Research Article
BibTex RIS Cite

INVESTIGATION OF THERMOSONICATED STRAWBERRY NECTAR QUALITY DURING STORAGE AND KINETIC MODELLING

Year 2022, Volume: 47 Issue: 3, 481 - 492, 01.04.2022
https://doi.org/10.15237/gida.GD21154

Abstract

The changes in ascorbic acid-(AA) content, hydroxymethylfurfural-(HMF) content, total color difference-(∆E*) and browning index-(BI) of optimally thermosonicated (59°C-455 J/g) cloudy strawberry nectar during storage (3 months at 4°C) were evaluated. Also, the data obtained were modelled. The initial AA content (104.86 mg/L) decreased ~99% after storage, while HMF level increased from 20.46 to 494.44 µg/L. The significant increases in BI-(0.45-0.56) and ∆E*-(5.21–11.23) were consistent with each other and over storage time. The changes in HMF content-(R2=0.849), BI-(R2=0.942) and ∆E* were best fitted to zero-order kinetic model, while decrease in AA content-(R2=0.9755) was described with the first-order kinetic model. The reaction rate constants of AA, HMF, ∆E* and BI were determined as 5.58x10-2 1/day, 4.34 mg/L.day, 6.40x10-2 mg/L.day and 14x10-2 mg/L.day, respectively. The highest correlation with the change in ∆E* was observed in AA-(R2=0.955) followed by BI-(R2=0.859). Therefore, the greatest effect on color might be caused by AA degradation.

Supporting Institution

Çukurova University

Project Number

FYL-20178267

Thanks

The authors thank to Cukurova University (Project no: FYL-20178267) for financial supports, Dr. Erdal Ağçam for his helps and Dr. Mehmet Ali Sarıdaş for providing strawberries.

