BibTex RIS Cite

The Value of Bifunctional Catalase-Phenol Oxidase and Other Catalases in Food Industry (Turkish with English Abstract)

Year 2013, Volume: 38 Issue: 2, 111 - 118, 01.04.2013

Abstract

Catalases, responsible for hydrogen peroxide degradation into water and oxygen and belonging to a group of antioxidant metalloenzymes, are known as promoting cellular life. They are widely used in food either alone in milk pasteurization and cheese production or its combination with glucose oxidase in the production of dietetic beverages and maltose excluding glucose and invert sugar that does not contain fructose. The need for economic and highly stable catalase production has recently become inevitable due to an increase in the use of hydrogen peroxide in the industry. Despite catalases have been functionally and structurally studied for many years, some unknown characteristics of these enzymes are still coming up. For example, the thermophilic fungus Scytalidium thermophilum constituvely produces a catalase in a growth- associated manner, and this catalase possesses an additional phenol oxidase activity in the absence of hydrogen peroxide. With this discovery, it was also shown that catalases, found in various organisms including humans, exhibit oxidase activity at varying degrees. Although research on catalases has been going on for more than a century, the peroxide independent secondary oxidase activity of these enzymes is a new discovery in the literature. Studies of changing three dimensional structure of enzyme with protein engineering to increase the effectiveness of oxidase activity in catalase have already been started. In this manner, the chance of catalase production with low cost and high yield, which can remove both hydrogen peroxide and oxygen at one step, has encouraged the in-depth investigation of these enzymes.

