Research Article
BibTex RIS Cite

FERMENTE TAHIL BENZERİ ÜRÜNLERİN BİSKÜVİNİN FİZİKSEL, BESİNSEL VE DUYUSAL ÖZELLİKLERİ ÜZERİNE ETKİSİ

Year 2022, Volume: 47 Issue: 1, 55 - 65, 23.12.2021
https://doi.org/10.15237/gida.GD21143

Abstract

Bu çalışmada; bisküvinin besinsel değerinin artırılması ve kalite özelliklerinin belirlenmesi amacıyla; bisküvi üretiminde kullanılan buğday unu, %20 oranında ham ve fermente edilmiş tahıl benzeri ürün (TBÜ; karabuğday, kinoa ve amarant) unları ile ikame edilmiştir. TBÜ unlarının bisküvi örneklerinin fiziksel, tekstürel ve duyusal özellikleri ile fitik asit, toplam fenolik madde ve antioksidan aktivitesi üzerine etkileri incelenmiştir. Fermente un içeren bisküvilerin fitik asit içeriği ham un içeren örneklere göre daha düşük bulunmuş, ham karabuğday (%35.36) ve kinoa (%31.36) unları bisküvilerde en yüksek antioksidan aktivite değerlerini sağlamıştır. TBÜ unlarının ilavesi bisküvi örneklerinin çap ve kalınlık değerleri üzerinde önemli (P >0.05) bir etkide bulunmamış, fermente TBÜ unu kullanımı ham unlara göre bisküvi sertliğini artırmıştır. %100 buğday unu içeren bisküvi örneğine en yakın genel beğeni puanları ham ve fermente karabuğday unu içeren bisküvilerde belirlenmiştir. Elde edilen sonuçlar, %20 oranında TBÜ unu kullanımının teknolojik kaliteyi önemli derecede etkilemeden fonksiyonel bisküvi üretimine imkân verdiğini göstermiştir.