References

  • Aaby, K., S. Mazur, S., Nes, A., Skrede G. (2012). Phenolic compounds in strawberry (Fragaria x ananassa Duch.) fruits: composition in 27 cultivars and changes during ripening. Food Chemistry, 132(1): 86–97, doi: 10.1016/j.foodchem.2011.10.037.
  • Abdullakasim, P., Songchitsomboon, S., Techagumpuch, M., Balee, N., Swatsitang, P., Sungpuag, P. (2009). Antioxidant capacity, total phenolics and sugar content of selected Thai health beverages. International Journal of Food Sciences and Nutrition, 58(1): 77–85, doi: 10.1080/09637480601140946.
  • Abid, M., Jabbar, S., Wu, T., Hashim, M. M., Hu, B., Lei, S., Zeng, X. (2014). Sonication enhances polyphenolic compounds, sugars, carotenoids and mineral elements of apple juice. Ultrasonics Sonochemistry, 21(1): 93–97, doi: 10.1016/j.ultsonch.2013.06.002.
  • Abid, M., Jabbar, S., Wu, T., Hashim, M. M., Hu, B., Saeeduddin, M., Zeng, X. (2015). Qualitative assessment of sonicated apple juice during storage. Journal of Food Processing and Preservation, 39(6): 1299-1308.
  • Adekunte, A. O., Tiwari, B. K., Cullen, P. J., Scannell, A. G. M., O’Donnell, C. P. (2010). Effect of sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chemistry, 122(3): 500–507, doi: 10.1016/j.foodchem.2010.01.026.
  • Agcam, E., Akyıldız, A., Akdemir Evrendilek, G. (2014). Comparison of phenolic compounds of orange juice processed by pulsed electric fields (PEF) and conventional thermal pasteurisation. Food Chemistry, 143: 354–361, doi: 10.1016/j.foodchem.2013.07.115.
  • Ağçam, E., Akyildiz, A., Dündar, B. (2017). Thermal pasteurization and microbial inactivation of fruit juices. In: Fruit juices: Extraction, Composition, Quality and Analysis, Rajauira, G., Tiwari, B. K. (eds), Academic Press, the UK, pp. 309-339, doi: 10.1016/B978-0-12-802230-6.00017-5.
  • Bharate, S. S., Bharate, S. B. (2014). Non-enzymatic browning in citrus juice: chemical markers, their detection and ways to improve product quality. Journal of Food Science and Technology, 51(10): 2271-2288.
  • Bhat, R., Goh, K. M. (2017). Sonication treatment convalesce the overall quality of hand-pressed strawberry juice. Food Chemistry, 215: 470–476, doi: 10.1016/j.foodchem.2016.07.160.
  • Bhat, R., Kamaruddin, N. S. B. C., Min-Tze, L., Karim, A. A. (2011). Sonication improves kasturi lime (Citrus microcarpa) juice quality. Ultrasonics Sonochemistry, 18(6): 1295–1300, doi: 10.1016/j.ultsonch.2011.04.002.
  • Burdurlu, H. S., Koca, N., Karadeniz, F. (2006). Degradation of vitamin C in citrus juice concentrates during storage. Journal of Food Engineering, 74(2): 211-216.
  • Buvé, C., Kebede, B. T., De Batselier, C., Carrillo, C., Pham, H. T. T., Hendrickx, M., Grauwet, T., Van Loey, A. (2018). Kinetics of colour changes in pasteurised strawberry juice during storage. Journal of Food Engineering, 216: 42–51.
  • Buvé, C., Pham, H. T. T., Hendrickx, M., Grauwet, T., Van Loey, A. (2021). Reaction pathways and factors influencing nonenzymatic browning in shelf‐stable fruit juices during storage. Comprehensive Reviews in Food Science and Food Safety, 20(6): 5698-5721.
  • Carabasa-Giribet, M., Ibarz-Ribas, A. (2000). Kinetics of colour development in aqueous glucose systems at high temperatures. Journal of Food Engineering, 44(3): 181-189, doi: 10.1016/S0260-8774(00)00027-3.
  • Chakraborty, S., Baier, D., Knorr, D., Mishra, H. N. (2015). High pressure inactivation of polygalacturonase, pectinmethylesterase and polyphenoloxidase in strawberry puree mixed with sugar. Food and Bioproducts Processing, 95: 281–291, doi: 10.1016/j.fbp.2014.10.016.
  • del Castillo, M. D., Villamiel, M., Olano, A., Corzo, N. (2000). Use of 2-furoylmethyl derivatives of GABA and arginine as indicators of the initial steps of maillard reaction in orange juice. Journal of Agricultural and Food Chemistry, 48; 4217−4220.
  • del Pozo-Insfran, D., Brenes, C. H., Talcott, S. T. (2004). Phytochemical composition and pigment stability of Açai (Euterpe oleracea Mart.). Journal of Agricultural and Food Chemistry, 52(6): 1539-1545, doi: 10.1021/jf035189n.
  • Dhakal, S., Balasubramaniam, V. M., Ayvaz, H., Rodriguez-Saona, L. E. (2018). Kinetic modeling of ascorbic acid degradation of pineapple juice subjected to combined pressure-thermal treatment. Journal of Food Engineering, 224: 62-70. doi: 10.1016/j.jfoodeng.2017.08.002.
  • Dündar, B., Ağçam, E., Akyıldız, A. (2019). Optimization of thermosonication conditions for cloudy strawberry nectar with using of critical quality parameters. Food Chemistry, 276: 494-502, doi: 10.1016/j.foodchem.2018.10.028.
  • Eiro, M. J., Heinonen, M. (2002). Anthocyanin color behavior and stability during storage: Effect of intermolecular copigmentation. Journal of Agricultural and Food Chemistry, 50(25): 7461-7466, doi: 10.1021/jf0258306.
  • Fernández-Romero, E., Chavez-Quintana, S. G., Siche, R., Castro-Alayo, E. M., Cardenas-Toro, F. P. (2020). The kinetics of total phenolic content and monomeric flavan-3-ols during the roasting process of Criollo cocoa. Antioxidants, 9(2): 146, doi: 10.3390/antiox9020146.
  • Fustier, P., St-Germain, F., Lamarche, F., Mondor, M. (2011). Nonenzymatic browning and ascorbic acid degradation of orange juice subjected to electroreduction and electro-oxidation treatments. Innovative Food Science and Emerging Technologies, 12: 491−498.
  • Garzon, G. A. Wrolstad, R. E. (2002). Comparison of the stability of pelargonidin-based anthocyanins in strawberry juice and concentrate. Journal of Food Science, 67(4): 1288–1299, doi: 10.1111/j.1365-2621.2002.tb10277.x.
  • Giampieri, F., Tulipani, S., Alvarez-Suarez, J. M., Quiles, J. L., Mezzetti, B.,Battino, M. (2012). The strawberry: composition, nutritional quality, and impact on human health. Nutrition, 28(1): 9-19, doi: 10.1016/j.nut.2011.08.009.
  • Giusti, M. M., Wrolstad, R. E. (2001). Characterization and measurement of anthocyanins by UV‐visible spectroscopy. Current Protocols in Food Analytical Chemistry, (1): F1-2, doi: 10.1002/0471142913.faf0102s00
  • Gökmen, V. Acar, J. (1996). Rapid reversed-phase liquid chromatographic determination of patulin in apple juice. Journal of Chromatography A, 730(1–2): 53–58, doi: 10.1016/0021-9673(95)00861-6.
  • Jiang, Y. M. (1999). Purification and some properties of polyphenol oxidase of longan fruit. Food Chemistry, 66(1): 75–79, doi: 10.1016/S0308-8146(98)00242-8.
  • Kus, S., Gogus, F., Eren, S. (2005). Hydroxymethyl furfural content of concentrated food products. International Journal of Food Properties, 8 (2): 367–375.