References

  • 33, 34, 35 34, 35 Sanayisi A. niger A. niger A. niger, M. lysodeikticus A. niger 37 A. niger 37 A. niger, M. lysodeikticus A. niger
  • A. niger 37 50 50 51 Tekstil Sanayisi A. niger A. niger A. niger
  • oksidaz, hekzokinaz, lipaz, peroksidaz, süperoksit dismutaz gibi birçok enzimi içeren çimen suyu ticari olarak satılmakta ve yaygın olarak kullanılmaktadır (46). Son yıllarda katalazın saç beyazlamasını geciktirici özelli¤i keflfedilmifl ve bu amaçla tablet halde üretilen katalazlar piyasadaki yerini almıfltır (47). SONUÇ VE ÖNERİLER
  • Chelikani P, Fita I, Loewen PC. 2004. Diversity of structures and properties among catalases. Cell Mol Life Sci, 61, 192-208.
  • Switala J, Loewen PC. 2002. Diversity of properties among catalases. Arch Biochem Biophys, 401, 145-154.
  • Zamocky M, Furtmüller PG, Obinger C. 2008. Evolution of catalases from bacteria to humans. Antioxid Redox Signal, 10, 1527-1548.
  • Bhaskar B, Lad L, Poulos TL. 2006. Iron: Heme proteins, peroxidases, catalases and catalase- peroxidases. In: Encyclopedia of inorganic chemistry, King RB (chief ed), J. Wiley & Sons, New York, NY, pp. 1-21.
  • Stich TA, Whittaker JW, Britt RD. 2010. Multifrequency EPR studies of Manganese catalases provide a complete description of proteinaceous nitrogen coordination. J Phys Chem, 114, 14178-14188.
  • Rochat T, Bermşdez-Humarán L, Gratadoux JJ, Fourage C, Hoebler C, Corthier G, Langella P. 2007. Antinflammatory effects of Lactobacillus caseiBL23 producing or not a manganese- dependant catalase on DSS-induced colitis in mice. Microb Cell Fact, 6, 22.
  • Mate M, Murshudov G, Bravo J, Melik-Adamyan W, Loewen PC, Fita I. 2001. Heme-catalases. In: Encyclopedia of Inorganic and Bioinorganic Chemistry, Scott RA (chief ed), J. Wiley & Sons Press, New York, NY, pp. 486-502.
  • Liu JZ, Wang M. 2007. Improvement of activity and stability of chloroperoxidase by chemical modification. Biotechnol, 7, 23.
  • Anh DH, Ullrich R, Benndorf D, Svatos A, Muck A, Hofrichter M. 2007. The coprophilus mushroom Coprinus radianssecretes a haloperoxidase that catalyzes aromatic peroxygenation. Appl Environ Microbiol, 73, 5477-5485.
  • Ögel ZB, Yüzügüllü Y, Mete S, Bakir U, Kaptan Y, Sutay D, Demir AS. 2006. Production, properties and application to biocatalysis of a novel extracellular alkaline phenol oxidase from the thermophilic fungus Scytalidium thermophilum. Appl Microbiol Biotechnol, 71, 853-862.
  • Sutay Kocabas D, Bakir U, Phillips SEV, McPherson MJ, Ogel ZB. 2008. Purification, characterization, and identification of a novel bifunctional catalasephenol oxidase from Scytalidium thermophilum. Appl Microbiol Biotechnol, 79, 407-415.
  • Sutay Kocabas D, Pearson AR, Phillips SEV, Bakir U, Ogel ZB, McPherson MJ, Trinh C. 2009. Crystallization and preliminary X-ray analysis of a bifunctional catalase-phenol oxidase from Scytalidium thermophilum. Acta Crystallogr Sect F: Struct Biol Cryst Commun, 65, 486-488.
  • Vetrano AM, Heck DE, Mariano TM, Mishin V, Laskin DL, Laskin JD. 2005. Characterization of the oxidase activity in mammalian catalase. J Biol Chem, 280, 35372-35381.
  • Nita M, Raducan A, Puiu M, Oancea D. 2007. Stabilization of catalase in the presence of additives.
  • http://gw-chimie.math.unibuc.ro/anunivch/ 2007-2/AUBCh2007XVI23944.pdf (Eriflim tarihi 21.09.2012)
  • Volkert MR, Loewen PC, Switala J, Crowley D, Conley M. 1994. The _(argF-lacZ)205(U169) deletion greatly enhances resistance to hydrogen peroxide in stationary-phase Escherichia coli. J Bacteriol, 176, 1297-1302.
  • Loewen PC. 1999. Catalase. In: Encyclopedia of molecular biology, Creighton T (chief ed), J. Wiley & Sons, New York, NY, pp. 351-353.
  • Das D, Bishayi B. 2010. Contribution of catala- se and superoxide dismutase to the intracellular survival of clinic isolates of Staphylacoccus aureus in murine macrophages. Ind J Microbiol, 50, 375-384. 18. Comporti M, Signorini C, Leoncini S, Gardi C, Ciccoli L, Giardini A, Vecchio D, Arezzini B. 2010. Ethanol-induced oxidative stress: basic knowledge. Genes Nutr, 5, 101-109.
  • Gough DR, Cotter TG. 2011. Hydrogen peroxide: a Jekyll and Hyde signaling molecule. Cell Death Dis,2, e213; Doi: 10.1038/cddis.2011.96.
  • Onumah OE, Jules GE, Zhou L, Yang H, Guo Z. 2009. Overexpression of catalase delays G0/G1- to S-phase transition during cell cycle progression in mouse aortic endothelial cells. Free Radic Biol Med, 46, 1658-1667.
  • Takebe F, Hara I, Matsuyama H, Yumoto I. 2007. Effects of H2O2under low- and high-aeration -level conditions on growth and catalase activity in Exiguobacterium oxidotolerans T-2-2T. J Biosci Bioeng, 104, 464-469.
  • Imlay JA. 2008. Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem, 77, 755-776.