References

  • AACC (2010). Approved Methods of the American Association of Cereal Chemists, (11th ed.). St. Paul, MN, USA: AACC.
  • Alvarez-Jubete, L., Auty, M., Arendt, E.K., Gallagher, E. (2010). Baking properties and microstructure of pseudocereal flours in gluten free bread formulations. Eur Food Res Technol, 230, 437-445, doi: 10.1007/s00217-009-1184-z.
  • Arneja, I., Tanwar, B., Chauhan, A. (2015). Nutritional composition and health benefits of golden grain of 21st century, quinoa (Chenopodium quinoa Willd.): A review. Pakistan J Nutr, 14(12), 1034-1040.
  • Baumgartner, B., Özkaya, B., Saka, I., Özkaya, H. (2018). Functional and physical properties of cookies enriched with dephytinized oat bran. J Cereal Sci, 80, 24-30, doi: 10.1016/j.jcs.2018.01.011.
  • Beta, T., Nam, S., Dexter, J.E., Sapirstein, H.D. (2005). Phenolic content and antioxidant activity of pearled wheat and roller-milled fractions. Cereal Chem, 82, 390-393, doi: 10.1094/CC-82-0390.
  • Castro‐Alba, V., Lazarte, C.E., Perez‐Rea, D., Carlsson, N.G., Almgren, A., Bergenstahl, B., Granfeldt, Y. (2019). Fermentation of pseudocereals quinoa, canihua, and amaranth to improve mineral accessibility through degradation of phytate. J Sci Food Agric, 99(11), 5239-5248, doi: 10.1002/jsfa.9793.
  • Christa, K., Soral-Smietana, M. (2008). Buckwheat grains and buckwheat products-nutritional and prophylactic value of their components-a review. Czech J Food Sci, 26(3), 153-162, doi: 10.17221/1602-CJFS.
  • Francis, F. J., Clydesdale, F. M. (1975). Food Colorimetry: Theory and Applications: AVI Publishing Company Inc, Westport, USA.
  • Gamez-Meza, N., Noriega-Rodrigues, J.A., Medina-Juarez, L.A., Ortega Garcia, J., Cazarez-Casanova, R., Angulo-Guerrero, O. (1999). Antioxidant activity in soybean oil of extracts from thompson grape bagasse. J Am Oil Chem Soc, 76, 1445-1447, doi: 10.1007/s11746-999-0182-4.
  • Gyamfi, M.A., Yonamine, M., Aniya, Y. (1999). Free radical scavenging action of medical herbs from Ghana: Thonningia sanguinea on experimentally-induced liver injuries. General Pharma, 32, 661-667, doi: 10.1016/S0306-3623(98)00238-9.
  • Hager, A.-S., Wolter, A., Jacob, F., Zannini, E., Arendt, E.K. (2012). Nutritional properties and ultra-structure of commercial gluten free flours from different botanical sources compared to wheat flours. J Cereal Sci, 56, 239-247, doi: 10.1016/j.jcs.2012.06.005.
  • Haug, W., Lantzsch, H.J. (1983). Sensitive method for the rapid determination of phytate in cereals and cereal products. J Sci Food Agric, 34(12), 1423-1426, doi: 10.1002/jsfa.2740341217.
  • Jan, K.N., Panesar, P.S., Singh, S. (2018). Optimization of antioxidant activity, textural and sensory characteristics of gluten-free cookies made from whole Indian quinoa flour. LWT- Food Sci Technol, 93, 573-582, doi: 10.1016/j.lwt.2018.04.013.
  • Kockova M., Mendel J., Medvedova A., Sturdik E., Valik L. (2013). Cereals and pseudocereals as substrates for growth and metabolism of a probiotic strain Lactobacillus rhamnosus GG. J Food Nutr Res, 52, 25-36.
  • Martinez-Villaluenga, C., Penas, E., Hernandez-Ledesma, B. (2020). Pseudocereal grains: Nutritional value, health benefits and current applications for the development of gluten-free foods. Food Chem Toxicol, 137, 111178, doi: 10.1016/j.fct.2020.111178.
  • Mir, N.A., Riar, C.S., Singh, S. (2018). Nutritional constituents of pseudo cereals and their potential use in food systems: A review. Trends Food Sci Technol, 75, 170-180, doi: 10.1016/j.tifs.2018.03.016.
  • Özkaya, H., Özkaya, B., Duman, B., Turksoy, S. (2017). Effect of dephytinization by fermentation and hydrothermal autoclaving treatments on the antioxidant activity, dietary fiber and phenolic content of oat bran. J Agric Food Chem, 65, 5713-5719, doi: 10.1021/acs.jafc.7b01698.
  • Reguera, M., Haros, C.M. (2017). Structure and composition of kernels. In: C. M. Haros, R. Schoenlechner (Eds.), Pseudocereals: Chemistry and Technology (pp. 28-48), West Sussex: Wiley Blackwell.
  • Sakac, M., Pestoric, M., Misan, A., Nedeljkovic, N., Jambrec, D., Jovanov, P., Banjac, V., Torbica, A., Hadnadev, M., Mandic, A. (2015). Antioxidant capacity, mineral content and sensory properties of gluten-free rice and buckwheat cookies. Food Technol Biotechnol, 53(1), 38-47, doi: 10.17113/ftb.53.01.15.3633.
  • Singh, P., Singh, R., Jha, A., Rasane, P., Gautam, A.K. (2015). Optimization of a process for high fibre and high protein biscuit. J Food Sci Technol, 52(3), 1394-1403, doi: 10.1007/s13197-013-1139-z.
  • Vilcacundo, R., Hernandez-Ledesma, B. (2017). Nutritional and biological value of quinoa (Chenopodium quinoa Willd.). Curr Opin Food Sci, 14, 1-6, doi: 10.1016/j.cofs.2016.11.007.
  • Watanabe, K., Kawanishi-Asaoka, M., Myojin, C., Awata, S., Ofusa, K., Kodama, K. (2014). Amino acid composition, oxidative stability, and consumer acceptance of cookies made with quinoa flour. Food Sci Technol Res, 20(3), 687-691, doi: 10.3136/fstr.20.687.
  • Wronkowska, M., Jelinski, T., Majkowska, A., Zielinski, H. (2018). Physical properties of buckwheat water biscuits formulated from fermented flours by selected lactic acid bacteria. Pol J Food Nutr Sci, 68, 25-31, doi: 10.1515/pjfns-2017-0027.
  • Karademir, E., Yalçın, E. (2019). Effect of fermentation on some quality properties of cornelian cherry tarhana produced from different cereal/pseudocereal flours. Qual Assur Saf Crop Foods, 11, 127-135, doi: 10.3920/QAS2018.1389.
  • Zhou, X.-L., Yan, B.B., Xiao, Y., Zhou, Y.M., Liu, T.Y. (2018). Tartary buckwheat protein prevented dyslipidemia in high-fat diet-fed mice associated with gut microbiota changes. Food Chem Toxicol 119, 296-301, doi: 10.1016/j.fct.2018.02.052.
  • Zhu, F. (2016). Chemical composition and health effects of Tartary buckwheat. Food Chem, 203, 231-245, doi: 10.1016/j.foodchem.2016.02.050.