  • Labuza, T. P. (1984). Application of chemical kinetics to deterioration of foods. Journal of Chemical Education, 61(4): 348, doi: 10.1021/ed061p348.
  • Lafarga, T., Ruiz-Aguirre, I., Abadias, M., Viñas, I., Bobo, G., Aguiló-Aguayo, I. (2019). Effect of thermosonication on the bioaccessibility of antioxidant compounds and the microbiological, physicochemical, and nutritional quality of an anthocyanin-enriched tomato juice. Food and Bioprocess Technology, 12(1): 147–157, doi: 10.1007/s11947-018-2191-5.
  • Lee, H. S., Coates, G. A. (1999). Vitamin C in frozen, fresh squeezed, unpasteurized, polyethylene-bottled orange juice: a storage study. Food Chemistry, 65(2): 165-168, doi: 10.1016/S0308-8146(98)00180-0.
  • Lončarić, A., Pablo Lamas, J., Guerra, E., Kopjar, M., Lores, M. (2018). Thermal stability of catechin and epicatechin upon disaccharides addition. International Journal of Food Science & Technology, 53(5): 1195-1202, doi: 10.1111/ijfs.13696.
  • Lukaski, H. C. (2004). Vitamin and mineral status: effects on physical performance. Nutrition, 20(7-8): 632-644, doi:10.1016/j.nut.2004.04.001.
  • Meydav, S., Saguy, I., Kopelman, I. J. (1977). Browning determination in citrus products. Journal of Agricultural and Food Chemistry, 25(3): 602-604, doi: 10.1021/jf60211a030.
  • Muzaffar, S., Ahmad, M., Wani, S. M., Gani, A., Baba, W. N., Shah, U., Khan, A. A., Masoodi, F. A., Gani, A., Wani, T. A. (2016). Ultrasound treatment: effect on physicochemical, microbial and antioxidant properties of cherry (Prunus avium). Journal of Food Science and Technology, 53(6): 2752-2759, doi: 10.1007/s13197-016-2247-3.
  • Nisha, P., Singhal, R.S., Pandit, A.B. (2004). A study on degradation kinetics of ascorbic acid in amla (Phyllanthus emblica L.) during cooking. International Journal of Food Science and Nutrition, 55(5): 415-422.
  • Oliveira, A., Almeida, D. P., Pintado, M. (2014). Changes in phenolic compounds during storage of pasteurized strawberry. Food and Bioprocess Technology, 7(6): 1840-1846, doi: 10.1007/s11947-013-1239-9.
  • Oliveira, A., Gomes, M. H., Alexandre, E. M., Poças, F., Almeida, D. P., Pintado, M. (2015). Phytochemicals preservation in strawberry as affected by pH modulation. Food Chemistry, 170: 74-83, doi: 10.1016/j.foodchem.2014.07.156.
  • Oral, R. A., Dogan, M., Sarioglu, K., Toker, Ö. S. (2012). 5-hydroxymethyl furfural formation and reaction kinetics of different pekmez samples: effect of temperature and storage. International Journal of Food Engineering, 8 (4).
  • Özkan, M. (2002). Degradation of anthocyanins in sour cherry and pomegranate juices by hydrogen peroxide in the presence of added ascorbic acid. Food Chemistry, 78(4): 499-504, doi: 10.1016/S0308-8146(02)00165-6.
  • Pacheco-Palencia, L. A., Hawken, P., Talcott, S. T. (2007). Phytochemical, antioxidant and pigment stability of açai (Euterpe oleracea Mart.) as affected by clarification, ascorbic acid fortification and storage. Food Research International, 40(5): 620-628, doi: 10.1016/j.foodres.2006.11.006.
  • Paravisini, L., Peterson, D. G. (2016). Characterization of browning formation in orange juice during storage. In: Browned flavors: analysis, formation, and physiology, ACS Symposium Series 1237, Granvogl, M., Peterson, D., Schieberle, P. (eds), Oxford University Press, Washington, DC, the USA, pp. 55-65.
  • Patras, A., Brunton, N. P., O'Donnell, C., Tiwari, B. K. (2010). Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends in Food Science & Technology, 21(1): 3-11, doi: 10.1016/J.TIFS.2009.07.004.
  • Pham, H. T., Kityo, P., Buvé, C., Hendrickx, M. E., Van Loey, A. M. (2020). Influence of pH and composition on nonenzymatic browning of shelf-stable orange juice during storage. Journal of Agricultural and Food Chemistry, 68(19): 5402-5411.
  • Polydera, A. C., Stoforos, N. G., Taoukis, P. S. (2003). Comparative shelf life study and vitamin C loss kinetics in pasteurised and high pressure processed reconstituted orange juice. Journal of Food Engineering, 60(1): 21-29.
  • Rein, M. (2005). Copigmentation reactions and color stability of berry anthocyanins. Ph.D. Dissertation, University of Helsinki, Department of Applied Chemistry and Microbiology, Helsinki, Finland, 87 p.
  • Remini, H., Mertz, C., Belbahi, A., Achir, N., Dornier, M., Madani, K. (2015). Degradation kinetic modelling of ascorbic acid and colour intensity in pasteurised blood orange juice during storage. Food Chemistry, 173: 665-673, doi: 10.1016/j.foodchem.2014.10.069.
  • Sulaiman, A., Soo, M. J., Farid, M., Silva, F. V. (2015). Thermosonication for polyphenoloxidase inactivation in fruits: modeling the ultrasound and thermal kinetics in pear, apple and strawberry purees at different temperatures. Journal of Food Engineering, 165: 133-140, doi: 10.1016/j.jfoodeng.2015.06.020.
  • Sun, J., Chu, Y. F., Wu, X., Liu, R. H. (2002). Antioxidant and antiproliferative activities of common fruits. Journal of Agricultural and Food Chemistry, 50(25): 7449-7454, doi: 10.1021/jf0207530.
  • Tola, Y. B., Ramaswamy, H. S. (2015). Temperature and high pressure stability of lycopene and vitamin C of watermelon juice. African Journal of Food Science, 9(5), 351-358.
  • Tomadoni, B., Cassani, L., Viacava, G., Moreira, M. D. R., Ponce, A. (2017). Effect of ultrasound and storage time on quality attributes of strawberry juice. Journal of Food Process Engineering, 40(5): e12533. doi: 10.1111/jfpe.12533.
  • Vieira, R. P., Mokochinski, J. B., Sawaya, A.C. (2016). Mathematical modeling of ascorbic acid thermal degradation in orange juice during industrial pasteurizations. Journal of Food Process Engineering, 39 (6): 683-691.
  • Wang, H. Y., Hu, X. S., Chen, F., Wu, J. H., Zhang, Z. H., Liao, X. J., Wang, Z. F. (2006). Kinetic analysis of non-enzymatic browning in carrot juice concentrate during storage. European Food Research and Technology, 223(2): 282-289, doi: 10.1007/s00217-005-0202-z.
  • Wibowo, S., Grauwet, T., Santiago, J. S., Tomic, J., Vervoort, L., Hendrickx, M., Van Loey, A. (2015). Quality changes of pasteurised orange juice during storage: a kinetic study of specific parameters and their relation to colour instability. Food Chemistry, 187: 140−151.
  • Wrolstad, R. E., Skrede, G., Lea, P. E. R., Enersen, G. (1990). Influence of sugar on anthocyanin pigment stability in frozen strawberries. Journal of Food Science, 55(4): 1064-1065. doi: 10.1111/j.1365-2621.1990.tb01598.x.
  • Zheng, Y., Wang, S. Y., Wang, C. Y., Zheng, W. (2007). Changes in strawberry phenolics, anthocyanins, and antioxidant capacity in response to high oxygen treatments. LWT-Food Science and Technology, 40(1): 49-57, doi: 10.1016/j.lwt.2005.08.013.