  • Uhlich GA. 2009. KatP contributes to OxyR-regulated hydrogen peroxide resistance in Escherichia coliserotype O157 : H7. Microbiol, 155, 3589-3598.
  • Pacello F, Rotillo G, Battistoni A. 2012. Low-shear modeled microgravity enhances Salmonella entericaresistance to Hydrogen peroxide through a mechanism involving KatG and KatN. Open Microbiol J, 6, 53-64.
  • Mulvey MR, Switala J, Borys A, Loewen PC. 1990. Regulation of transcription of katE and katFin Escherichia coli. J Bacteriol, 172, 6713-6720.
  • Chelikani P, Ramana T, Radhakrishnan TM. 2005. Catalase: A repertoire of unusual features. Ind J Clinic Biochem, 20, 131-135.
  • Gouet P, Jouve HM, Dideberg O. 1995. Crystal structure of Proteus mirabilis PR catalase with and without bound NADPH. J Mol Biol, 249, 933-954. 28. Bravo J, Mate MJ, Schneider T, Switala J, Wilson K, Loewen PC, Fita I. 1999. Structure of catalase HPII from Escherichia coli at 1.9 Å resolution. Proteins, 34, 155-66.
  • Kirk O, Borchert TV, Fuglsang CC. 2002. Industrial enzyme applications. Curr Opin Biotechnol, 13, 345-351.
  • Anon. http://www.food.hacettepe.edu.tr/turkish/ ouyeleri/gmu809/enzim_ve_mikroorganizma.pdf (Eriflim tarihi 13.09.2012)
  • Lück H. The use of hydrogen peroxide in milk and dairy products. http://www.whqlibdoc. who.int/monograph/WHO_MONO_48_(p423). pdf (Eriflim tarihi 21.09.2012)
  • Phillips T. Enzymes used in diary industry.
  • http://wwwbiotech.about.com/od/casestudies/ tp/dairyenzymes.htm (Eriflim tarihi 21.09.2012)
  • Anonymous. http://www.food.ege.edu.tr/files/ bolm10.pdf (Eriflim tarihi 13.09.2012)
  • Chaplin M. Glucose oxidase and catalase in the food industry. http://www.lsbu.ac.uk/biology/ enztech/god.html (Eriflim tarihi 23.09.2012)
  • Vidhyalakshmi R, Bhakyaraj R, Subhasree RS. 2009. Encapsulation "The future of probiotics"- a review. Adv Biol Res, 3, 96-103.
  • Apinan S. Encapsulation technology. http://www.nanotec.or.th/fckeditor/FCKeditor/ UserFiles/Encapsulation%20technology%20in %20Food%20Industry%20new.pdf (Eriflim tarihi 14.09.2012)
  • Anonymous. http://www.capsulae.com/eng/ markets-industries/food-nutrition (Eriflim tarihi 14.09.2012)
  • Panesar PS, Kumari S, Panesar R. 2010. Potential applications of immobilized E-Galactosidase in food processing industries. Enzyme Res, Volume 2010, Article ID 473137, 16 pages, Doi: 10.4061/ 2010/473137.
  • Petkova GA, Zaruba K, Zvatora P, Kral V. 2012. Gold and silver nanoparticles for biomolecule immobilization and enzymatic catalysis. Nanoscale Res Lett, 7, 287.
  • Alves Da Silva M, Helena Gil M, Piedade AP, Redinha JS, Oliveira Brett A, Caridade Costa JM. Immobilization of catalase on membranes of Poly(ethylene)-g-co-acrylic acid and Poly (tetrafluoroethylene)-g-co-acrylic acid and their application in hydrogen peroxide electrochemical sensors. http://www1.ci.uc.pt/pessoal/anabrett/ pdfs/PDF-1984-1995/5-Catalase-JPolSci.pdf (Eriflim tarihi 14.09.2012)
  • Çetinus fiA, Öztop HN, Saraydın D. 2007. Immobilization of catalase onto chitosan and cibacron blue F3GA attached chitosan beads. Enzyme Microb Tech, 41, 447-454.
  • Bayramoglu G, Karagoz B, Yilmaz M, Bicak N, Arica MY. 2011. Immobilization of catalase via adsorbtion on poly(styrene-d-glycidylmethacrylate) grafted and tetraethyldiethylenetriamine ligand attached microbeads. Bioresour Technol, 102, 3653-3661.
  • Wang ZG, Wan LS, Xu ZK. 2009. Immobilization of catalase on electrospun nanofibrus membranes modified with bovine serum albumin or collagen: Coupling site-dependent activity and protein- dependent stability. Soft Matter, 5, 4161-4168.
  • Chen S, Song N, Liao X, Shi B. 2011. Immobilization of catalase on Fe(III) modified collagen fiber. Sheng Wu Gong Chenq Xue Bao, 7, 1076-1081 [in Chinese].
  • Kubal BS, D’Souza SF. Immobilized-BARC. http://www.barc.gov.in/publications/nl/2006/ 200610-20.pdf (Eriflim tarihi 14.09.2012)
  • Anonymous. http://www.dynamicgreens.com/ wheatgrass-enzymes.html (Eriflim tarihi 27.09.2012)
  • Anonymous. http://www.emaxhealth.com/1020/ 115/29550/catalase-culprit-gray-hair.html (Eriflim tarihi 27.09.2012)
  • Christensen B, Lange NK, Daimon K. Catalase, its production and use. US Patent 5,571,719 (Eriflim tarihi 27.09.2012)
  • Yüzügüllü Y, Ögel ZB, Bölükbaflı UB, Çoruh N, Karakafl G. 2011. Production and biocatalytic activity of a novel bifunctional catalase-phenol oxidase of Scytalidium thermophilum in the presence of phenolic compounds. Turk J Biol, 35, 697-704.
  • Anonymous. http://www.gmo-compass.org/ eng/database/enzymes/89.catalase.html (Eriflim tarihi 27.09.2012)
  • Amorim AM, Gasques MDG, Andreus J, Scharf M. 2002. The application of catalase for the elimination of hydrogen peroxide residues after bleaching of cotton fabrics. Ann Brazil Acad Sci, 74, 433-436.

