H2O2 OXIDATION STRESS ON CAROTENOID PRODUCTION IN CHLAMYDOMONAS REINHARDTII AND ITS ANTIOXIDANT ACTIVITY”, The Journal of Food, vol. 46, no. 4, pp. 903–913, 2021, doi: 10.15237/gida.GD20143.
ISNAD Yüksel, Çiğdem et al. “EFFECT OF H2O2 OXIDATION STRESS ON CAROTENOID PRODUCTION IN CHLAMYDOMONAS REINHARDTII AND ITS ANTIOXIDANT ACTIVITY”. Gıda 46/4 (May 2021), 903-913. https://doi.org/10.15237/gida.GD20143.
JAMA Yüksel Ç, Şahin S, Çakmak T. EFFECT OF H2O2 OXIDATION STRESS ON CAROTENOID PRODUCTION IN CHLAMYDOMONAS REINHARDTII AND ITS ANTIOXIDANT ACTIVITY. The Journal of Food. 2021;46:903–913.
MLA Yüksel, Çiğdem et al. “EFFECT OF H2O2 OXIDATION STRESS ON CAROTENOID PRODUCTION IN CHLAMYDOMONAS REINHARDTII AND ITS ANTIOXIDANT ACTIVITY”. Gıda, vol. 46, no. 4, 2021, pp. 903-1, doi:10.15237/gida.GD20143.
Vancouver Yüksel Ç, Şahin S, Çakmak T. EFFECT OF H2O2 OXIDATION STRESS ON CAROTENOID PRODUCTION IN CHLAMYDOMONAS REINHARDTII AND ITS ANTIOXIDANT ACTIVITY. The Journal of Food. 2021;46(4):903-1.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/