DEPOLAMA BOYUNCA TERMOSONİKASYON UYGULANAN ÇİLEK NEKTARI KALİTE ÖZELLİKLERİNİN ARAŞTIRILMASI VE KİNETİK MODELLEME

Year 2022, Volume: 47 Issue: 3, 481 - 492, 01.04.2022
https://doi.org/10.15237/gida.GD21154

Abstract

Bulanık çilek nektarında depolama (4°C-3 ay) boyunca askorbik asit-(AA) içeriği, hidroksimetilfurfural-(HMF) içeriği, toplam renk farkı-(∆E*) ve esmerleşme indeksi-(BI) değerlerindeki değişimler değerlendirilmiş ve modellenmiştir. AA içeriği (104.86 mg/L) depolamadan sonra ~%99 azalırken, HMF içeriği artmıştır (20.46 µg/L-494.44 µg/L). Depolama boyunca, BI (0.45-0.56) ve ∆E* (5.21–11.23) değerlerinde meydana gelen önemli artışlar birbiri ile ve depolama süresince tutarlılık göstermiştir. HMF içeriği (R2=0.849), BI (R2=0.942) ve ∆E* değişimleri sıfırıncı dereceden kinetic modele uyum gösterirken, AA içeriğindeki azalma birinci dereceden kinetik model ile açıklanmıştır (R2=0.9755). AA, HMF, ∆E* ve BI reaksiyon hız sabitleri sırasıyla 5.58x10-2 1/gün, 4.34 mg/L.gün, 6.40x10-2 mg/L.gün ve 14x10-2 mg/L.gün olarak belirlenmiştir. ∆E* değişimiyle en yüksek korelasyona sahip olan AA içeriğini (R2=0.955), BI (R2=0.859) takip etmiştir. Bu sebeple renk üzerindeki en yüksek etkiye AA parçalanmasının neden olması söz konusu olabilir.