Çift Aktiviteli Katalaz-Fenol Oksidazının ve Diğer Katalazların Gıda Sanayisindeki Önemi

Year 2013, Volume: 38 Issue: 2, 111 - 118, 01.04.2013

Abstract

Katalazlar, hidrojen peroksiti su ve oksijene dönüştüren, antioksidan metalloenzimler grubuna dahil, hücre ömrünün uzamasına önemli katkıları olduğu bilinen enzimlerdir. Gıdalarda, gerek tek başlarına süt pastörizasyonunda ve peynir yapımında, gerekse glukoz oksidaz ile beraber glukoz içermeyen diyetetik içecekler, fruktoz içermeyen invert şeker ve glukoz içermeyen maltoz üretiminde kullanılmaktadırlar. Son yıllarda hidrojen peroksitin endüstride kullanımının artması, ekonomik ve oldukça kararlı katalaz enziminin üretilmeye çalışılmasını gerekli kılmıştır. Katalaz enziminin fonksiyonel ve yapısal karakterizasyonu uzun yıllardır çalışılmış olmasına rağmen halen enzimin bilinmeyen karakteristik özellikleri ortaya çıkmaktadır. Örneğin, termofilik bir mantar olan Scytalidium thermophilum’un büyümeye bağlı olarak sürekli (konstitütif) bir şekilde ürettiği katalaz, hidrojen peroksit yokluğunda fenol oksidaz aktivitesi de göstermektedir. Bu özelliğin keşfi ile birlikte, insan da dâhil çok farklı organizmaların katalazlarında değişen oranlarda oksidaz aktivitesi olduğu belirlenmiştir. Katalazlar üzerine yaklaşık yüz yıldır çalışıldığı halde, bu enzimlerin peroksitten bağımsız ikincil oksidaz aktivitesi literatürde yeni bir bulgudur. Katalazın oksidaz aktivitesinin etkinliğini arttırmak için üç boyutlu yapısının protein mühendisliği ile değiştirilmesi çalışmalarına başlanmıştır. Bu şekilde, tek aşamada hem hidrojen peroksiti hem de oksijeni ortamdan uzaklaştırabilecek maliyeti düşük ve yüksek verimli katalazların üretilmesi olasılığı, bu enzimlerin araştırılmasında yepyeni ufuklar açmıştır.