EFFECT OF FERMENTED PSEUDOCEREALS ON PHYSICAL, NUTRITIONAL AND SENSORY CHARACTERISTICS OF COOKIE

Year 2022, Volume: 47 Issue: 1, 55 - 65, 23.12.2021
https://doi.org/10.15237/gida.GD21143

Abstract

In this study, wheat flour used in cookie production was substituted with raw and fermented pseudocereal (buckwheat, quinoa and amaranth) flours at 20% level to enhance nutritional value and to determine quality characteristics. Effect of pseudocereal flours on physical, textural and sensory properties, and phytic acid, total phenolic content and antioxidant activity of cookies was studied. Phytic acid content of cookies containing fermented flours was lower than samples containing raw flours, raw buckwheat (35.36%) and quinoa (31.36%) flours provided the highest antioxidant activity in cookies. Addition of pseudocereal flours had no significant (P >0.05) effect on diameter and thickness of cookies, use of fermented pseudocereal flours increased hardness of cookies compared to raw flours. Cookies containing raw and fermented buckwheat flours revealed the closest overall acceptability scores to 100% wheat flour cookie. The results demonstrated that use of 20% pseudocereal flour allows functional cookie production without considerably affecting technological quality.

References

  • AACC (2010). Approved Methods of the American Association of Cereal Chemists, (11th ed.). St. Paul, MN, USA: AACC.
  • Alvarez-Jubete, L., Auty, M., Arendt, E.K., Gallagher, E. (2010). Baking properties and microstructure of pseudocereal flours in gluten free bread formulations. Eur Food Res Technol, 230, 437-445, doi: 10.1007/s00217-009-1184-z.
  • Arneja, I., Tanwar, B., Chauhan, A. (2015). Nutritional composition and health benefits of golden grain of 21st century, quinoa (Chenopodium quinoa Willd.): A review. Pakistan J Nutr, 14(12), 1034-1040.
  • Baumgartner, B., Özkaya, B., Saka, I., Özkaya, H. (2018). Functional and physical properties of cookies enriched with dephytinized oat bran. J Cereal Sci, 80, 24-30, doi: 10.1016/j.jcs.2018.01.011.
  • Beta, T., Nam, S., Dexter, J.E., Sapirstein, H.D. (2005). Phenolic content and antioxidant activity of pearled wheat and roller-milled fractions. Cereal Chem, 82, 390-393, doi: 10.1094/CC-82-0390.
  • Castro‐Alba, V., Lazarte, C.E., Perez‐Rea, D., Carlsson, N.G., Almgren, A., Bergenstahl, B., Granfeldt, Y. (2019). Fermentation of pseudocereals quinoa, canihua, and amaranth to improve mineral accessibility through degradation of phytate. J Sci Food Agric, 99(11), 5239-5248, doi: 10.1002/jsfa.9793.
  • Christa, K., Soral-Smietana, M. (2008). Buckwheat grains and buckwheat products-nutritional and prophylactic value of their components-a review. Czech J Food Sci, 26(3), 153-162, doi: 10.17221/1602-CJFS.
  • Francis, F. J., Clydesdale, F. M. (1975). Food Colorimetry: Theory and Applications: AVI Publishing Company Inc, Westport, USA.
  • Gamez-Meza, N., Noriega-Rodrigues, J.A., Medina-Juarez, L.A., Ortega Garcia, J., Cazarez-Casanova, R., Angulo-Guerrero, O. (1999). Antioxidant activity in soybean oil of extracts from thompson grape bagasse. J Am Oil Chem Soc, 76, 1445-1447, doi: 10.1007/s11746-999-0182-4.
  • Gyamfi, M.A., Yonamine, M., Aniya, Y. (1999). Free radical scavenging action of medical herbs from Ghana: Thonningia sanguinea on experimentally-induced liver injuries. General Pharma, 32, 661-667, doi: 10.1016/S0306-3623(98)00238-9.
  • Hager, A.-S., Wolter, A., Jacob, F., Zannini, E., Arendt, E.K. (2012). Nutritional properties and ultra-structure of commercial gluten free flours from different botanical sources compared to wheat flours. J Cereal Sci, 56, 239-247, doi: 10.1016/j.jcs.2012.06.005.