Project Number

FYL-20178267

References

  • Aaby, K., S. Mazur, S., Nes, A., Skrede G. (2012). Phenolic compounds in strawberry (Fragaria x ananassa Duch.) fruits: composition in 27 cultivars and changes during ripening. Food Chemistry, 132(1): 86–97, doi: 10.1016/j.foodchem.2011.10.037.
  • Abdullakasim, P., Songchitsomboon, S., Techagumpuch, M., Balee, N., Swatsitang, P., Sungpuag, P. (2009). Antioxidant capacity, total phenolics and sugar content of selected Thai health beverages. International Journal of Food Sciences and Nutrition, 58(1): 77–85, doi: 10.1080/09637480601140946.
  • Abid, M., Jabbar, S., Wu, T., Hashim, M. M., Hu, B., Lei, S., Zeng, X. (2014). Sonication enhances polyphenolic compounds, sugars, carotenoids and mineral elements of apple juice. Ultrasonics Sonochemistry, 21(1): 93–97, doi: 10.1016/j.ultsonch.2013.06.002.
  • Abid, M., Jabbar, S., Wu, T., Hashim, M. M., Hu, B., Saeeduddin, M., Zeng, X. (2015). Qualitative assessment of sonicated apple juice during storage. Journal of Food Processing and Preservation, 39(6): 1299-1308.
  • Adekunte, A. O., Tiwari, B. K., Cullen, P. J., Scannell, A. G. M., O’Donnell, C. P. (2010). Effect of sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chemistry, 122(3): 500–507, doi: 10.1016/j.foodchem.2010.01.026.
  • Agcam, E., Akyıldız, A., Akdemir Evrendilek, G. (2014). Comparison of phenolic compounds of orange juice processed by pulsed electric fields (PEF) and conventional thermal pasteurisation. Food Chemistry, 143: 354–361, doi: 10.1016/j.foodchem.2013.07.115.
  • Ağçam, E., Akyildiz, A., Dündar, B. (2017). Thermal pasteurization and microbial inactivation of fruit juices. In: Fruit juices: Extraction, Composition, Quality and Analysis, Rajauira, G., Tiwari, B. K. (eds), Academic Press, the UK, pp. 309-339, doi: 10.1016/B978-0-12-802230-6.00017-5.
  • Bharate, S. S., Bharate, S. B. (2014). Non-enzymatic browning in citrus juice: chemical markers, their detection and ways to improve product quality. Journal of Food Science and Technology, 51(10): 2271-2288.
  • Bhat, R., Goh, K. M. (2017). Sonication treatment convalesce the overall quality of hand-pressed strawberry juice. Food Chemistry, 215: 470–476, doi: 10.1016/j.foodchem.2016.07.160.
  • Bhat, R., Kamaruddin, N. S. B. C., Min-Tze, L., Karim, A. A. (2011). Sonication improves kasturi lime (Citrus microcarpa) juice quality. Ultrasonics Sonochemistry, 18(6): 1295–1300, doi: 10.1016/j.ultsonch.2011.04.002.
  • Burdurlu, H. S., Koca, N., Karadeniz, F. (2006). Degradation of vitamin C in citrus juice concentrates during storage. Journal of Food Engineering, 74(2): 211-216.
  • Buvé, C., Kebede, B. T., De Batselier, C., Carrillo, C., Pham, H. T. T., Hendrickx, M., Grauwet, T., Van Loey, A. (2018). Kinetics of colour changes in pasteurised strawberry juice during storage. Journal of Food Engineering, 216: 42–51.
  • Buvé, C., Pham, H. T. T., Hendrickx, M., Grauwet, T., Van Loey, A. (2021). Reaction pathways and factors influencing nonenzymatic browning in shelf‐stable fruit juices during storage. Comprehensive Reviews in Food Science and Food Safety, 20(6): 5698-5721.
  • Carabasa-Giribet, M., Ibarz-Ribas, A. (2000). Kinetics of colour development in aqueous glucose systems at high temperatures. Journal of Food Engineering, 44(3): 181-189, doi: 10.1016/S0260-8774(00)00027-3.
  • Chakraborty, S., Baier, D., Knorr, D., Mishra, H. N. (2015). High pressure inactivation of polygalacturonase, pectinmethylesterase and polyphenoloxidase in strawberry puree mixed with sugar. Food and Bioproducts Processing, 95: 281–291, doi: 10.1016/j.fbp.2014.10.016.
  • del Castillo, M. D., Villamiel, M., Olano, A., Corzo, N. (2000). Use of 2-furoylmethyl derivatives of GABA and arginine as indicators of the initial steps of maillard reaction in orange juice. Journal of Agricultural and Food Chemistry, 48; 4217−4220.
  • del Pozo-Insfran, D., Brenes, C. H., Talcott, S. T. (2004). Phytochemical composition and pigment stability of Açai (Euterpe oleracea Mart.). Journal of Agricultural and Food Chemistry, 52(6): 1539-1545, doi: 10.1021/jf035189n.
  • Dhakal, S., Balasubramaniam, V. M., Ayvaz, H., Rodriguez-Saona, L. E. (2018). Kinetic modeling of ascorbic acid degradation of pineapple juice subjected to combined pressure-thermal treatment. Journal of Food Engineering, 224: 62-70. doi: 10.1016/j.jfoodeng.2017.08.002.