References

  • 33, 34, 35 34, 35 Sanayisi A. niger A. niger A. niger, M. lysodeikticus A. niger 37 A. niger 37 A. niger, M. lysodeikticus A. niger
  • A. niger 37 50 50 51 Tekstil Sanayisi A. niger A. niger A. niger
  • oksidaz, hekzokinaz, lipaz, peroksidaz, süperoksit dismutaz gibi birçok enzimi içeren çimen suyu ticari olarak satılmakta ve yaygın olarak kullanılmaktadır (46). Son yıllarda katalazın saç beyazlamasını geciktirici özelli¤i keflfedilmifl ve bu amaçla tablet halde üretilen katalazlar piyasadaki yerini almıfltır (47). SONUÇ VE ÖNERİLER
  • Chelikani P, Fita I, Loewen PC. 2004. Diversity of structures and properties among catalases. Cell Mol Life Sci, 61, 192-208.
  • Switala J, Loewen PC. 2002. Diversity of properties among catalases. Arch Biochem Biophys, 401, 145-154.
  • Zamocky M, Furtmüller PG, Obinger C. 2008. Evolution of catalases from bacteria to humans. Antioxid Redox Signal, 10, 1527-1548.
  • Bhaskar B, Lad L, Poulos TL. 2006. Iron: Heme proteins, peroxidases, catalases and catalase- peroxidases. In: Encyclopedia of inorganic chemistry, King RB (chief ed), J. Wiley & Sons, New York, NY, pp. 1-21.
  • Stich TA, Whittaker JW, Britt RD. 2010. Multifrequency EPR studies of Manganese catalases provide a complete description of proteinaceous nitrogen coordination. J Phys Chem, 114, 14178-14188.
  • Rochat T, Bermşdez-Humarán L, Gratadoux JJ, Fourage C, Hoebler C, Corthier G, Langella P. 2007. Antinflammatory effects of Lactobacillus caseiBL23 producing or not a manganese- dependant catalase on DSS-induced colitis in mice. Microb Cell Fact, 6, 22.
  • Mate M, Murshudov G, Bravo J, Melik-Adamyan W, Loewen PC, Fita I. 2001. Heme-catalases. In: Encyclopedia of Inorganic and Bioinorganic Chemistry, Scott RA (chief ed), J. Wiley & Sons Press, New York, NY, pp. 486-502.
  • Liu JZ, Wang M. 2007. Improvement of activity and stability of chloroperoxidase by chemical modification. Biotechnol, 7, 23.
  • Anh DH, Ullrich R, Benndorf D, Svatos A, Muck A, Hofrichter M. 2007. The coprophilus mushroom Coprinus radianssecretes a haloperoxidase that catalyzes aromatic peroxygenation. Appl Environ Microbiol, 73, 5477-5485.
  • Ögel ZB, Yüzügüllü Y, Mete S, Bakir U, Kaptan Y, Sutay D, Demir AS. 2006. Production, properties and application to biocatalysis of a novel extracellular alkaline phenol oxidase from the thermophilic fungus Scytalidium thermophilum. Appl Microbiol Biotechnol, 71, 853-862.
  • Sutay Kocabas D, Bakir U, Phillips SEV, McPherson MJ, Ogel ZB. 2008. Purification, characterization, and identification of a novel bifunctional catalasephenol oxidase from Scytalidium thermophilum. Appl Microbiol Biotechnol, 79, 407-415.
  • Sutay Kocabas D, Pearson AR, Phillips SEV, Bakir U, Ogel ZB, McPherson MJ, Trinh C. 2009. Crystallization and preliminary X-ray analysis of a bifunctional catalase-phenol oxidase from Scytalidium thermophilum. Acta Crystallogr Sect F: Struct Biol Cryst Commun, 65, 486-488.
  • Vetrano AM, Heck DE, Mariano TM, Mishin V, Laskin DL, Laskin JD. 2005. Characterization of the oxidase activity in mammalian catalase. J Biol Chem, 280, 35372-35381.
  • Nita M, Raducan A, Puiu M, Oancea D. 2007. Stabilization of catalase in the presence of additives.
  • http://gw-chimie.math.unibuc.ro/anunivch/ 2007-2/AUBCh2007XVI23944.pdf (Eriflim tarihi 21.09.2012)
  • Volkert MR, Loewen PC, Switala J, Crowley D, Conley M. 1994. The _(argF-lacZ)205(U169) deletion greatly enhances resistance to hydrogen peroxide in stationary-phase Escherichia coli. J Bacteriol, 176, 1297-1302.
  • Loewen PC. 1999. Catalase. In: Encyclopedia of molecular biology, Creighton T (chief ed), J. Wiley & Sons, New York, NY, pp. 351-353.
  • Das D, Bishayi B. 2010. Contribution of catala- se and superoxide dismutase to the intracellular survival of clinic isolates of Staphylacoccus aureus in murine macrophages. Ind J Microbiol, 50, 375-384. 18. Comporti M, Signorini C, Leoncini S, Gardi C, Ciccoli L, Giardini A, Vecchio D, Arezzini B. 2010. Ethanol-induced oxidative stress: basic knowledge. Genes Nutr, 5, 101-109.
  • Gough DR, Cotter TG. 2011. Hydrogen peroxide: a Jekyll and Hyde signaling molecule. Cell Death Dis,2, e213; Doi: 10.1038/cddis.2011.96.
  • Onumah OE, Jules GE, Zhou L, Yang H, Guo Z. 2009. Overexpression of catalase delays G0/G1- to S-phase transition during cell cycle progression in mouse aortic endothelial cells. Free Radic Biol Med, 46, 1658-1667.
  • Takebe F, Hara I, Matsuyama H, Yumoto I. 2007. Effects of H2O2under low- and high-aeration -level conditions on growth and catalase activity in Exiguobacterium oxidotolerans T-2-2T. J Biosci Bioeng, 104, 464-469.
  • Imlay JA. 2008. Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem, 77, 755-776.