  • Haug, W., Lantzsch, H.J. (1983). Sensitive method for the rapid determination of phytate in cereals and cereal products. J Sci Food Agric, 34(12), 1423-1426, doi: 10.1002/jsfa.2740341217.
  • Jan, K.N., Panesar, P.S., Singh, S. (2018). Optimization of antioxidant activity, textural and sensory characteristics of gluten-free cookies made from whole Indian quinoa flour. LWT- Food Sci Technol, 93, 573-582, doi: 10.1016/j.lwt.2018.04.013.
  • Kockova M., Mendel J., Medvedova A., Sturdik E., Valik L. (2013). Cereals and pseudocereals as substrates for growth and metabolism of a probiotic strain Lactobacillus rhamnosus GG. J Food Nutr Res, 52, 25-36.
  • Martinez-Villaluenga, C., Penas, E., Hernandez-Ledesma, B. (2020). Pseudocereal grains: Nutritional value, health benefits and current applications for the development of gluten-free foods. Food Chem Toxicol, 137, 111178, doi: 10.1016/j.fct.2020.111178.
  • Mir, N.A., Riar, C.S., Singh, S. (2018). Nutritional constituents of pseudo cereals and their potential use in food systems: A review. Trends Food Sci Technol, 75, 170-180, doi: 10.1016/j.tifs.2018.03.016.
  • Özkaya, H., Özkaya, B., Duman, B., Turksoy, S. (2017). Effect of dephytinization by fermentation and hydrothermal autoclaving treatments on the antioxidant activity, dietary fiber and phenolic content of oat bran. J Agric Food Chem, 65, 5713-5719, doi: 10.1021/acs.jafc.7b01698.
  • Reguera, M., Haros, C.M. (2017). Structure and composition of kernels. In: C. M. Haros, R. Schoenlechner (Eds.), Pseudocereals: Chemistry and Technology (pp. 28-48), West Sussex: Wiley Blackwell.
  • Sakac, M., Pestoric, M., Misan, A., Nedeljkovic, N., Jambrec, D., Jovanov, P., Banjac, V., Torbica, A., Hadnadev, M., Mandic, A. (2015). Antioxidant capacity, mineral content and sensory properties of gluten-free rice and buckwheat cookies. Food Technol Biotechnol, 53(1), 38-47, doi: 10.17113/ftb.53.01.15.3633.
  • Singh, P., Singh, R., Jha, A., Rasane, P., Gautam, A.K. (2015). Optimization of a process for high fibre and high protein biscuit. J Food Sci Technol, 52(3), 1394-1403, doi: 10.1007/s13197-013-1139-z.
  • Vilcacundo, R., Hernandez-Ledesma, B. (2017). Nutritional and biological value of quinoa (Chenopodium quinoa Willd.). Curr Opin Food Sci, 14, 1-6, doi: 10.1016/j.cofs.2016.11.007.
  • Watanabe, K., Kawanishi-Asaoka, M., Myojin, C., Awata, S., Ofusa, K., Kodama, K. (2014). Amino acid composition, oxidative stability, and consumer acceptance of cookies made with quinoa flour. Food Sci Technol Res, 20(3), 687-691, doi: 10.3136/fstr.20.687.
  • Wronkowska, M., Jelinski, T., Majkowska, A., Zielinski, H. (2018). Physical properties of buckwheat water biscuits formulated from fermented flours by selected lactic acid bacteria. Pol J Food Nutr Sci, 68, 25-31, doi: 10.1515/pjfns-2017-0027.
  • Karademir, E., Yalçın, E. (2019). Effect of fermentation on some quality properties of cornelian cherry tarhana produced from different cereal/pseudocereal flours. Qual Assur Saf Crop Foods, 11, 127-135, doi: 10.3920/QAS2018.1389.
  • Zhou, X.-L., Yan, B.B., Xiao, Y., Zhou, Y.M., Liu, T.Y. (2018). Tartary buckwheat protein prevented dyslipidemia in high-fat diet-fed mice associated with gut microbiota changes. Food Chem Toxicol 119, 296-301, doi: 10.1016/j.fct.2018.02.052.
  • Zhu, F. (2016). Chemical composition and health effects of Tartary buckwheat. Food Chem, 203, 231-245, doi: 10.1016/j.foodchem.2016.02.050.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Articles
Authors