  • Dündar, B., Ağçam, E., Akyıldız, A. (2019). Optimization of thermosonication conditions for cloudy strawberry nectar with using of critical quality parameters. Food Chemistry, 276: 494-502, doi: 10.1016/j.foodchem.2018.10.028.
  • Eiro, M. J., Heinonen, M. (2002). Anthocyanin color behavior and stability during storage: Effect of intermolecular copigmentation. Journal of Agricultural and Food Chemistry, 50(25): 7461-7466, doi: 10.1021/jf0258306.
  • Fernández-Romero, E., Chavez-Quintana, S. G., Siche, R., Castro-Alayo, E. M., Cardenas-Toro, F. P. (2020). The kinetics of total phenolic content and monomeric flavan-3-ols during the roasting process of Criollo cocoa. Antioxidants, 9(2): 146, doi: 10.3390/antiox9020146.
  • Fustier, P., St-Germain, F., Lamarche, F., Mondor, M. (2011). Nonenzymatic browning and ascorbic acid degradation of orange juice subjected to electroreduction and electro-oxidation treatments. Innovative Food Science and Emerging Technologies, 12: 491−498.
  • Garzon, G. A. Wrolstad, R. E. (2002). Comparison of the stability of pelargonidin-based anthocyanins in strawberry juice and concentrate. Journal of Food Science, 67(4): 1288–1299, doi: 10.1111/j.1365-2621.2002.tb10277.x.
  • Giampieri, F., Tulipani, S., Alvarez-Suarez, J. M., Quiles, J. L., Mezzetti, B.,Battino, M. (2012). The strawberry: composition, nutritional quality, and impact on human health. Nutrition, 28(1): 9-19, doi: 10.1016/j.nut.2011.08.009.
  • Giusti, M. M., Wrolstad, R. E. (2001). Characterization and measurement of anthocyanins by UV‐visible spectroscopy. Current Protocols in Food Analytical Chemistry, (1): F1-2, doi: 10.1002/0471142913.faf0102s00
  • Gökmen, V. Acar, J. (1996). Rapid reversed-phase liquid chromatographic determination of patulin in apple juice. Journal of Chromatography A, 730(1–2): 53–58, doi: 10.1016/0021-9673(95)00861-6.
  • Jiang, Y. M. (1999). Purification and some properties of polyphenol oxidase of longan fruit. Food Chemistry, 66(1): 75–79, doi: 10.1016/S0308-8146(98)00242-8.
  • Kus, S., Gogus, F., Eren, S. (2005). Hydroxymethyl furfural content of concentrated food products. International Journal of Food Properties, 8 (2): 367–375.
  • Labuza, T. P. (1984). Application of chemical kinetics to deterioration of foods. Journal of Chemical Education, 61(4): 348, doi: 10.1021/ed061p348.
  • Lafarga, T., Ruiz-Aguirre, I., Abadias, M., Viñas, I., Bobo, G., Aguiló-Aguayo, I. (2019). Effect of thermosonication on the bioaccessibility of antioxidant compounds and the microbiological, physicochemical, and nutritional quality of an anthocyanin-enriched tomato juice. Food and Bioprocess Technology, 12(1): 147–157, doi: 10.1007/s11947-018-2191-5.
  • Lee, H. S., Coates, G. A. (1999). Vitamin C in frozen, fresh squeezed, unpasteurized, polyethylene-bottled orange juice: a storage study. Food Chemistry, 65(2): 165-168, doi: 10.1016/S0308-8146(98)00180-0.
  • Lončarić, A., Pablo Lamas, J., Guerra, E., Kopjar, M., Lores, M. (2018). Thermal stability of catechin and epicatechin upon disaccharides addition. International Journal of Food Science & Technology, 53(5): 1195-1202, doi: 10.1111/ijfs.13696.
  • Lukaski, H. C. (2004). Vitamin and mineral status: effects on physical performance. Nutrition, 20(7-8): 632-644, doi:10.1016/j.nut.2004.04.001.
  • Meydav, S., Saguy, I., Kopelman, I. J. (1977). Browning determination in citrus products. Journal of Agricultural and Food Chemistry, 25(3): 602-604, doi: 10.1021/jf60211a030.
  • Muzaffar, S., Ahmad, M., Wani, S. M., Gani, A., Baba, W. N., Shah, U., Khan, A. A., Masoodi, F. A., Gani, A., Wani, T. A. (2016). Ultrasound treatment: effect on physicochemical, microbial and antioxidant properties of cherry (Prunus avium). Journal of Food Science and Technology, 53(6): 2752-2759, doi: 10.1007/s13197-016-2247-3.
  • Nisha, P., Singhal, R.S., Pandit, A.B. (2004). A study on degradation kinetics of ascorbic acid in amla (Phyllanthus emblica L.) during cooking. International Journal of Food Science and Nutrition, 55(5): 415-422.
  • Oliveira, A., Almeida, D. P., Pintado, M. (2014). Changes in phenolic compounds during storage of pasteurized strawberry. Food and Bioprocess Technology, 7(6): 1840-1846, doi: 10.1007/s11947-013-1239-9.
  • Oliveira, A., Gomes, M. H., Alexandre, E. M., Poças, F., Almeida, D. P., Pintado, M. (2015). Phytochemicals preservation in strawberry as affected by pH modulation. Food Chemistry, 170: 74-83, doi: 10.1016/j.foodchem.2014.07.156.