  • Uhlich GA. 2009. KatP contributes to OxyR-regulated hydrogen peroxide resistance in Escherichia coliserotype O157 : H7. Microbiol, 155, 3589-3598.
  • Pacello F, Rotillo G, Battistoni A. 2012. Low-shear modeled microgravity enhances Salmonella entericaresistance to Hydrogen peroxide through a mechanism involving KatG and KatN. Open Microbiol J, 6, 53-64.
  • Mulvey MR, Switala J, Borys A, Loewen PC. 1990. Regulation of transcription of katE and katFin Escherichia coli. J Bacteriol, 172, 6713-6720.
  • Chelikani P, Ramana T, Radhakrishnan TM. 2005. Catalase: A repertoire of unusual features. Ind J Clinic Biochem, 20, 131-135.
  • Gouet P, Jouve HM, Dideberg O. 1995. Crystal structure of Proteus mirabilis PR catalase with and without bound NADPH. J Mol Biol, 249, 933-954. 28. Bravo J, Mate MJ, Schneider T, Switala J, Wilson K, Loewen PC, Fita I. 1999. Structure of catalase HPII from Escherichia coli at 1.9 Å resolution. Proteins, 34, 155-66.
  • Kirk O, Borchert TV, Fuglsang CC. 2002. Industrial enzyme applications. Curr Opin Biotechnol, 13, 345-351.
  • Anon. http://www.food.hacettepe.edu.tr/turkish/ ouyeleri/gmu809/enzim_ve_mikroorganizma.pdf (Eriflim tarihi 13.09.2012)
  • Lück H. The use of hydrogen peroxide in milk and dairy products. http://www.whqlibdoc. who.int/monograph/WHO_MONO_48_(p423). pdf (Eriflim tarihi 21.09.2012)
  • Phillips T. Enzymes used in diary industry.
  • http://wwwbiotech.about.com/od/casestudies/ tp/dairyenzymes.htm (Eriflim tarihi 21.09.2012)
  • Anonymous. http://www.food.ege.edu.tr/files/ bolm10.pdf (Eriflim tarihi 13.09.2012)
  • Chaplin M. Glucose oxidase and catalase in the food industry. http://www.lsbu.ac.uk/biology/ enztech/god.html (Eriflim tarihi 23.09.2012)
  • Vidhyalakshmi R, Bhakyaraj R, Subhasree RS. 2009. Encapsulation "The future of probiotics"- a review. Adv Biol Res, 3, 96-103.
  • Apinan S. Encapsulation technology. http://www.nanotec.or.th/fckeditor/FCKeditor/ UserFiles/Encapsulation%20technology%20in %20Food%20Industry%20new.pdf (Eriflim tarihi 14.09.2012)
  • Anonymous. http://www.capsulae.com/eng/ markets-industries/food-nutrition (Eriflim tarihi 14.09.2012)
  • Panesar PS, Kumari S, Panesar R. 2010. Potential applications of immobilized E-Galactosidase in food processing industries. Enzyme Res, Volume 2010, Article ID 473137, 16 pages, Doi: 10.4061/ 2010/473137.
  • Petkova GA, Zaruba K, Zvatora P, Kral V. 2012. Gold and silver nanoparticles for biomolecule immobilization and enzymatic catalysis. Nanoscale Res Lett, 7, 287.
  • Alves Da Silva M, Helena Gil M, Piedade AP, Redinha JS, Oliveira Brett A, Caridade Costa JM. Immobilization of catalase on membranes of Poly(ethylene)-g-co-acrylic acid and Poly (tetrafluoroethylene)-g-co-acrylic acid and their application in hydrogen peroxide electrochemical sensors. http://www1.ci.uc.pt/pessoal/anabrett/ pdfs/PDF-1984-1995/5-Catalase-JPolSci.pdf (Eriflim tarihi 14.09.2012)
  • Çetinus fiA, Öztop HN, Saraydın D. 2007. Immobilization of catalase onto chitosan and cibacron blue F3GA attached chitosan beads. Enzyme Microb Tech, 41, 447-454.
  • Bayramoglu G, Karagoz B, Yilmaz M, Bicak N, Arica MY. 2011. Immobilization of catalase via adsorbtion on poly(styrene-d-glycidylmethacrylate) grafted and tetraethyldiethylenetriamine ligand attached microbeads. Bioresour Technol, 102, 3653-3661.
  • Wang ZG, Wan LS, Xu ZK. 2009. Immobilization of catalase on electrospun nanofibrus membranes modified with bovine serum albumin or collagen: Coupling site-dependent activity and protein- dependent stability. Soft Matter, 5, 4161-4168.
  • Chen S, Song N, Liao X, Shi B. 2011. Immobilization of catalase on Fe(III) modified collagen fiber. Sheng Wu Gong Chenq Xue Bao, 7, 1076-1081 [in Chinese].
  • Kubal BS, D’Souza SF. Immobilized-BARC. http://www.barc.gov.in/publications/nl/2006/ 200610-20.pdf (Eriflim tarihi 14.09.2012)
  • Anonymous. http://www.dynamicgreens.com/ wheatgrass-enzymes.html (Eriflim tarihi 27.09.2012)
  • Anonymous. http://www.emaxhealth.com/1020/ 115/29550/catalase-culprit-gray-hair.html (Eriflim tarihi 27.09.2012)
  • Christensen B, Lange NK, Daimon K. Catalase, its production and use. US Patent 5,571,719 (Eriflim tarihi 27.09.2012)
  • Yüzügüllü Y, Ögel ZB, Bölükbaflı UB, Çoruh N, Karakafl G. 2011. Production and biocatalytic activity of a novel bifunctional catalase-phenol oxidase of Scytalidium thermophilum in the presence of phenolic compounds. Turk J Biol, 35, 697-704.
  • Anonymous. http://www.gmo-compass.org/ eng/database/enzymes/89.catalase.html (Eriflim tarihi 27.09.2012)
  • Amorim AM, Gasques MDG, Andreus J, Scharf M. 2002. The application of catalase for the elimination of hydrogen peroxide residues after bleaching of cotton fabrics. Ann Brazil Acad Sci, 74, 433-436.
There are 54 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Yonca Yüzügüllü