Elif Yaver 0000-0002-2651-9922

Publication Date December 23, 2021
Published in Issue Year 2022 Volume: 47 Issue: 1

Cite

APA Yaver, E. (2021). FERMENTE TAHIL BENZERİ ÜRÜNLERİN BİSKÜVİNİN FİZİKSEL, BESİNSEL VE DUYUSAL ÖZELLİKLERİ ÜZERİNE ETKİSİ. Gıda, 47(1), 55-65. https://doi.org/10.15237/gida.GD21143
AMA Yaver E. FERMENTE TAHIL BENZERİ ÜRÜNLERİN BİSKÜVİNİN FİZİKSEL, BESİNSEL VE DUYUSAL ÖZELLİKLERİ ÜZERİNE ETKİSİ. The Journal of Food. December 2021;47(1):55-65. doi:10.15237/gida.GD21143
Chicago Yaver, Elif. “FERMENTE TAHIL BENZERİ ÜRÜNLERİN BİSKÜVİNİN FİZİKSEL, BESİNSEL VE DUYUSAL ÖZELLİKLERİ ÜZERİNE ETKİSİ”. Gıda 47, no. 1 (December 2021): 55-65. https://doi.org/10.15237/gida.GD21143.
EndNote Yaver E (December 1, 2021) FERMENTE TAHIL BENZERİ ÜRÜNLERİN BİSKÜVİNİN FİZİKSEL, BESİNSEL VE DUYUSAL ÖZELLİKLERİ ÜZERİNE ETKİSİ. Gıda 47 1 55–65.
IEEE E. Yaver, “FERMENTE TAHIL BENZERİ ÜRÜNLERİN BİSKÜVİNİN FİZİKSEL, BESİNSEL VE DUYUSAL ÖZELLİKLERİ ÜZERİNE ETKİSİ”, The Journal of Food, vol. 47, no. 1, pp. 55–65, 2021, doi: 10.15237/gida.GD21143.
ISNAD Yaver, Elif. “FERMENTE TAHIL BENZERİ ÜRÜNLERİN BİSKÜVİNİN FİZİKSEL, BESİNSEL VE DUYUSAL ÖZELLİKLERİ ÜZERİNE ETKİSİ”. Gıda 47/1 (December 2021), 55-65. https://doi.org/10.15237/gida.GD21143.
JAMA Yaver E. FERMENTE TAHIL BENZERİ ÜRÜNLERİN BİSKÜVİNİN FİZİKSEL, BESİNSEL VE DUYUSAL ÖZELLİKLERİ ÜZERİNE ETKİSİ. The Journal of Food. 2021;47:55–65.
MLA Yaver, Elif. “FERMENTE TAHIL BENZERİ ÜRÜNLERİN BİSKÜVİNİN FİZİKSEL, BESİNSEL VE DUYUSAL ÖZELLİKLERİ ÜZERİNE ETKİSİ”. Gıda, vol. 47, no. 1, 2021, pp. 55-65, doi:10.15237/gida.GD21143.
Vancouver Yaver E. FERMENTE TAHIL BENZERİ ÜRÜNLERİN BİSKÜVİNİN FİZİKSEL, BESİNSEL VE DUYUSAL ÖZELLİKLERİ ÜZERİNE ETKİSİ. The Journal of Food. 2021;47(1):55-6.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/