  • Oral, R. A., Dogan, M., Sarioglu, K., Toker, Ö. S. (2012). 5-hydroxymethyl furfural formation and reaction kinetics of different pekmez samples: effect of temperature and storage. International Journal of Food Engineering, 8 (4).
  • Özkan, M. (2002). Degradation of anthocyanins in sour cherry and pomegranate juices by hydrogen peroxide in the presence of added ascorbic acid. Food Chemistry, 78(4): 499-504, doi: 10.1016/S0308-8146(02)00165-6.
  • Pacheco-Palencia, L. A., Hawken, P., Talcott, S. T. (2007). Phytochemical, antioxidant and pigment stability of açai (Euterpe oleracea Mart.) as affected by clarification, ascorbic acid fortification and storage. Food Research International, 40(5): 620-628, doi: 10.1016/j.foodres.2006.11.006.
  • Paravisini, L., Peterson, D. G. (2016). Characterization of browning formation in orange juice during storage. In: Browned flavors: analysis, formation, and physiology, ACS Symposium Series 1237, Granvogl, M., Peterson, D., Schieberle, P. (eds), Oxford University Press, Washington, DC, the USA, pp. 55-65.
  • Patras, A., Brunton, N. P., O'Donnell, C., Tiwari, B. K. (2010). Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends in Food Science & Technology, 21(1): 3-11, doi: 10.1016/J.TIFS.2009.07.004.
  • Pham, H. T., Kityo, P., Buvé, C., Hendrickx, M. E., Van Loey, A. M. (2020). Influence of pH and composition on nonenzymatic browning of shelf-stable orange juice during storage. Journal of Agricultural and Food Chemistry, 68(19): 5402-5411.
  • Polydera, A. C., Stoforos, N. G., Taoukis, P. S. (2003). Comparative shelf life study and vitamin C loss kinetics in pasteurised and high pressure processed reconstituted orange juice. Journal of Food Engineering, 60(1): 21-29.
  • Rein, M. (2005). Copigmentation reactions and color stability of berry anthocyanins. Ph.D. Dissertation, University of Helsinki, Department of Applied Chemistry and Microbiology, Helsinki, Finland, 87 p.
  • Remini, H., Mertz, C., Belbahi, A., Achir, N., Dornier, M., Madani, K. (2015). Degradation kinetic modelling of ascorbic acid and colour intensity in pasteurised blood orange juice during storage. Food Chemistry, 173: 665-673, doi: 10.1016/j.foodchem.2014.10.069.
  • Sulaiman, A., Soo, M. J., Farid, M., Silva, F. V. (2015). Thermosonication for polyphenoloxidase inactivation in fruits: modeling the ultrasound and thermal kinetics in pear, apple and strawberry purees at different temperatures. Journal of Food Engineering, 165: 133-140, doi: 10.1016/j.jfoodeng.2015.06.020.
  • Sun, J., Chu, Y. F., Wu, X., Liu, R. H. (2002). Antioxidant and antiproliferative activities of common fruits. Journal of Agricultural and Food Chemistry, 50(25): 7449-7454, doi: 10.1021/jf0207530.
  • Tola, Y. B., Ramaswamy, H. S. (2015). Temperature and high pressure stability of lycopene and vitamin C of watermelon juice. African Journal of Food Science, 9(5), 351-358.
  • Tomadoni, B., Cassani, L., Viacava, G., Moreira, M. D. R., Ponce, A. (2017). Effect of ultrasound and storage time on quality attributes of strawberry juice. Journal of Food Process Engineering, 40(5): e12533. doi: 10.1111/jfpe.12533.
  • Vieira, R. P., Mokochinski, J. B., Sawaya, A.C. (2016). Mathematical modeling of ascorbic acid thermal degradation in orange juice during industrial pasteurizations. Journal of Food Process Engineering, 39 (6): 683-691.
  • Wang, H. Y., Hu, X. S., Chen, F., Wu, J. H., Zhang, Z. H., Liao, X. J., Wang, Z. F. (2006). Kinetic analysis of non-enzymatic browning in carrot juice concentrate during storage. European Food Research and Technology, 223(2): 282-289, doi: 10.1007/s00217-005-0202-z.
  • Wibowo, S., Grauwet, T., Santiago, J. S., Tomic, J., Vervoort, L., Hendrickx, M., Van Loey, A. (2015). Quality changes of pasteurised orange juice during storage: a kinetic study of specific parameters and their relation to colour instability. Food Chemistry, 187: 140−151.
  • Wrolstad, R. E., Skrede, G., Lea, P. E. R., Enersen, G. (1990). Influence of sugar on anthocyanin pigment stability in frozen strawberries. Journal of Food Science, 55(4): 1064-1065. doi: 10.1111/j.1365-2621.1990.tb01598.x.
  • Zheng, Y., Wang, S. Y., Wang, C. Y., Zheng, W. (2007). Changes in strawberry phenolics, anthocyanins, and antioxidant capacity in response to high oxygen treatments. LWT-Food Science and Technology, 40(1): 49-57, doi: 10.1016/j.lwt.2005.08.013.
There are 56 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Articles
Authors