Zümrüt Begüm Ögel This is me

Publication Date April 1, 2013
Published in Issue Year 2013 Volume: 38 Issue: 2

Cite

APA Yüzügüllü, Y. ., & Ögel, Z. B. . (2013). Çift Aktiviteli Katalaz-Fenol Oksidazının ve Diğer Katalazların Gıda Sanayisindeki Önemi. Gıda, 38(2), 111-118.
AMA Yüzügüllü Y, Ögel ZB. Çift Aktiviteli Katalaz-Fenol Oksidazının ve Diğer Katalazların Gıda Sanayisindeki Önemi. The Journal of Food. April 2013;38(2):111-118.
Chicago Yüzügüllü, Yonca, and Zümrüt Begüm Ögel. “Çift Aktiviteli Katalaz-Fenol Oksidazının Ve Diğer Katalazların Gıda Sanayisindeki Önemi”. Gıda 38, no. 2 (April 2013): 111-18.
EndNote Yüzügüllü Y, Ögel ZB (April 1, 2013) Çift Aktiviteli Katalaz-Fenol Oksidazının ve Diğer Katalazların Gıda Sanayisindeki Önemi. Gıda 38 2 111–118.
IEEE Y. . Yüzügüllü and Z. B. . Ögel, “Çift Aktiviteli Katalaz-Fenol Oksidazının ve Diğer Katalazların Gıda Sanayisindeki Önemi”, The Journal of Food, vol. 38, no. 2, pp. 111–118, 2013.
ISNAD Yüzügüllü, Yonca - Ögel, Zümrüt Begüm. “Çift Aktiviteli Katalaz-Fenol Oksidazının Ve Diğer Katalazların Gıda Sanayisindeki Önemi”. Gıda 38/2 (April 2013), 111-118.
JAMA Yüzügüllü Y, Ögel ZB. Çift Aktiviteli Katalaz-Fenol Oksidazının ve Diğer Katalazların Gıda Sanayisindeki Önemi. The Journal of Food. 2013;38:111–118.
MLA Yüzügüllü, Yonca and Zümrüt Begüm Ögel. “Çift Aktiviteli Katalaz-Fenol Oksidazının Ve Diğer Katalazların Gıda Sanayisindeki Önemi”. Gıda, vol. 38, no. 2, 2013, pp. 111-8.
Vancouver Yüzügüllü Y, Ögel ZB. Çift Aktiviteli Katalaz-Fenol Oksidazının ve Diğer Katalazların Gıda Sanayisindeki Önemi. The Journal of Food. 2013;38(2):111-8.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/