Burcu Dündar Kırıt 0000-0002-9919-5711

Asiye Akyıldız 0000-0001-5584-0849

Project Number FYL-20178267
Early Pub Date April 1, 2022
Publication Date April 1, 2022
Published in Issue Year 2022 Volume: 47 Issue: 3

Cite

APA Dündar Kırıt, B., & Akyıldız, A. (2022). INVESTIGATION OF THERMOSONICATED STRAWBERRY NECTAR QUALITY DURING STORAGE AND KINETIC MODELLING. Gıda, 47(3), 481-492. https://doi.org/10.15237/gida.GD21154
AMA Dündar Kırıt B, Akyıldız A. INVESTIGATION OF THERMOSONICATED STRAWBERRY NECTAR QUALITY DURING STORAGE AND KINETIC MODELLING. The Journal of Food. April 2022;47(3):481-492. doi:10.15237/gida.GD21154
Chicago Dündar Kırıt, Burcu, and Asiye Akyıldız. “INVESTIGATION OF THERMOSONICATED STRAWBERRY NECTAR QUALITY DURING STORAGE AND KINETIC MODELLING”. Gıda 47, no. 3 (April 2022): 481-92. https://doi.org/10.15237/gida.GD21154.
EndNote Dündar Kırıt B, Akyıldız A (April 1, 2022) INVESTIGATION OF THERMOSONICATED STRAWBERRY NECTAR QUALITY DURING STORAGE AND KINETIC MODELLING. Gıda 47 3 481–492.
IEEE B. Dündar Kırıt and A. Akyıldız, “INVESTIGATION OF THERMOSONICATED STRAWBERRY NECTAR QUALITY DURING STORAGE AND KINETIC MODELLING”, The Journal of Food, vol. 47, no. 3, pp. 481–492, 2022, doi: 10.15237/gida.GD21154.
ISNAD Dündar Kırıt, Burcu - Akyıldız, Asiye. “INVESTIGATION OF THERMOSONICATED STRAWBERRY NECTAR QUALITY DURING STORAGE AND KINETIC MODELLING”. Gıda 47/3 (April 2022), 481-492. https://doi.org/10.15237/gida.GD21154.
JAMA Dündar Kırıt B, Akyıldız A. INVESTIGATION OF THERMOSONICATED STRAWBERRY NECTAR QUALITY DURING STORAGE AND KINETIC MODELLING. The Journal of Food. 2022;47:481–492.
MLA Dündar Kırıt, Burcu and Asiye Akyıldız. “INVESTIGATION OF THERMOSONICATED STRAWBERRY NECTAR QUALITY DURING STORAGE AND KINETIC MODELLING”. Gıda, vol. 47, no. 3, 2022, pp. 481-92, doi:10.15237/gida.GD21154.
Vancouver Dündar Kırıt B, Akyıldız A. INVESTIGATION OF THERMOSONICATED STRAWBERRY NECTAR QUALITY DURING STORAGE AND KINETIC MODELLING. The Journal of Food. 2022;47(3):481-92.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/